tcm Traditional Chinese Medicine 2166-6067 2166-6059 beplay体育官网网页版等您来挑战! 10.12677/tcm.2024.1311479 tcm-101531 Articles 医药卫生 痰热清注射液治疗重症肺炎的网络药理分析
Network Pharmacological Analysis of Tanreqing Injection in the Treatment of Severe Pneumonia
张惠敏 成都中医药大学临床医学院,四川 成都 05 11 2024 13 11 3225 3236 14 10 :2024 19 10 :2024 19 11 :2024 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 目的:通过网络药理学策略,评价痰热清注射液治重症肺炎的临床疗效,探索其干预机制。方法:通过检索数据库及相关文献查找痰热清注射液的潜在的活性化合物及靶点;以“severe pneumonia”、“severe case pneumonia”为关键词分别检索DrugBank、GeneCards、TTD、OMIM和PharmGKB疾病数据库得到与重症肺炎相关的疾病靶基因;通过Cytoscape 3.9.2软件构建“中药–潜在活性化合物–重症肺炎潜在靶点”网络,以及重症肺炎靶点与痰热清注射液活性化合物调控的交集靶基构建PPI网络,并对核心靶基因进行Gene Ontology (GO)功能富集分析及Kyoto Encyclopedia of Genes and Genomes (KEGG)通路富集分析,初步探讨痰热清注射液干预重症肺炎的潜在机制。结果:检索得到痰热清注射液163个药物活性成分和414个药物靶标,其中药物与疾病共同靶标291个,筛选出痰热清注射液治疗重症肺炎的关键的活性化合物,主要有槲皮素(quercetin),芹黄素(apigenin),熊果酸(ursolic acid),木草素(luteolin),山奈酚(kaempferol),汉黄芩素(wogonin) GO功能富集分析痰热清注射液参与调控positive regulation of gene expression、positive regulation of pri-miRNA transcription from RNA polymerase II promoter等生物过程(BP),transcription factor complex等细胞功能(CC),以及enzyme binding、identical protein binding等的分子功能(MF);KEGG通路富集显示痰热清注射液可以调控肿瘤坏死因子(Tumor Necrosis Factor, TNF)信号通路,以及白介素-17 (IL-17)信号通路等与重症肺炎相关的疾病通路。结论:通过网络药理学研究发现,痰热清注射液干预重症肺炎是多成分、多靶标共同作用的综合性结果,其主要通过干预炎症反应途径达到治疗重症肺炎的目的。
Objective: To evaluate the clinical efficacy of Tanreqing injection in the treatment of severe pneumonia and explore its intervention mechanism through network pharmacological strategy. Methods: The potential active compounds and targets of Tanreqing injection were found by searching database and related literature. “Severe pneumonia” and “severe case pneumonia” were searched in DrugBank, GeneCards, TTD, OMIM and PharmGKB disease databases to obtain the target genes associated with severe pneumonia. The network of “Traditional Chinese Medicine - Potentially active Compound - Potential Target of severe pneumonia” was constructed by Cytoscape 3.9.2 software, and the PPI network was constructed based on the intersection target of severe pneumonia target and the active compound of Tanreqing injection. The Gene Ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genes (KEGG) pathway enrichment analysis were also conducted, and the potential mechanism of Tanreqing injection in the intervention of severe pneumonia was preliminologically discussed. Result: A total of 163 active ingredients and 414 drug targets of Tanreqing injection were retrieved, 291 of which were common targets of drugs and diseases. The key active compounds of Tanreqing injection in the treatment of severe pneumonia were selected, including quercetin, apigenin, ursolic acid, luteolin, kaempferol, wogonin, GO functional enrichment analysis of Tanreqing injection involved in the regulation of positive regulation of gene expression and positive regulation of pri-miRNA transcription from RNA polymerase II promoter and other biological processes (BP), transcription factor complex and cell functions (CC), enzyme binding, identical protein binding and other molecular functions (MF); the enrichment of KEGG pathway shows that Tanreqing injection regulates tumor necrosis factor (TNF) signaling pathway, and interleukin-17 (IL-17) signaling pathway and other disease pathways associated with severe pneumonia. Conclusion: Through the network pharmacological study, it is found that the intervention of Tanreqing injection in severe pneumonia is a comprehensive result of multi-component and multi-target interaction, and it mainly achieves the purpose of treating severe pneumonia by intervening the inflammatory response pathway.
重症肺炎,痰热清注射液,网络药理学,临床疗效
Severe Pneumonia
Tanreqing Injection Network Pharmacology Clinical Effect
1. 引言

