tcm Traditional Chinese Medicine 2166-6067 2166-6059 beplay体育官网网页版等您来挑战! 10.12677/tcm.2024.1311448 tcm-100530 Articles 医药卫生 汉黄芩素的药理作用综述
Review of Pharmacological Effects of Wogonin
李忠鑫 1 2 陈雪英 2 3 甘立军 2 3 济宁医学院临床医学院,山东 济宁 山东省心血管疾病诊疗重点实验室,山东 济宁 济宁医学院附属医院冠心病四区,山东 济宁 05 11 2024 13 11 3039 3046 11 10 :2024 5 10 :2024 5 11 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 汉黄芩素(Wogonin),一种从传统中药黄芩(Scutellaria Baicalensis)中提取的黄酮类化合物,近年来因其多种生物活性而成为药理学研究的热点。其主要药理作用包括抗炎、抗氧化、抗肿瘤、神经保护、抗病毒及免疫调节等。体外和体内研究表明,汉黄芩素能够通过多种分子机制发挥药理作用,并且在多种疾病模型中展现出潜在的治疗效果。本文旨在系统性总结汉黄芩素的药理作用及其机制,为其进一步的药物开发和临床应用提供理论依据。
Wogonin, a flavonoid compound extracted from the traditional Chinese medicine Scutellaria baicalensis, has gained attention in pharmacological research in recent years due to its diverse biological activities. Its primary pharmacological effects include anti-inflammatory, antioxidant, antitumor, neuroprotective, antiviral, and immunomodulatory properties. Both in vitro and in vivo studies have shown that wogonin exerts its pharmacological effects through various molecular mechanisms and demonstrates potential therapeutic effects in multiple disease models. This article aims to systematically summarize the pharmacological effects and mechanisms of Wogonin, providing a theoretical basis for its further drug development and clinical applications.
汉黄芩素,抗炎,抗肿瘤,神经保护,抗病毒,免疫调节,药理机制
Wogonin
Anti-Inflammatory Anti-Tumor Neuroprotective Antiviral Immunomodulatory Pharmacological Mechanisms
1. 引言

汉黄芩素作为黄芩中的主要活性成分之一,其药理作用广泛涵盖抗炎、抗肿瘤、神经保护、抗病毒及免疫调节等多个领域 [1] 。其独特的化学结构和药代动力学特性赋予了它在中枢神经系统疾病、肿瘤治疗及免疫系统调节中的潜在应用。本文将系统总结汉黄芩素的药理作用及其机制,并深入探讨其在临床应用中的前景。这一研究不仅有助于加深对汉黄芩素的理解,也为未来的药物开发提供了坚实的理论基础。

1.1. 抗炎作用

炎症反应是机体对抗外来刺激或病原体的重要免疫反应 [2] 。然而,过度或持续的炎症反应可能导致慢性疾病,如类风湿性关节炎、炎症性肠病、哮喘等 [3] - [5] 。近年来,汉黄芩素在抗炎研究中得到了广泛关注。

汉黄芩素通过多种途径有效抑制炎症反应,其抗炎机制主要集中在对关键信号通路和炎症介质的调控上。在众多炎症调节途径中,NF-κB信号通路是最为重要的之一。该通路在炎症反应中发挥核心作用,负责调控促炎因子如肿瘤坏死因子(TNF-α)和白细胞介素-6 (IL-6)的表达 [6] [7] 。汉黄芩素通过抑制IκBα的磷酸化,从而阻止NF-κB进入细胞核,减少促炎因子的生成和释放 [8] 。这种机制在类风湿关节炎等慢性炎症性疾病的治疗中尤为重要 [9] ,因为NF-κB的持续激活与这些疾病的慢性炎症状态密切相关。通过抑制NF-κB,汉黄芩素能够有效缓解炎症,减轻组织损伤。

此外,MAPK (丝裂原活化蛋白激酶)信号通路在细胞应激反应中也起着至关重要的作用。MAPK途径通常会在受到外界刺激时被激活,从而引发一系列炎症介质的产生,如PGE2 (前列腺素E2)和NO (一氧化氮) [10] 。这些炎症介质在维持炎症反应中具有重要的作用。汉黄芩素通过抑制MAPK通路的关键组分ERK、JNK和p38的磷酸化,阻止了这一信号通路的激活,从而显著减少了PGE2和NO的生成 [11] [12] 。这种抑制不仅能够缓解急性炎症反应,还能通过长期干预来预防慢性炎症的持续加重。

