Figure 3. H2-TPR curves of the Co/SEP-x catalysts--图3. Co/SEP-x催化剂的H2-TPR曲线--3.4. TEM分析Figure 4. Co0 nanoparticle size statistics and TEM images for (A) Co/SEP-400, (B) Co/SEP-600 and (C) Co/SEP-800--图4. (A) Co/SEP-400、(B) Co/SEP-600和(C) Co/SEP-800的Co0纳米颗粒尺寸统计和TEM图--
References
庄修政, 张兴华, 张琦, 等. “双碳”背景下中国生物质能利用技术的发展现状及挑战[J]. 太阳能, 2024(7): 40-49.
陈冠益, 高文学, 马文超. 生物质制氢技术的研究现状与展望[J]. 太阳能学报, 2006, 27(12): 1276-1284.
Meng, H., Yang, Y., Shen, T., Liu, W., Wang, L., Yin, P., et al. (2023) A Strong Bimetal-Support Interaction in Ethanol Steam Reforming. Nature Communications, 14, Article No. 3189. >https://doi.org/10.1038/s41467-023-38883-x
Grzybek, G., Greluk, M., Patulski, P., Stelmachowski, P., Tarach, K., Słowik, G., et al. (2023) Adjustment of the ZSM-5 Zeolite Support Towards the Efficient Hydrogen Production by Ethanol Steam Reforming on Cobalt Catalysts. Chemical Engineering Journal, 467, Article 143239. >https://doi.org/10.1016/j.cej.2023.143239
Zhang, C., Gao, Y., Zhang, J., Chen, Y., Zhu, Q., Jiao, Y., et al. (2023) Optimizing Ni Dispersion and Stability over SiO
2 Supported Ni-La
2O
3 Catalysts by Preparation Method for Enhancing H
2 Selectivity and Durability on Steam Reforming of Methylcyclohexane. Journal of Power Sources, 555, Article 232340. >https://doi.org/10.1016/j.jpowsour.2022.232340
Elharati, M.A., Lee, K., Hwang, S., Mohammed Hussain, A., Miura, Y., Dong, S., et al. (2022) The Effect of Silica Oxide Support on the Catalytic Activity of Nickel-Molybdenum Bimetallic Catalyst toward Ethanol Steam Reforming for Hydrogen Production. Chemical Engineering Journal, 441, Article 135916. >https://doi.org/10.1016/j.cej.2022.135916
Passos, A.R., Martins, L., Pulcinelli, S.H., Santilli, C.V. and Briois, V. (2017) Correlation of Sol-Gel Alumina‐Supported Cobalt Catalyst Processing to Cobalt Speciation, Ethanol Steam Reforming Activity, and Stability. ChemCatChem, 9, 3918-3929. >https://doi.org/10.1002/cctc.201700319
Deng, Y., Li, S., Appels, L., Zhang, H., Sweygers, N., Baeyens, J., et al. (2023) Steam Reforming of Ethanol by Non-Noble Metal Catalysts. Renewable and Sustainable Energy Reviews, 175, Article 113184. >https://doi.org/10.1016/j.rser.2023.113184
Wang, C., Wang, Y., Chen, M., Liang, D., Cheng, W., Li, C., et al. (2022) Understanding Relationship of Sepiolite Structure Tailoring and the Catalytic Behaviors in Glycerol Steam Reforming over Co/Sepiolite Derived Co-Phyllosilicate Catalyst. Renewable Energy, 183, 304-320. >https://doi.org/10.1016/j.renene.2021.10.097
Wang, C., Wang, Y., Chen, M., Hu, J., Liang, D., Tang, Z., et al. (2021) Comparison of the Regenerability of Co/Sepiolite and Co/Al
2O
3 Catalysts Containing the Spinel Phase in Simulated Bio-Oil Steam Reforming. Energy, 214, Article 118971. >https://doi.org/10.1016/j.energy.2020.118971
Wang, Y., Wang, C., Chen, M., Hu, J., Tang, Z., Liang, D., et al. (2020) Influence of CoAl
2O
4 Spinel and Co-Phyllosilicate Structures Derived from Co/Sepiolite Catalysts on Steam Reforming of Bio-Oil for Hydrogen Production. Fuel, 279, Article 118449. >https://doi.org/10.1016/j.fuel.2020.118449
Wang, C., Wang, Y., Chen, M., Hu, J., Yang, Z., Zhang, H., et al. (2019) Hydrogen Production from Ethanol Steam Reforming over Co-Ce/Sepiolite Catalysts Prepared by a Surfactant Assisted Coprecipitation Method. International Journal of Hydrogen Energy, 44, 26888-26904. >https://doi.org/10.1016/j.ijhydene.2019.08.058
Liu, J., Liu, Q. and Fan, X. (2022) Synergistic Effect of Double Solvent and Accelerator on Efficient Synthesis of Nickel Phyllosilicate for CO
2 Methanation. Journal of the Energy Institute, 105, 184-191. >https://doi.org/10.1016/j.joei.2022.09.001
Wang, C., Wang, Y., Chen, M., Liang, D., Cheng, W., Li, C., et al. (2023) Hydrogen Production from Tar Steam Reforming over Hydrangea-Like Co-Phyllosilicate Catalyst Derived from Co/Sepiolite. International Journal of Hydrogen Energy, 48, 2542-2557. >https://doi.org/10.1016/j.ijhydene.2022.09.293
Meng, H., Zhang, J. and Yang, Y. (2023) Recent Status in Catalyst Modification Strategies for Hydrogen Production from Ethanol Steam Reforming. ChemCatChem, 15, e202300733. >https://doi.org/10.1002/cctc.202300733
Zhu, W., Chen, X., Li, C., Liu, Z. and Liang, C. (2021) Manipulating Morphology and Surface Engineering of Spinel Cobalt Oxides to Attain High Catalytic Performance for Propane Oxidation. Journal of Catalysis, 396, 179-191. >https://doi.org/10.1016/j.jcat.2021.02.014
Zou, Z., Zhang, T., Lv, L., Tang, W., Zhang, G., Gupta, R.K., et al. (2023) Controllable Preparation of Nano-Ni to Eliminate Step Edges of Carbon Deposition on Ni-Based Catalysts for Methane Dry Reforming. Industrial & Engineering Chemistry Research, 62, 6039-6051. >https://doi.org/10.1021/acs.iecr.2c04333