肺炎是一种多由病原微生物感染引起的肺部疾病,例如细菌、病毒、支原体、衣原体和真菌感染等,主要临床表现为咳嗽、呼吸困难和肺部影像学异常 [1] 。重症肺炎(Severe Pneumonia, SP)是肺炎进一步合并呼吸衰竭和全身多器官炎性反应,又可形成急性呼吸窘迫综合征和多器官功能障碍综合征 [2] ,属于呼吸系统常见的危重症性疾病,到目前为止仍然有着较高的发病率和死亡率 [3] [4] 。有研究发现SP的病死率最高可达到50%~76% [5] 。目前国际社会对于重症肺炎的治疗方法,主要还是以抗感染、提供生命支持和预防、治疗并发症为主 [6] 。但是使用抗生素的过程中,极大可能产生抗生素耐药的情况 [7] 。但近年来由于抗生素的大量使用,病原菌谱逐渐发生改变,细菌耐药逐渐成为全球性问题 [8] 因此急需一种疗法明显,副作用小的药物治疗重症肺炎。而痰热清注射液可以通过多成分、多靶点、多途径的相互作用,减轻肺部炎症的损伤,且不良反应少、价格低廉,是更好的选择 [9]

痰热清注射液是由黄芩、连翘、金银花、熊胆粉以及山羊角,共五味中药材组成,通过清热、化痰、解毒的功效,可以改善患者的症状。目前已有临床实验证明痰热清注射液明确的抗炎、抗菌作用 [10] [11] ,对重症肺炎有较好的疗效。但由于其有效成分多且复杂,其作用机制和与治疗靶点目前尚不清楚,很难对其从整体到分子水平系统全面地认识该药,因此一定程度上影响其临床疗效的发挥。

基于以上研究现状,本研究应用网络药理学方法,初步探索痰热清注射液治疗重症肺炎的潜在作用机制,为痰热清注射液的临床应用奠定基础。

2. 资料与方法 2.1. 筛选痰热清注射液的药物成分及靶点

在Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, http://tcmspw.com/tcmsp.php )中查询痰热清注射液中的中草药(黄芩、金银花、连翘),获得痰热清注射液中的部分药物的潜在活性成分,以Drug-Likeness (DL) ≥ 0.18为标准,筛选出痰热清注射液中部分的活性化合物,再将得到的活性化合物在TCMSP平台检索其对应的靶点。将所得的药物靶点输入到UniProt数据库( https://www.uniprot.org/ )中,设定蛋白种类为“Homo sapiens”,得到各靶点的人类基因简称。通过对文献的数据挖掘到熊胆粉的主要成分包括:天冬氨酸、牛磺熊去氧胆酸、牛磺鹅去氧胆酸、牛磺胆酸、熊去氧胆酸、鹅去氧胆酸、胆酸、去氧胆酸、胱氨酸、谷氨酸、丝氨酸、亮氨酸;山羊角的主要有效成分包括 [12] - [14] :精氨酸、丝氨酸、络氨酸、胸苷、次黄嘌呤、鸟嘌呤。再通过化源网( https://www.chemsrc.com/ )查找有效成分的CAS号,通过CAS号在pubchem ( https://pubchem.ncbi.nlm.nih.gov/ )中查找到SDF结构或SMILES号,导入SwissTargetPrediction ( http://www.swisstargetprediction.ch/ ),预测其相关靶基因(通过probalility分数 ≥ 0.1过滤)。最后,通过汇总两个数据库的搜索结果,得到痰热清注射液有效成分的靶基因。

2.2. 重症肺炎疾病相关基因查询与筛选

以“severe pneumonia”“severe case pneumonia”为关键词在The Human Gene Database (Genecards, https://www.genecards.org/ )、Online Mendelian Inheritance in Mar (OMIM, https://www.omim.org/ )、The pharmacogenomics knowledgebase database (PharmGKB, https://www.pharmgkb.org/ )、Drugbank database ( https://www.drugbank.ca/ )、The therapeutic target database (TTD, http://db.idrblab.net/ttd/ )中检索,收集重症肺炎相关靶基因。合并上述数据库所得结果,并删除重复靶基因,最终获得重症肺炎疾病的靶基因。

2.3. 痰热清注射液治疗重症肺炎的潜在靶点

痰热清注射液中活性化合物调控的靶点与重症肺炎疾病靶基因取交集,获得共同的靶点,使用Eveen ( http://www.ehbio.com/test/venn/#/ )网站,绘制痰热清注射液–重症肺炎相关靶点韦恩图。

2.4. 中药–潜在活性化合物–重症肺炎–潜在靶点网络构建

将痰热清注射液治疗重症肺炎的潜在靶点以及潜在靶点所对应的活性化合物导入Cytoscape 3.9.1软件,构建“中药–活性化合物–潜在靶点”网络,并进行可视化展示。

2.5. 蛋白之间互作网络(PPI)的构建及核心靶点的筛选

将交集靶点导入Cytoscape 3.9.1软件,通过其插件Bisogenet构建Protein-Protein Interaction (PPI),其中Data Sources为DIP、BIOGRID、HPRD、BIND、MINT、INTACT。然后利用插件CytoNCA进行拓扑分析,计算每个节点的Degree Centrality (DC)、Betweenness Centrality (BC)、Closeness Centrality(CC)、Eigenvector Centrality (EC)。蛋白所在节点的DC及BC越大,则该蛋白质在所绘制的PPI网络中就越重要 [15] 。因为本研究所筛选出的重要靶蛋白较多,故进一步利用蛋白相互作用的其他的参数如亲近中心性(Closeness Centrality, CC)及特征向量(Eigenvector Centrality, EC)等进一步进行核心靶点的筛选。