除了对NF-κB和MAPK信号通路的调控,汉黄芩素还通过下调COX-2和iNOS的mRNA及蛋白表达,进一步减少了促炎介质的生成 [13] [14] 。COX-2是催化前列腺素合成的关键酶,其过度表达与多种慢性炎症疾病的进展密切相关 [15] 。iNOS则是负责NO合成的酶类 [16] ,NO在炎症反应中既可以作为信号分子,也可以引发组织损伤 [17] 。通过抑制COX-2和iNOS的表达,汉黄芩素不仅减少了PGE2和NO的生成,进而降低了炎症的严重程度。这一作用在急性和慢性炎症模型中均得到了实验验证,表明其具有广泛的抗炎潜力。

综上所述,汉黄芩素通过多重机制发挥了显著的抗炎作用,分别针对NF-κB、MAPK以及COX-2和iNOS等关键炎症信号通路,全面调节炎症介质的生成与释放。这种多靶点的作用机制为汉黄芩素在慢性炎症性疾病的治疗中提供了有力的理论支持,并且展现了其在临床应用中的广阔前景。

1.2. 抗肿瘤作用

肿瘤的发生和发展涉及细胞增殖失控、血管生成增强、细胞凋亡抑制等多个方面。近年来,汉黄芩素作为一种具有多靶点抗肿瘤活性的化合物,逐渐受到肿瘤学研究的关注。

汉黄芩素在抗肿瘤研究中展现出多重机制,其抗肿瘤作用主要体现在诱导肿瘤细胞凋亡、抑制细胞增殖以及抑制肿瘤血管生成等方面 [18] 。首先,诱导肿瘤细胞凋亡是汉黄芩素发挥抗肿瘤作用的关键途径之一。凋亡是一种程序性细胞死亡过程,在维持机体稳态和消除癌细胞中起着重要作用 [19] 。研究表明,汉黄芩素通过激活线粒体凋亡途径,增加Bax/Bcl-2的比值 [20] ,增强线粒体膜的通透性,促使细胞色素C释放。随后,细胞色素C激活下游的Caspase-9和Caspase-3 [21] [22] ,最终导致细胞凋亡的发生。通过这一途径,汉黄芩素能够有效清除肿瘤细胞,这一机制已在多种肿瘤细胞系中得到广泛验证,尤其是在乳腺癌、肺癌和结肠癌等实体瘤中表现出显著的抗肿瘤效果。

其次,汉黄芩素还通过调控细胞周期相关蛋白,抑制了肿瘤细胞的增殖 [23] 。细胞周期蛋白如Cyclin D1和CDK4/6是调控细胞周期进程的关键因子,它们的异常表达常导致肿瘤细胞的无限增殖 [24] 。汉黄芩素通过下调这些蛋白的表达,阻滞细胞周期于G1期或G2/M期,从而有效抑制肿瘤细胞的增殖 [25] 。这一作用机制不仅表现在乳腺癌和肺癌等实体瘤中,也在其他多种肿瘤细胞系中得到了验证,显示出广谱的抗肿瘤活性。

最后,汉黄芩素通过抑制血管内皮生长因子(VEGF)及其受体的表达,阻止了肿瘤血管的生成,进一步发挥了其抗肿瘤作用 [26] 。肿瘤的生长和转移高度依赖于新生血管的生成,VEGF是这一过程中的关键调控因子 [27] 。通过抑制VEGF及其受体的表达,汉黄芩素能够有效阻止血管内皮细胞的迁移和增殖,显著抑制肿瘤血管的生成,限制肿瘤的生长和扩散。这一机制不仅有助于减少肿瘤的扩散和转移,也为其在抗肿瘤治疗中的应用提供了新的可能性。

汉黄芩素不仅能够通过诱导凋亡和抑制细胞增殖直接抑制肿瘤细胞的生长和存活,还能通过调控肿瘤血管生成和改变肿瘤微环境来阻止肿瘤的扩散和转移。这些发现为汉黄芩素作为一种潜在的抗肿瘤治疗药物提供了坚实的理论基础,并有望在未来的肿瘤治疗中发挥重要作用。

