GO功能富集分析包括生物过程(Biological Process, BP)、细胞组分(Cellular Component, CC)、分子功能(Molecular Function, MF)。其中通过BP富集分析得到的有351个条目,包括positive regulation of gene expression、positive regulation of pri-miRNA transcription from RNA polymerase II promoter、positive regulation of transcription, DNA-templated、response to xenobiotic stimulus等;CC富集分析得到27个条目,包括transcription factor complex、RNA polymerase II transcription factor complex、euchromatin、macromolecular complex等,通过MF富集分析得到53个条目,包括enzyme binding、identical protein binding、protein phosphatase binding、transcription cofactor binding等,根据P < 0.05,分别选取排名前10位的BP、CC、MF结果绘制痰热清注射液治疗重症肺炎功能柱状图(如
图5(a)
)。
同时,为进一步阐明治疗靶基因的所调控的通路,我们进行了KEGG通路分析,结果显示这些靶基因分布在145条通路上(P < 0.05),筛选出富集基因数排名前20的通路制作柱状图(如
图5(b)
),其中与重症肺炎相关的通路主要涉及癌症通路(Pathways in Cancer)、脂质和动脉粥样硬化通路(Lipid and Atherosclerosis)、糖尿病并发症中的晚期糖基化终产物及其受体信号通路(AGE-RAGE Signaling Pathway in Diabetic Complications)、巨细胞病毒感染通络(Human Cytomegalovirus Infection)、卡波西肉瘤相关疱疹病毒通路(Kaposi Sarcoma-Associated Herpesvirus Infection)、肿瘤坏死因子信号通路(TNF Signaling Pathway)等。
(a)--(b)--Figure 5. (a) The GO function histogram of Tanreqing injection in the treatment of severe pneumonia; (b) KEGG function histogram of Tanreqing injection in the treatment of severe pneumonia--图5. (a)痰热清注射液治疗重症肺炎的GO功能柱状图;(b)痰热清注射液治疗重症肺炎的KEGG功能柱状图--图5. (a)痰热清注射液治疗重症肺炎的GO功能柱状图;(b)痰热清注射液治疗重症肺炎的KEGG功能柱状图(a)--(b)--Figure 5. (a) The GO function histogram of Tanreqing injection in the treatment of severe pneumonia; (b) KEGG function histogram of Tanreqing injection in the treatment of severe pneumonia--图5. (a)痰热清注射液治疗重症肺炎的GO功能柱状图;(b)痰热清注射液治疗重症肺炎的KEGG功能柱状图--图5. (a)痰热清注射液治疗重症肺炎的GO功能柱状图;(b)痰热清注射液治疗重症肺炎的KEGG功能柱状图
References
Torres, A., Cilloniz, C., Niederman, M.S., Menéndez, R., Chalmers, J.D., Wunderink, R.G., et al. (2021) Pneumonia. Nature Reviews Disease Primers, 7, Article No. 25.
>https://doi.org/10.1038/s41572-021-00259-0
熊静, 唐睿, 吴红梅. 重症肺炎患者肺康复治疗的研究进展[J]. 中华肺部疾病杂志(电子版), 2020, 13(4): 557-559.
Martin-Loeches, I. and Torres, A. (2021) New Guidelines for Severe Community-Acquired Pneumonia. Current Opinion in Pulmonary Medicine, 27, 210-215.
>https://doi.org/10.1097/mcp.0000000000000760
Torres, A., Chalmers, J.D., Dela Cruz, C.S., Dominedò, C., Kollef, M., Martin-Loeches, I., et al. (2019) Challenges in Severe Community-Acquired Pneumonia: A Point-of-View Review. Intensive Care Medicine, 45, 159-171.
>https://doi.org/10.1007/s00134-019-05519-y
Leoni, D., Blot, S., Tsigou, E. and Koulenti, D. (2017) What We Learned from the EU-VAP/CAP Study for Severe Pneumonia. Clinical Pulmonary Medicine, 24, 112-120.
>https://doi.org/10.1097/cpm.0000000000000204
高志, 孙照祝. 重症肺炎的呼吸支持治疗进展[J]. 中国医刊, 2021, 56(9): 946-948.
Martin-Loeches, I., Garduno, A., Povoa, P. and Nseir, S. (2022) Choosing Antibiotic Therapy for Severe Community-Acquired Pneumonia. Current Opinion in Infectious Diseases, 35, 133-139.