2.6. GO功能富集分析与KEGG通路富集分析

将获得的核心靶点导入DAVID Bioinformatics Resources ( https://david.ncifcrf.gov/ ),选择“OFFICIAL GENE SYMBOL”“Homo sapien”,分别进行“GOTERM BP DIRECT”“GOTERM CC DIRECT”“GOTERM MF DIRECT”和“KEGG PATHWAY”分析。筛选出“Biological Process”(BP)细胞成分(Cellular Component, CC)和分子功能(Molecular Function, MF)的前10个功能类别,运用微生信( http://www.bioinformatics.com.cn/ )绘制成柱状图。再将所得的KEGG富集分析,选取前20个KEGG通路,绘制柱状图;将得到的前10条KEGG通路信息导入Cytoscape 3.9.1中绘制KEGG通路–基因网络图。

3. 结果 3.1. 痰热清注射液与重症肺炎的靶点筛选 Figure 1. Venn map of target genes associated with severe pneumonia disease--图1. 重症肺炎疾病相关靶基因韦恩图--

从TCMSP数据库得到痰热清注射中草药药物化合物共403个,其中黄芩143个、金银花236个、连翘150个。根据DL ≥ 0.18进行筛选,获得活性化合物共206个,其中黄芩62个、金银花74个、连翘70个,剔除重复化合物后,共得到141个活性化合物。在TCMSP平台检索得到这141个活性化合物对应的靶点有2265个,其中黄芩703个、金银花739个、连翘783个。通过文献查阅得到痰热清注射液动物药药物化合物共24个,其中熊胆粉12个,山羊角12个。再将其导入SwissTargetPrediction ( http://www.swisstargetprediction.ch/ ),预测其相关靶基因得到共584个,其中熊胆粉313个,山羊角271个,通过probalility分数 ≥ 0.1过滤,得到相关靶基因共206个,其中熊胆粉122个,山羊角84个。最终剔除重复靶点后,痰热清注射液共得414个靶点及其简称。通过在Genecards、OMIM、PharmGKB、Drugbank及TTD数据库中检索,共得到4865个重症肺炎相关的靶基因,如 图1

3.2. 痰热清注射液治疗重症肺炎的潜在靶点及其对应活性成分

通过R软件将414个药物靶点与4865个疾病靶点取交集,获得药物–疾病的交集靶点,即痰热清注射液治疗重症肺炎的潜在靶点,共291个潜在靶点,如 图2 。这291个潜在靶点所对应的活性化合物有230个,这230个活性化合物即为痰热清注射液治疗重症肺炎的活性化合物。

Figure 2. Venn diagram of drug target of Tanreqing injection and target of severe pneumonia--图2. 痰热清注射液药物靶点与重症肺炎靶点的韦恩图--
3.3. 中药–潜在活性化合物–重症肺炎潜在靶点网络构建

使用Cytoscape 3.9.1网络绘图软件,把所获得的痰热清注射液治疗重症肺炎的潜在靶点进一步分析和绘制,构建痰热清注射液治疗重症肺炎潜在活性成分–潜在靶点网络图,如 图3 。该网络图共有节点521个(包括291个靶基因,230个药物活性成分),1670条边。周围圆形代表药物活性成分,用不同颜色区分各成分的药物来源,其中绿色代表活性成分来源于黄芪,橙色代表活性成分来源于连翘,紫色代表活性成分来源于山羊角,蓝色代表活性成分来源于金银花,黄色代表活性成分来源于熊胆粉。中间方形节点代表交集靶点。计算图中化合物的Degree,Degree越高则表明该化合物在网络中发挥着越关键的作用,排名前六的活性化合物分别为MOL000098-quercetin、MOL000008-apigenin、MOL000511-ursolic acid、MOL000006-luteolin、MOL000422- kaempferol、MOL000173-wogonin。对应靶点数分别为216、113、91、85、83、72。

注:绿色–黄芪;橙色–连翘;紫色–山羊角;蓝色–金银花;黄色–熊胆粉。--Figure 3. Potential target network of drug-potentially active compounds in severe pneumonia--
3.4. 构建蛋白互作网络(PPI),拓扑分析及核心靶点的确定 (a)--(b)--Figure 4. (a) Protein interaction network PPI; (b) Protein interaction network PPI (second topological analysis)--图4. (a) 蛋白互作网络PPI;(b) 蛋白互作网络PPI (第二次拓扑分析)--图4. (a) 蛋白互作网络PPI;(b) 蛋白互作网络PPI (第二次拓扑分析) (a)--(b)--Figure 4. (a) Protein interaction network PPI; (b) Protein interaction network PPI (second topological analysis)--图4. (a) 蛋白互作网络PPI;(b) 蛋白互作网络PPI (第二次拓扑分析)--图4. (a) 蛋白互作网络PPI;(b) 蛋白互作网络PPI (第二次拓扑分析)

图4. (a) 蛋白互作网络PPI;(b) 蛋白互作网络PPI (第二次拓扑分析)