1.3. 神经保护作用

汉黄芩素在神经保护方面展现了显著的作用,其神经保护机制主要通过抗氧化、抗炎和调节神经递质平衡等途径,减缓神经退行性疾病的进展。神经退行性疾病,如阿尔茨海默病和帕金森病,其病理机制复杂,涉及多种细胞损伤途径,汉黄芩素则通过多重机制发挥着保护作用。

首先,氧化应激被认为是神经退行性疾病发展的重要因素之一 [28] 。过量的自由基会攻击神经细胞,导致细胞膜脂质、蛋白质和DNA的损伤,从而加速神经细胞的死亡和功能丧失 [29] 。汉黄芩素通过清除自由基,减少氧化应激对神经细胞的损害,发挥了显著的抗氧化作用。研究表明,汉黄芩素能够增强抗氧化酶的活性,如超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px),从而有效保护神经细胞免受氧化应激的破坏 [30] [31] 。这一抗氧化作用在多种动物模型中得到了验证,尤其是在阿尔茨海默病和帕金森病模型中表现尤为突出。通过减少自由基的积累,汉黄芩素有助于延缓神经细胞退化,为神经退行性疾病的治疗提供了重要支持。

其次,神经炎症在神经退行性疾病的病理过程中也扮演着至关重要的角色。小胶质细胞作为中枢神经系统的主要免疫细胞,在炎症状态下被过度激活,释放大量促炎因子,如TNF-α和IL-6,这些因子会加剧神经细胞的损伤 [32] 。汉黄芩素通过抑制小胶质细胞的活化,减少促炎因子的释放,从而显著缓解了神经炎症 [33] 。此外,汉黄芩素还能够通过抑制NF-κB等炎症信号通路的激活,进一步减少炎症反应对神经系统的损害 [34] 。NF-κB作为炎症反应中的重要调控因子,其过度活化与神经退行性疾病的恶化密切相关,汉黄芩素对这一通路的抑制作用能够有效控制神经炎症,减缓疾病的进展。

最后,调节神经递质平衡是汉黄芩素神经保护作用的另一重要机制。在阿尔茨海默病等疾病中,乙酰胆碱等神经递质的不足会导致记忆和认知功能的严重受损 [35] 。汉黄芩素通过增加胆碱能神经传递,能够抑制乙酰胆碱酯酶的活性,从而提高乙酰胆碱的水平,改善神经传递效率 [36] 。这一机制在阿尔茨海默病的动物模型中得到了验证,显示出改善记忆和认知功能的潜力。

基于这些多重机制,汉黄芩素在神经保护领域显示出了广阔的应用前景,尤其是在延缓神经退行性疾病的进展方面具有重要意义。未来的研究应继续探索汉黄芩素在不同神经疾病模型中的作用机制,并进行临床试验,以评估其在实际治疗中的安全性和有效性。通过进一步的研究,汉黄芩素有望成为一种新的天然神经保护剂,为阿尔茨海默病、帕金森病等疾病提供更为有效的治疗方案。

2. 汉黄芩素的抗病毒与免疫调节作用

除了抗炎和抗肿瘤作用,汉黄芩素还在抗病毒和免疫调节领域展现了广泛的药理活性。

汉黄芩素在抗病毒方面展现了显著的潜力,特别是在对抗流感病毒、乙型肝炎病毒(HBV)和人类免疫缺陷病毒(HIV)等多种病毒感染的模型中,具有良好的应用前景。其抗病毒机制主要通过抑制病毒复制酶的活性来实现,例如汉黄芩素能够有效抑制HBV DNA聚合酶的活性,阻止病毒的复制和扩散,遏制病毒在体内的传播 [37] 。此外,汉黄芩素还具备调节宿主免疫反应的能力,减轻病毒感染所引发的炎症反应,从而减少组织损伤。这种免疫调节在病毒性疾病的治疗中具有重要意义,特别是在病毒性肝炎和艾滋病的治疗中显示出明显的效果 [38] 。更为重要的是,汉黄芩素还通过调节T细胞功能,特别是增加调节性T细胞(Treg)的比例,抑制效应性T细胞的过度活性,帮助维持免疫系统的平衡 [39] 。这种免疫调节作用不仅对抗病毒有显著作用,还在预防和治疗自身免疫性疾病中展现了广泛的应用前景,使汉黄芩素在抗病毒及免疫调节领域成为一个具有高度潜力的天然药物。

3. 汉黄芩素在心血管疾病中的应用

汉黄芩素在心血管疾病的预防和治疗中展现了广泛的作用,特别是在抗动脉粥样硬化、抗高血压和抗血栓形成方面取得了显著成果。动脉粥样硬化是一种常见的慢性炎症性疾病,其主要特点是动脉壁内逐渐形成脂质沉积,最终导致血管狭窄和硬化,增加心血管事件的风险 [40] 。研究表明,汉黄芩素能够通过多种机制有效干预动脉粥样硬化的病理进程。其中,汉黄芩素通过抑制低密度脂蛋白(LDL)的氧化,减少氧化低密度脂蛋白(oxLDL)对内皮细胞的损伤,显著降低了内皮细胞的炎症反应 [41] 。这一抗氧化作用能够防止脂质在血管壁上的沉积,进而减缓斑块的形成和动脉粥样硬化的进展。此外,汉黄芩素还能通过减少动脉壁中的炎症细胞浸润 [42] ,进一步抑制了血管壁的炎症反应,为动脉粥样硬化的治疗提供了新的方向。

在高血压的防治方面,汉黄芩素同样表现出强大的潜力。高血压是导致心血管疾病的主要危险因素之一,长期的高血压会引发血管的结构性改变,增加动脉硬化及血管狭窄的风险 [43] 。汉黄芩素通过清除自由基、减轻氧化应激及抑制NF-κB信号通路的激活,显著减少了促炎因子的生成 [34] [44] 。特别是其通过调节一氧化氮(NO)的释放,改善了血管内皮的功能,增加了血管的舒张能力,从而有效降低了血压 [45] 。汉黄芩素对血管内皮功能的改善,不仅能帮助降低血压,还能减轻高血压对心血管系统的长期损害,为高血压的综合防治提供了新的手段。

同时,血栓的形成是许多心血管疾病,尤其是心肌梗死和中风的病理基础。汉黄芩素在抗血栓形成方面也表现出了显著的效果。其通过抑制血小板聚集,干预血小板与纤维蛋白的相互作用,减少了血栓形成的风险 [46] 。此外,汉黄芩素还能增强抗凝血酶的活性,降低凝血因子的表达,从而进一步抑制了血栓的形成 [47] 。这一作用机制已在多种体内和体外实验模型中得到验证,显示出良好的抗血栓效果。基于其多方面的抗血栓作用,汉黄芩素在预防和治疗血栓相关心血管事件中的应用前景十分广阔。

汉黄芩素在动脉粥样硬化、高血压和血栓形成等心血管疾病的防治中通过多重机制发挥了其药理作用,展现了巨大的临床应用潜力。这些发现为开发以汉黄芩素为基础的天然药物提供了理论依据,并有望为心血管疾病的综合治疗提供一种新的、有效的治疗方案。

4. 汉黄芩素的药代动力学特性及未来展望

虽然汉黄芩素展现出广泛的药理作用,但其生物利用度较低是临床应用中的一大障碍。研究发现,汉黄芩素在体内的代谢主要通过CYP450酶系进行,且其半衰期较长 [48] [49] 。然而,由于其脂溶性较强 [50] ,能够穿过血脑屏障,这为其在神经系统疾病中的应用提供了独特的优势 [51]

未来研究应致力于通过药物制剂改进或与其他药物联合使用,提升其生物利用度和临床疗效。此外,虽然体外和动物实验已经证明了汉黄芩素的多种有益作用,但在人类临床试验中的数据仍然有限。大规模、高质量的临床试验将是未来研究的重点方向。