将获得的潜在靶基因导入STRING ( https://cn.string-db.org/ )软件中,选择Homo sapiens,得到PPI图片,及一个tsv文件,得到节点291个,连线6268条。将获得的tsv文件导入Cytoscape 3.9.1软件中,直接生成PPI网络图,得到节点数288个,线条数为6268,如 图4(a) 所示,按照SC ≥ 3.37E+29,DC ≥ 32.5,EC ≥ 0.034029963,IC ≥ 12.2546645,LAC ≥ 19.868182,BC ≥ 82.260445,CC ≥ 0.50350875,NC ≥ 21.422504,进行第一次拓扑分析后,得到节点数100个,线条数为2905条的PPI网络图;再次计算,按照SC ≥ 1.95692E+30,DC ≥ 75.5,EC ≥ 0.082020436,IC ≥ 15.3999025,LAC ≥ 41.5298135,BC ≥ 354.16719,CC ≥ 0.566634335,NC ≥ 53.0673525过滤得到 图4(b) ,其中节点数32个,线条数为468条。

<xref></xref>3.5. GO功能富集分析与KEGG通路富集分析

GO功能富集分析包括生物过程(Biological Process, BP)、细胞组分(Cellular Component, CC)、分子功能(Molecular Function, MF)。其中通过BP富集分析得到的有351个条目,包括positive regulation of gene expression、positive regulation of pri-miRNA transcription from RNA polymerase II promoter、positive regulation of transcription, DNA-templated、response to xenobiotic stimulus等;CC富集分析得到27个条目,包括transcription factor complex、RNA polymerase II transcription factor complex、euchromatin、macromolecular complex等,通过MF富集分析得到53个条目,包括enzyme binding、identical protein binding、protein phosphatase binding、transcription cofactor binding等,根据P < 0.05,分别选取排名前10位的BP、CC、MF结果绘制痰热清注射液治疗重症肺炎功能柱状图(如 图5(a) )。

同时,为进一步阐明治疗靶基因的所调控的通路,我们进行了KEGG通路分析,结果显示这些靶基因分布在145条通路上(P < 0.05),筛选出富集基因数排名前20的通路制作柱状图(如 图5(b) ),其中与重症肺炎相关的通路主要涉及癌症通路(Pathways in Cancer)、脂质和动脉粥样硬化通路(Lipid and Atherosclerosis)、糖尿病并发症中的晚期糖基化终产物及其受体信号通路(AGE-RAGE Signaling Pathway in Diabetic Complications)、巨细胞病毒感染通络(Human Cytomegalovirus Infection)、卡波西肉瘤相关疱疹病毒通路(Kaposi Sarcoma-Associated Herpesvirus Infection)、肿瘤坏死因子信号通路(TNF Signaling Pathway)等。

(a)--(b)--Figure 5. (a) The GO function histogram of Tanreqing injection in the treatment of severe pneumonia; (b) KEGG function histogram of Tanreqing injection in the treatment of severe pneumonia--图5. (a)痰热清注射液治疗重症肺炎的GO功能柱状图;(b)痰热清注射液治疗重症肺炎的KEGG功能柱状图--图5. (a)痰热清注射液治疗重症肺炎的GO功能柱状图;(b)痰热清注射液治疗重症肺炎的KEGG功能柱状图 (a)--(b)--Figure 5. (a) The GO function histogram of Tanreqing injection in the treatment of severe pneumonia; (b) KEGG function histogram of Tanreqing injection in the treatment of severe pneumonia--图5. (a)痰热清注射液治疗重症肺炎的GO功能柱状图;(b)痰热清注射液治疗重症肺炎的KEGG功能柱状图--图5. (a)痰热清注射液治疗重症肺炎的GO功能柱状图;(b)痰热清注射液治疗重症肺炎的KEGG功能柱状图

图5. (a)痰热清注射液治疗重症肺炎的GO功能柱状图;(b)痰热清注射液治疗重症肺炎的KEGG功能柱状图

4. 讨论

根据 图3 痰热清注射液治疗重症肺炎的关键活性化合物有quercetin、apigenin、ursolic acid、luteolin、kaempferol、wogonin。其中Quercetin、ursolic acid、luteolin、kaempferol是连翘和金银花的活性化合物,apigenin是金银花和黄芩的活性化合物,wogonin为连翘和黄芩的活性化合物。这六种化合物都是两个中药的共同活性化合物,这与中医复方的配伍增效有相似之处。

Quercetin、apigenin、ursolic acid、luteolin、kaempferol、wogonin六种成分都属于类黄酮类物质,具有不同程度上的抗炎、抗菌、免疫调节的作用。根据报道称这几种类黄酮在体外和体内都能抑制炎症 [16] ,而类黄酮主要通过抑制PLA2,COX和LOX的活性来减少类花生酸的产 [17]

Quercetin (槲皮素)对树突状细胞功能具有免疫抑制作用 [18] 。它通过抑制Src和Syk介导的磷脂酰肌醇-3激酶酪氨酸磷酸化以及随后的Toll样受体4 (TLR4)复合物形成来限制LPS诱导的炎症 [19] 。除此之外,槲皮素可以促进IL-27的合成,同时减少TNF的产生,进而减少重症肺炎的发生及损害 [20] 。有研究表明熊果酸(Ursolic Acid, UA)对细胞因子表达水平、免疫调节介质和一氧化氮释放有显著的抑制作用。Huang等人 [21] 发表的报告中显示,活性化合物UA可以在体外抑制环氧合酶-2的活性。熊果酸通过减少IL-1,IL-6,肿瘤坏死因子-α (TNF-α),高迁移率组盒蛋白1 (HMGB1)和一氧化氮表达来抑制小鼠脂多糖(LPS)诱导的急性肺损伤,同时激活抗炎细胞因子;除此外,UA可以减少活性氧的产生和氧化应激的发展 [22] ;以及抑制NF-κB和TLR4的表达,其中TLR4-NF-κB轴与免疫过度激活和促炎细胞因子的产生密切相关,如IL-1β、IL-6和TNF-α [23] ,其抗炎通过以上方式来达到抗炎和抗氧化作用。木草素(Luteolin)已知与至少三个主要的信号通路相互作用:激活蛋白(AP)-1通路,活化B细胞的核因子–轻链增强子(NF-kB)通路,信号换能器和转录激活因子(STAT) 3通路,除此之外,它具有一定的抗炎功能 [24] 。Luteolin与UA类似,可以通过对转录因子如STAT3、NF-κB和AP-1的调节转录,来达到抗炎作用,进而减轻炎症反应 [25] 。有研究表明,山奈酚(Kaempferol)可以抑制LPS诱导的PI3K和Akt磷酸化,而保护细胞免受炎症因子的活化,除此之外,山奈酚还可以通过阻断Tyk-STAT信号通路,显著抑制LPS诱导的气道上皮细胞炎症 [26] 。Wogonin是一种药用植物类黄酮,具有多种生物活性,可抑制巨噬细胞、淋巴细胞产生炎症介质 [27] 。Lei L等人 [28] 的研究发现wogonin通过调节PI3K/Akt/NF-κB信号通路介导的自噬和炎症,来减轻肾小管间质纤维化和肾小管细胞损伤中的作用;除此之外,wogonin还可以通过激活Nrf2信号传导,增强抗氧化酶并抑制NF-κB调节的促炎信号传导,来减轻全身的炎症损伤 [29] 。由此可以得出,wogonin可以通过PI3K/Akt/NF-κB信号通路,达到减轻炎症反应的作用。

通过构建交集靶蛋白的PPI网络,最终得到痰热清注射液治疗重症肺炎疾病核心靶蛋白,其中前六的核心靶点分别是:TNF、AKT1、INS、TP53、EGFR、CTNNB1。

肿瘤坏死因子(Tumor Necrosis Factor, TNF)是一种促炎细胞因子,是多种自身免疫性和自身炎症性疾病的关键疾病驱动因子 [30] 。通过NF-κB的激活可以产生过多的TNF,进而诱导其他促炎细胞因子的产生,包括IL-6等,而IL-6又可激活信号转导和转录STAT3,调节更多炎症相关的靶基因 [31] 。根据不同的背景,TNF还可以介导促生存或促死亡信号。有研究表明,在某些呼吸道病毒感染期间,过多TNF产生与肺部病变和死亡有关,而TNF的缺乏也会加剧呼吸道瘠疹病毒的感染 [32]

Akt1是丝氨酸/苏氨酸蛋白激酶之一,称为Akt激酶(Akt1、Akt2和Akt3),除此之外,LIANG等人 [33] 的研究发现,p-AKT1可能参与了高氧肺损伤的发生发展,激活AKT1有促进细胞存活与增殖的作用。

CTNNB1是Wnt信号通路的关键效应子,参与肺纤维化的发病机制 [34] ,而在SUN J等人 [35] 的研究中发现,CTNNB1可以通过激活LncDACH1与SRSF1结合并抑制SRSF1蛋白的表达来负调节CTNNB1,从而抑制肺成纤维细胞的活化和细胞外基质沉积,从而缓解肺纤维化,减轻非损伤。

KEGG信号通路分析表明,痰热清注射液发挥治疗重症肺炎的主要路径包括:肿瘤相关通路、病毒感染、免疫系统中的细胞因子信号传导及炎症调节等。痰热清注射液治疗重症肺炎发挥的主要功能是抑制炎症因子的释放和激活。其中关键的炎症信号通络有TNF signaling pathway、IL-17 signaling pathway等。

目前的研究发现,TNF signaling pathway 是重要的炎症信号通路。其中TNF-α是一种促炎细胞因子,可由包括巨噬细胞,淋巴细胞,成纤维细胞在内的多种细胞产生,以反映炎症、感染和其他环境变化压力 [36] 。有研究发现在重症和危重型CovID-19患者中,常常伴有过度的NK-kb驱动的炎症反应,这与TNF-α和IL-6升高相关 [37]