项目基金

山东省中医药科技重点项目(Z-2022081);济宁市重点研发计划(2022YXNS003和2023YXNS031)。

NOTES

*通讯作者。

References García-Lafuente, A., Guillamón, E., Villares, A., Rostagno, M.A. and Martínez, J.A. (2009) Flavonoids as Anti-Inflammatory Agents: Implications in Cancer and Cardiovascular Disease. Inflammation Research, 58, 537-552. >https://doi.org/10.1007/s00011-009-0037-3 Chu, H., Lee, S., Wang, X., Lee, S., Yoon, H., Hwang, Y., et al. (2021) A Correlation Study on in Vitro Physiological Activities of Soybean Cultivars, 19 Individual Isoflavone Derivatives, and Genetic Characteristics. Antioxidants, 10, Article 2027. >https://doi.org/10.3390/antiox10122027 Abraham, C. and Cho, J.H. (2009) Inflammatory Bowel Disease. New England Journal of Medicine, 361, 2066-2078. >https://doi.org/10.1056/nejmra0804647 Hofmann, M.A., Drury, S., Hudson, B.I., Gleason, M.R., Qu, W., Lu, Y., et al. (2002) RAGE and Arthritis: The G82S Polymorphism Amplifies the Inflammatory Response. Genes&Immunity, 3, 123-135. >https://doi.org/10.1038/sj.gene.6363861 Hofmann Bowman, M., Wilk, J., Heydemann, A., Kim, G., Rehman, J., Lodato, J.A., et al. (2010) S100A12 Mediates Aortic Wall Remodeling and Aortic Aneurysm. Circulation Research, 106, 145-154. >https://doi.org/10.1161/circresaha.109.209486 Baker, R.G., Hayden, M.S. and Ghosh, S. (2011) NF-κB, Inflammation, and Metabolic Disease. Cell Metabolism, 13, 11-22. Brown, J.D., Lin, C.Y., Duan, Q., et al. (2014) NF-κB Directs Dynamic Super Enhancer Formation in Inflammation and Atherogenesis. Molecular Cell, 56, 219-231. Yao, J., Zhao, L., Zhao, Q., Zhao, Y., Sun, Y., Zhang, Y., et al. (2014) NF-κB and NRF2 Signaling Pathways Contribute to Wogonin-Mediated Inhibition of Inflammation-Associated Colorectal Carcinogenesis. Cell Death&Disease, 5, e1283. >https://doi.org/10.1038/cddis.2014.221 Yang, H., Liu, C., Lin, X., Li, X., Zeng, S., Gong, Z., et al. (2024) Wogonin Inhibits the Migration and Invasion of Fibroblast-Like Synoviocytes by Targeting PI3K/AKT/NF-κB Pathway in Rheumatoid Arthritis. Archives of Biochemistry and Biophysics, 755, Article ID: 109965. >https://doi.org/10.1016/j.abb.2024.109965 Hu, H., Zhu, X., Lin, R., Li, Z. and Chen, L. (2016) Suppressive Effects of Gua Lou Gui Zhi Decoction on MCAO-Induced NO and PGE2 Production Are Dependent on the MAPK and NF-κB Signaling Pathways. Molecular Medicine Reports, 14, 5141-5147. >https://doi.org/10.3892/mmr.2016.5876 Yang, L., Chang, Y., Chiang, C., Huang, F., Su, N. and Kuan, Y. (2022) Protective Effect of Wogonin on Inflammatory Responses in Bis-GMA‐Treated Macrophages through the Inhibition of MAPK and NF-κB Pathways. Environmental Toxicology, 37, 3007-3012. >https://doi.org/10.1002/tox.23655 Chu, Y., Lv, X., Zhang, L., et al. (2020) Wogonin Inhibits in Vitro Herpes Simplex Virus Type 1 and 2 Infection by Modulating Cellular NF-κB and MAPK Pathways Protective Effect of Wogonin on Endotoxin-Induced Acute Lung Injury via Reduction of p38 MAPK and JNK Phosphorylation. BMC Microbiology, 20, Article No. 227. Chen, Y.C., Shen, S.C., Chen, L.G., Lee, T.J. and Yang, L.L. (2001) Wogonin, Baicalin, and Baicalein Inhibition of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Gene Expressions Induced by Nitric Oxide Synthase Inhibitors and Lipopolysaccharide. Biochemical Pharmacology, 61, 1417-1427. Pan, M., Lai, C., Wang, Y. and Ho, C. (2006) Acacetin