IL-17细胞因子家族由结构相似的IL-17A-F组成,是由T辅助细胞17 (Th17)产生的一组细胞因子。IL-17除了可以诱导免疫信号分子参与免疫调节 [38] ,还参与诱导和介导促炎反应 [39] 。IL-17的主要作用是促进粘膜组织中的炎症反应,同时,其本身还可以刺激巨噬细胞和单核细胞产生IL-1β,TNF-α和IFN-γ等促炎因子 [40] 。Ritchie等人 [41] 使用细菌性肺炎模型发现,IL-17A在脓毒症中的作用高度依赖于感染细菌的包封状态,IL-17A在由最小包膜细菌引起的感染期间是有益的,但如果感染性病原体被严重包封,则会显著增加肺部病理学和死亡率。还有文献报道了IL-17C的激活可防止LPS诱导的内毒素血症 [42] 。闫百灵等人 [43] 在对重症肺炎患者的研究中发现,血清中的IL-17水平明显上升,并推断通过阻断HMGB1-IL-17轴的信号传导,有可能改善重症肺炎患者的预后。除此之外,IL-17还被怀疑参与了Covid-19的发病机制,并认为靶向IL-17作为预COVID-19急性呼吸窘迫综合征(ARDS)的策略在免疫学上是合理的 [44]

痰热清注射液治疗重症肺炎最有可能是通过对炎症信号通路的调控发挥治疗效应的。而像其他排名靠前的信号通路,如Pathways in cancer、Kaposi sarcoma-associated herpesvirus infection、Human cytomegalovirus infection等,目前还缺乏与重症肺炎相关的研究,可能是未来重症肺炎机制研究的方向。

5. 结论

通过网络药理学系统地阐述了痰热清注射液治疗重症肺炎的核心化合物,并筛选出的核心化合物痰热清注射液治疗重症肺炎,如quercetin、apigenin、ursolic acid、luteolin、kaempferol、wogonin等,并通过PPI筛选出治疗重症肺炎的核心靶点TNF、AKT1、INS、TP53、EGFR、CTNNB1等。痰热清注射液还可调控与重症肺炎疾病相关信号通路,如TNF signaling pathway、IL-17 signaling pathway等,以上结果提示痰热清注射液可以通过多种成分、多靶点、多种生物功能以及多条信号通路协同发挥治疗重症肺炎的作用。

References Torres, A., Cilloniz, C., Niederman, M.S., Menéndez, R., Chalmers, J.D., Wunderink, R.G., et al. (2021) Pneumonia. Nature Reviews Disease Primers, 7, Article No. 25. >https://doi.org/10.1038/s41572-021-00259-0 熊静, 唐睿, 吴红梅. 重症肺炎患者肺康复治疗的研究进展[J]. 中华肺部疾病杂志(电子版), 2020, 13(4): 557-559. Martin-Loeches, I. and Torres, A. (2021) New Guidelines for Severe Community-Acquired Pneumonia. Current Opinion in Pulmonary Medicine, 27, 210-215. >https://doi.org/10.1097/mcp.0000000000000760 Torres, A., Chalmers, J.D., Dela Cruz, C.S., Dominedò, C., Kollef, M., Martin-Loeches, I., et al. (2019) Challenges in Severe Community-Acquired Pneumonia: A Point-of-View Review. Intensive Care Medicine, 45, 159-171. >https://doi.org/10.1007/s00134-019-05519-y Leoni, D., Blot, S., Tsigou, E. and Koulenti, D. (2017) What We Learned from the EU-VAP/CAP Study for Severe Pneumonia. Clinical Pulmonary Medicine, 24, 112-120. >https://doi.org/10.1097/cpm.0000000000000204 高志, 孙照祝. 重症肺炎的呼吸支持治疗进展[J]. 中国医刊, 2021, 56(9): 946-948. Martin-Loeches, I., Garduno, A., Povoa, P. and Nseir, S. (2022) Choosing Antibiotic Therapy for Severe Community-Acquired Pneumonia. Current Opinion in Infectious Diseases, 35, 133-139. >https://doi.org/10.1097/qco.0000000000000819 Alós, J. (2015) Resistencia bacteriana a los antibióticos: Una crisis global. Enfermedades Infecciosas y Microbiología Clínica, 33, 692-699. >https://doi.org/10.1016/j.eimc.2014.10.004 曾玉, 韩瑞婷, 周庆伟. 基于网络药理学与分子对接技术探讨痰热清注射液治疗急性肺损伤的作用机制[J]. 中国中药杂志, 2021, 46(15): 3960-3969. Yang, W., Cui, K., Tong, Q., Ma, S., Sun, Y., He, G., et al. (2022) Traditional Chinese Medicine Tanreqing Targets Both Cell Division and Virulence in Staphylococcus Aureus. Frontiers in Cellular and Infection Microbiology, 12, Article 884045. >https://doi.org/10.3389/fcimb.2022.884045 Hu, C., Li, J., Tan, Y., Liu, Y., Bai, C., Gao, J., et al. (2022) Tanreqing Injection Attenuates Macrophage Activation and the Inflammatory Response via the Lncrna-Snhg1/Hmgb1 Axis in Lipopolysaccharide-Induced Acute Lung Injury. Frontiers in Immunology, 13, Article 820718. >https://doi.org/10.3389/fimmu.2022.820718 刘嘉, 万春艳. 熊胆粉溶胆结石的作用研究[J]. 中国林副特产, 2007(4): 37-39. 王佳婧, 郑勇凤, 秦晶, 等. 熊胆粉的药理作用与新剂型研究进展[J]. 中国医院药学杂志, 2016, 36(7): 598-602. 李菲, 王伯初, 祝连彩. 熊胆粉与家禽胆粉中氨基酸和微量元素的比较分析[J]. 中成药, 2015, 37(11): 2555-2558. Wang, Y., Liu, Z., Li, C., Li, D., Ouyang, Y., Yu, J., et al. (2012) Drug Target Prediction Based on the Herbs Components: The Study on the Multitargets Pharmacological Mechanism of Qishenkeli Acting on the Coronary Heart Disease. Evidence-Based Complementary and Alternative Medicine, 2012, 1-10. >https://doi.org/10.1155/2012/698531 Funakoshi-Tago, M., Nakamura, K., Tago, K., Mashino, T. and Kasahara, T. (2011) Anti-Inflammatory Activity of Structurally Related Flavonoids, Apigenin, Luteolin and Fisetin. International Immunopharmacology, 11, 1150-1159. >https://doi.org/10.1016/j.intimp.2011.03.012 Devi, K.P., Malar, D.S., Nabavi, S.F., Sureda, A., Xiao, J., Nabavi, S.M., et al. (2015) Kaempferol and Inflammation: From Chemistry to Medicine. Pharmacological Research, 99, 1-10. >https://doi.org/10.1016/j.phrs.2015.05.002 Huang, R., Yu, Y., Cheng, W., OuYang, C., Fu, E. and Chu, C. (2010) Immunosuppressive Effect of Quercetin on Dendritic Cell Activation and Function. The Journal of Immunology, 184, 6815-6821. >https://doi.org/10.4049/jimmunol.0903991 Endale, M., Park, S., Kim, S., Kim, S., Yang, Y., Cho, J.Y., et al. (2013) Quercetin Disrupts Tyrosine-Phosphorylated Phosphatidylinositol 3-Kinase and Myeloid Differentiation Factor-88 Association, and Inhibits MAPK/AP-1 and IKK/NF-κB-Induced Inflammatory Mediators Production in RAW 264.7 Cells. Immunobiology, 218, 1452-1467. >https://doi.org/10.1016/j.imbio.2013.04.019 Shorobi, F.M., Nisa, F.Y., Saha, S., Chowdhury, M.A.H., Srisuphanunt, M., Hossain, K.H., et al. (2023) Quercetin: A Functional Food-Flavonoid Incredibly Attenuates Emerging and Re-Emerging Viral Infections through Immunomodulatory Actions. Molecules, 28, Article 938. >https://doi.org/10.3390/molecules28030938 Mlala, S., Oyedeji, A.O., Gondwe, M. and Oyedeji, O.O. (2019) Ursolic Acid and Its Derivatives as Bioactive Agents. Molecules, 24, Article 2751. >https://doi.org/10.3390/molecules24152751 Gayathri, R., Priya, D.K., Gunassekaran, G.R., et al. (2009) Ursolic Acid Attenuates Oxidative Stress-Mediated Hepatocellular Carcinoma Induction by Diethylnitrosamine in Male Wistar Rats. Asian Pacific Journal of Cancer Prevention, 10, 933-938. Saravanakumar, K., Park, S., Sathiyaseelan, A., Kim, K., Cho, S., Mariadoss, A.V.A., et al. (2021) Metabolite Profiling of Methanolic Extract of Gardenia Jaminoides by LC-MS/MS and GC-MS and Its Anti-Diabetic, and Anti-Oxidant Activities. Pharmaceuticals, 14, Article 102. >https://doi.org/10.3390/ph14020102 