Suppressed LPS-Induced Up-Expression of Inos and COX-2 in Murine Macrophages and TPA-Induced Tumor Promotion in Mice. Biochemical Pharmacology, 72, 1293-1303. >https://doi.org/10.1016/j.bcp.2006.07.039 Berruyer, C., Pouyet, L., Millet, V., Martin, F.M., LeGoffic, A., Canonici, A., et al. (2006) Vanin-1 Licenses Inflammatory Mediator Production by Gut Epithelial Cells and Controls Colitis by Antagonizing Peroxisome Proliferator-Activated Receptor γ Activity. The Journal of Experimental Medicine, 203, 2817-2827. >https://doi.org/10.1084/jem.20061640 Song, X., Li, F., Zhang, M., Xia, Y., Ai, L. and Wang, G. (2022) Effect of D-Ala-Ended Peptidoglycan Precursors on the Immune Regulation of Lactobacillus plantarum Strains. Frontiers in Immunology, 12, Article 825825. >https://doi.org/10.3389/fimmu.2021.825825 Nicosia, N., Kwiecień, I., Mazurek, J., Mika, K., Bednarski, M., Miceli, N., et al. (2022) Hydroalcoholic Leaf Extract of Isatis tinctoria L. via Antioxidative and Anti-Inflammatory Effects Reduces Stress-Induced Behavioral and Cellular Disorders in Mice. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3567879. >https://doi.org/10.1155/2022/3567879 Zhu, Y., Fang, J., Wang, H., Fei, M., Tang, T., Liu, K., et al. (2018) Baicalin Suppresses Proliferation, Migration, and Invasion in Human Glioblastoma Cells via Ca 2+-Dependent Pathway. Drug Design, Development and Therapy, 12, 3247-3261. >https://doi.org/10.2147/dddt.s176403 Domiński, A., Domińska, M., Skonieczna, M., Pastuch-Gawołek, G. and Kurcok, P. (2022) Shell-Sheddable Micelles Based on Poly(Ethylene Glycol)-Hydrazone-Poly[r, s]-3-Hydroxybutyrate Copolymer Loaded with 8-Hydroxyquinoline Glycoconjugates as a Dual Tumor-Targeting Drug Delivery System. Pharmaceutics, 14, Article 290. >https://doi.org/10.3390/pharmaceutics14020290 Wang, W., Guo, Q., You, Q., Zhang, K., Yang, Y., Yu, J., et al. (2006) Involvement of Bax/bcl-2 in Wogonin-Induced Apoptosis of Human Hepatoma Cell Line Smmc-7721. Anti-Cancer Drugs, 17, 797-805. >https://doi.org/10.1097/01.cad.0000217431.64118.3f Lotem, J., Peled-Kamar, M., Groner, Y. and Sachs, L. (1996) Cellular Oxidative Stress and the Control of Apoptosis by Wild-Type P53, Cytotoxic Compounds, and Cytokines. Proceedings of the National Academy of Sciences of the United States of America, 93, 9166-9171. >https://doi.org/10.1073/pnas.93.17.9166 Liang, F., Zhang, K., Ma, W., Zhan, H., Sun, Q., Xie, L., et al. (2022) Impaired Autophagy and Mitochondrial Dynamics Are Involved in Sorafenib-Induced Cardiomyocyte Apoptosis. Toxicology, 481, Article ID: 153348. >https://doi.org/10.1016/j.tox.2022.153348 He, L., Lu, N., Dai, Q., Zhao, Y., Zhao, L., Wang, H., et al. (2013) Wogonin Induced G1 Cell Cycle Arrest by Regulating Wnt/β-Catenin Signaling Pathway and Inactivating CDK8 in Human Colorectal Cancer Carcinoma Cells. Toxicology, 312, 36-47. >https://doi.org/10.1016/j.tox.2013.07.013 Qie, S. and Diehl, J.A. (2016) Cyclin D1, Cancer Progression, and Opportunities in Cancer Treatment. Journal of Molecular Medicine, 94, 1313-1326. >https://doi.org/10.1007/s00109-016-1475-3 Zhao, L., Miao, H., Li, W., Sun, Y., Huang, S., Li, Z., et al. (2015) LW-213 Induces G2/M Cell Cycle Arrest through AKT/GSK3β/β-Catenin Signaling Pathway in Human Breast Cancer Cells. Molecular Carcinogenesis, 55, 778-792. >https://doi.org/10.1002/mc.22321 