Franza, L., Carusi, V., Nucera, E. and Pandolfi, F. (2021) Luteolin, Inflammation and Cancer: Special Emphasis on Gut Microbiota. BioFactors, 47, 181-189. >https://doi.org/10.1002/biof.1710 Aziz, N., Kim, M. and Cho, J.Y. (2018) Anti-Inflammatory Effects of Luteolin: A Review of in Vitro, in Vivo, and in Silico Studies. Journal of Ethnopharmacology, 225, 342-358. >https://doi.org/10.1016/j.jep.2018.05.019 Chen, M., Xiao, J., El-Seedi, H.R., et al. (2022) Kaempferol and Atherosclerosis: From Mechanism to Medicine. Critical Reviews in Food Science and Nutrition, 64, 2157-2175. Huynh, D.L., Ngau, T.H., Nguyen, N.H., Tran, G. and Nguyen, C.T. (2020) Potential Therapeutic and Pharmacological Effects of Wogonin: An Updated Review. Molecular Biology Reports, 47, 9779-9789. >https://doi.org/10.1007/s11033-020-05972-9 Lei, L., Zhao, J., Liu, X., Chen, J., Qi, X., Xia, L., et al. (2021) Wogonin Alleviates Kidney Tubular Epithelial Injury in Diabetic Nephropathy by Inhibiting PI3K/Akt/NF-κB Signaling Pathways. Drug Design, Development and Therapy, 15, 3131-3150. >https://doi.org/10.2147/dddt.s310882 Dai, J., Guo, W., Tan, Y., Niu, K., Zhang, J., Liu, C., et al. (2021) Wogonin Alleviates Liver Injury in Sepsis through Nrf2-Mediated NF-κB Signalling Suppression. Journal of Cellular and Molecular Medicine, 25, 5782-5798. >https://doi.org/10.1111/jcmm.16604 Willemsen, J., Neuhoff, M., Hoyler, T., Noir, E., Tessier, C., Sarret, S., et al. (2021) TNF Leads to mtDNA Release and cGAS/STING-Dependent Interferon Responses That Support Inflammatory Arthritis. Cell Reports, 37, Article 109977. >https://doi.org/10.1016/j.celrep.2021.109977 Zhong, Z., Wen, Z. and Darnell, J.E. (1994) Stat3: A STAT Family Member Activated by Tyrosine Phosphorylation in Response to Epidermal Growth Factor and Interleukin-6. Science, 264, 95-98. >https://doi.org/10.1126/science.8140422 Tuazon Kels, M.J., Ng, E., Al Rumaih, Z., Pandey, P., Ruuls, S.R., Korner, H., et al. (2020) TNF Deficiency Dysregulates Inflammatory Cytokine Production, Leading to Lung Pathology and Death during Respiratory Poxvirus Infection. Proceedings of the National Academy of Sciences, 117, 15935-15946. >https://doi.org/10.1073/pnas.2004615117 梁木林, 党红星, 鲁雪, 等. 抑制mTOR信号通路对幼鼠肺损伤时p-AKT1分子的影响及意义[J]. 中国病理生理杂志, 2019, 35(3): 506-514. Cao, P., Aoki, Y., Badri, L., Walker, N.M., Manning, C.M., Lagstein, A., et al. (2017) Autocrine Lysophosphatidic Acid Signaling Activates Β-Catenin and Promotes Lung Allograft Fibrosis. Journal of Clinical Investigation, 127, 1517-1530. >https://doi.org/10.1172/jci88896 Sun, J., Jin, T., Niu, Z., Guo, J., Guo, Y., Yang, R., et al. (2022) Lncrna DACH1 Protects against Pulmonary Fibrosis by Binding to SRSF1 to Suppress CTNNB1 Accumulation. Acta Pharmaceutica Sinica B, 12, 3602-3617. >https://doi.org/10.1016/j.apsb.2022.04.006 Abramson, S. and Yazici, Y. (2006) Biologics in Development for Rheumatoid Arthritis: Relevance to Osteoarthritis. Advanced Drug Delivery Reviews, 58, 212-225. >https://doi.org/10.1016/j.addr.2006.01.008 Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Smith, N., et al. (2020) Impaired Type I Interferon Activity and Inflammatory Responses in Severe COVID-19 Patients. Science, 369, 718-724. >https://doi.org/10.1126/science.abc6027 Menter, A., Krueger, G.G., Paek, S.Y., Kivelevitch, D., Adamopoulos, I.E. and Langley, R.G. (2021) Interleukin-17 and Interleukin-23: A Narrative Review of Mechanisms of Action in Psoriasis and Associated Comorbidities. Dermatology and Therapy, 11, 385-400. >https://doi.org/10.1007/s13555-021-00483-2 Kayama, H., Tani, H., Kitada, S., Opasawatchai, A., Okumura, R., Motooka, D., et al. (2019) BATF2 Prevents T-Cell-Mediated Intestinal Inflammation through Regulation of the IL-23/IL-17 Pathway. International Immunology, 31, 371-383. >https://doi.org/10.1093/intimm/dxz014 Morrow, K.N., Coopersmith, C.M. and Ford, M.L. (2019) IL-17, IL-27, and IL-33: A Novel Axis Linked to Immunological Dysfunction during Sepsis. Frontiers in Immunology, 10, Article 1982. >https://doi.org/10.3389/fimmu.2019.01982 Ritchie, N.D., Ritchie, R., Bayes, H.K., Mitchell, T.J. and Evans, T.J. (2018) IL-17 Can Be Protective or Deleterious in Murine Pneumococcal Pneumonia. PLOS Pathogens, 14, e1007099. >https://doi.org/10.1371/journal.ppat.1007099 Yamaguchi, S., Nambu, A., Numata, T., Yoshizaki, T., Narushima, S., Shimura, E., et al. (2018) The Roles of IL-17C in T Cell-Dependent and Independent Inflammatory Diseases. Scientific Reports, 8, Article No. 15750. >https://doi.org/10.1038/s41598-018-34054-x 闫百灵, 唐颖, 付尧, 等. HMGB1-IL-17信号传导轴在老年重症肺炎患者中作用及机制[J]. 中国老年学杂志, 2018, 38(14): 3380-3382. Pacha, O., Sallman, M.A. and Evans, S.E. (2020) COVID-19: A Case for Inhibiting Il-17? Nature Reviews Immunology, 20, 345-346. >https://doi.org/10.1038/s41577-020-0328-z
Baidu
map