Lu, N., Gao, Y., Ling, Y., Chen, Y., Yang, Y., Gu, H., et al. (2008) Wogonin Suppresses Tumor Growth in Vivo and VEGF-Induced Angiogenesis through Inhibiting Tyrosine Phosphorylation of VEGFR2. Life Sciences, 82, 956-963. >https://doi.org/10.1016/j.lfs.2008.02.013 Chen, W., Hsu, F., Liu, Y., Chen, C., Hsu, L. and Lin, S. (2019) Fluoxetine Induces Apoptosis through Extrinsic/Intrinsic Pathways and Inhibits ERK/NF-κB-Modulated Anti-Apoptotic and Invasive Potential in Hepatocellular Carcinoma Cells in Vitro. International Journal of Molecular Sciences, 20, Article 757. >https://doi.org/10.3390/ijms20030757 Bai, R., Guo, J., Ye, X., Xie, Y. and Xie, T. (2022) Oxidative Stress: The Core Pathogenesis and Mechanism of Alzheimer’s Disease. Ageing Research Reviews, 77, Article ID: 101619. >https://doi.org/10.1016/j.arr.2022.101619 Xin, Q., Shi, W., Wang, Y., Yuan, R., Miao, Y., Chen, K., et al. (2022) Pantao Pill Improves the Learning and Memory Abilities of APP/PS1 Mice by Multiple Mechanisms. Frontiers in Pharmacology, 13, Article 729605. >https://doi.org/10.3389/fphar.2022.729605 He, X., Wang, J., Sun, L., Ma, W., Li, M., Yu, S., et al. (2023) Wogonin Attenuates Inflammation and Oxidative Stress in Lipopolysaccharide-Induced Mastitis by Inhibiting AKT/ NF-κB Pathway and Activating the NRF2/Ho-1 Signaling. Cell Stress and Chaperones, 28, 989-999. >https://doi.org/10.1007/s12192-023-01391-4 Liu, Y., Zhang, M., Zeng, L., Lai, Y., Wu, S. and Su, X. (2024) Wogonin Upregulates SOCS3 to Alleviate the Injury in Diabetic Nephropathy by Inhibiting TLR4-Mediated JAK/STAT/AIM2 Signaling Pathway. Molecular Medicine, 30, Article No. 78. >https://doi.org/10.1186/s10020-024-00845-4 Jiang, Q., Wei, D., He, X., Gan, C., Long, X. and Zhang, H. (2021) Phillyrin Prevents Neuroinflammation-Induced Blood-Brain Barrier Damage Following Traumatic Brain Injury via Altering Microglial Polarization. Frontiers in Pharmacology, 12, Article 719823. >https://doi.org/10.3389/fphar.2021.719823 Piao, H.Z., Choi, I.Y., Park, J., Kim, H., Cheong, J.H., Son, K.H., et al. (2008) Wogonin Inhibits Microglial Cell Migration via Suppression of Nuclear Factor-κ B Activity. International Immunopharmacology, 8, 1658-1662. >https://doi.org/10.1016/j.intimp.2008.07.018 Zheng, Z., Zhu, W., Lei, L., Liu, X. and Wu, Y. (2020) Wogonin Ameliorates Renal Inflammation and Fibrosis by Inhibiting NF-κB and TGF-β1/Smad3 Signaling Pathways in Diabetic Nephropathy. Drug Design, Development and Therapy, 14, 4135-4148. >https://doi.org/10.2147/dddt.s274256 Chen, G., Hu, T., Li, Q., et al. (2013) Expression of Synaptosomal-Associated Protein-25 in the Rat Brain after Subarachnoid Hemorrhage. Neural Regeneration Research, 8, 2693-2702. Lee, B., Sur, B., Cho, S., Yeom, M., Shim, I., Lee, H., et al. (2016) Wogonin Attenuates Hippocampal Neuronal Loss and Cognitive Dysfunction in Trimethyltin-Intoxicated Rats. Biomolecules&Therapeutics, 24, 328-337. >https://doi.org/10.4062/biomolther.2015.152 Guo, Q., Zhao, L., You, Q., Yang, Y., Gu, H., Song, G., et al. (2007) Anti-Hepatitis β Virus Activity of Wogonin in Vitro and in Vivo. Antiviral Research, 74, 16-24. >https://doi.org/10.1016/j.antiviral.2007.01.002 Zhang, H., Cai, J., Li, C., Deng, L., Zhu, H., Huang, T., et al. (2023) Wogonin Inhibits Latent HIV-1 Reactivation by Downregulating Histone Crotonylation. Phytomedicine, 116, Article ID: 154855. >https://doi.org/10.1016/j.phymed.2023.154855 Xiao, W., Yin, M., Wu, K., et al. (2017) High-Dose Wogonin Exacerbates DSS-Induced Colitis by Up-Regulating Effector T Cell Function and Inhibiting Treg Cell. Journal of Cellular and Molecular Medicine, 21, 286-298. Nie, H., Yan, C., Zhou, W. and Li, T. (2022) Analysis of Immune and Inflammation Characteristics of Atherosclerosis from Different Sample Sources. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 5491038. >https://doi.org/10.1155/2022/5491038 Chen, C., Shyue, S., Ching, L., Su, K., Wu, Y., Kou, Y.R., et al. (2011) Wogonin Promotes Cholesterol Efflux by Increasing Protein Phosphatase 2B-Dependent Dephosphorylation at ATP-Binding Cassette Transporter-A1 in Macrophages. The Journal of Nutritional Biochemistry, 22, 1015-1021. >https://doi.org/10.1016/j.jnutbio.2010.08.014 Wu, J., Chen, L., Hu, C., Chiu, K., Lin, W., Ho, P., et al. (2022) Immunotoxicity and Anti-Inflammatory Characterizations of Prenylated Flavonoids—The Lipophilic 7-O-Terpenylated Wogonin. Life, 12, Article 2116. >https://doi.org/10.3390/life12122116 Cannon, C.P. (2007) Cardiovascular Disease and Modifiable Cardiometabolic Risk Factors. Clinical Cornerstone, 8, 11-28. >https://doi.org/10.1016/s1098-3597(07)80025-1 Lu, L., Li, Y., Dong, Q., Fang, J., Chen, A., Lan, Z., et al. (2023) Wogonin Inhibits Oxidative Stress and Vascular Calcification via Modulation of Heme Oxygenase-1. European Journal of Pharmacology, 958, Article ID: 176070. >https://doi.org/10.1016/j.ejphar.2023.176070 Cosby, K., Partovi, K.S., et al. (2003) Nitrite Reduction to Nitric Oxide by Deoxyhemoglobin Vasodilates the Human Circulation. Nature Medicine, 9, 1498-1505. Wu, Y., Chuang, L., Yu, C., Wang, S., Chen, H. and Chang, Y. (2019) Anticoagulant Effect of Wogonin against Tissue Factor Expression. European Journal of Pharmacology, 859, Article ID: 172517. >https://doi.org/10.1016/j.ejphar.2019.172517 Kimura, Y., Okuda, H. and Ogita, Z. (1997) Effects of Flavonoids Isolated from Scutellariae Radix on Fibrinolytic System Induced by Trypsin in Human Umbilical Vein Endothelial Cells. Journal of Natural Products, 60, 598-601. >https://doi.org/10.1021/np970035l Ueng, Y., Shyu, C., Lin, Y., Park, S.S., Liao, J. and Chen, C. (2000) Effects of Baicalein and Wogonin on Drug-Metabolizing Enzymes in C57BL/6J Mice. Life Sciences, 67, 2189-2200. >https://doi.org/10.1016/s0024-3205(00)00809-2 Shao, Y., Zhao, P., Li, Z., Liu, M., Liu, P., Huang, M., et al. (2012) The Molecular Basis for the Inhibition of Human Cytochrome P450 1A2 by Oroxylin and Wogonin. European Biophysics Journal, 41, 297-306. >https://doi.org/10.1007/s00249-011-0785-1 Baek, J., Na, Y. and Cho, C. (2018) Sustained Cytotoxicity of Wogonin on Breast Cancer Cells by Encapsulation in Solid Lipid Nanoparticles. Nanomaterials, 8, Article 159. >https://doi.org/10.3390/nano8030159 Zhao, Z., Nian, M., Qiao, H., Yang, X., Wu, S. and Zheng, X. (2022) Review of Bioactivity and Structure-Activity Relationship on Baicalein (5,6,7-Trihydroxyflavone) and Wogonin (5,7-Dihydroxy-8-Methoxyflavone) Derivatives: Structural Modifications Inspired from Flavonoids in Scutellaria baicalensis. European Journal of Medicinal Chemistry, 243, Article ID: 114733. >https://doi.org/10.1016/j.ejmech.2022.114733
Baidu
map