>https://doi.org/10.1097/qco.0000000000000819
Alós, J. (2015) Resistencia bacteriana a los antibióticos: Una crisis global. Enfermedades Infecciosas y Microbiología Clínica, 33, 692-699.
>https://doi.org/10.1016/j.eimc.2014.10.004
曾玉, 韩瑞婷, 周庆伟. 基于网络药理学与分子对接技术探讨痰热清注射液治疗急性肺损伤的作用机制[J]. 中国中药杂志, 2021, 46(15): 3960-3969.
Yang, W., Cui, K., Tong, Q., Ma, S., Sun, Y., He, G., et al. (2022) Traditional Chinese Medicine Tanreqing Targets Both Cell Division and Virulence in Staphylococcus Aureus. Frontiers in Cellular and Infection Microbiology, 12, Article 884045.
>https://doi.org/10.3389/fcimb.2022.884045
Hu, C., Li, J., Tan, Y., Liu, Y., Bai, C., Gao, J., et al. (2022) Tanreqing Injection Attenuates Macrophage Activation and the Inflammatory Response via the Lncrna-Snhg1/Hmgb1 Axis in Lipopolysaccharide-Induced Acute Lung Injury. Frontiers in Immunology, 13, Article 820718.
>https://doi.org/10.3389/fimmu.2022.820718
刘嘉, 万春艳. 熊胆粉溶胆结石的作用研究[J]. 中国林副特产, 2007(4): 37-39.
王佳婧, 郑勇凤, 秦晶, 等. 熊胆粉的药理作用与新剂型研究进展[J]. 中国医院药学杂志, 2016, 36(7): 598-602.
李菲, 王伯初, 祝连彩. 熊胆粉与家禽胆粉中氨基酸和微量元素的比较分析[J]. 中成药, 2015, 37(11): 2555-2558.
Wang, Y., Liu, Z., Li, C., Li, D., Ouyang, Y., Yu, J., et al. (2012) Drug Target Prediction Based on the Herbs Components: The Study on the Multitargets Pharmacological Mechanism of Qishenkeli Acting on the Coronary Heart Disease. Evidence-Based Complementary and Alternative Medicine, 2012, 1-10.
>https://doi.org/10.1155/2012/698531
Funakoshi-Tago, M., Nakamura, K., Tago, K., Mashino, T. and Kasahara, T. (2011) Anti-Inflammatory Activity of Structurally Related Flavonoids, Apigenin, Luteolin and Fisetin. International Immunopharmacology, 11, 1150-1159.
>https://doi.org/10.1016/j.intimp.2011.03.012
Devi, K.P., Malar, D.S., Nabavi, S.F., Sureda, A., Xiao, J., Nabavi, S.M., et al. (2015) Kaempferol and Inflammation: From Chemistry to Medicine. Pharmacological Research, 99, 1-10.
>https://doi.org/10.1016/j.phrs.2015.05.002
Huang, R., Yu, Y., Cheng, W., OuYang, C., Fu, E. and Chu, C. (2010) Immunosuppressive Effect of Quercetin on Dendritic Cell Activation and Function. The Journal of Immunology, 184, 6815-6821.
>https://doi.org/10.4049/jimmunol.0903991
Endale, M., Park, S., Kim, S., Kim, S., Yang, Y., Cho, J.Y., et al. (2013) Quercetin Disrupts Tyrosine-Phosphorylated Phosphatidylinositol 3-Kinase and Myeloid Differentiation Factor-88 Association, and Inhibits MAPK/AP-1 and IKK/NF-κB-Induced Inflammatory Mediators Production in RAW 264.7 Cells. Immunobiology, 218, 1452-1467.
>https://doi.org/10.1016/j.imbio.2013.04.019
Shorobi, F.M., Nisa, F.Y., Saha, S., Chowdhury, M.A.H., Srisuphanunt, M., Hossain, K.H., et al. (2023) Quercetin: A Functional Food-Flavonoid Incredibly Attenuates Emerging and Re-Emerging Viral Infections through Immunomodulatory Actions. Molecules, 28, Article 938.
>https://doi.org/10.3390/molecules28030938
Mlala, S., Oyedeji, A.O., Gondwe, M. and Oyedeji, O.O. (2019) Ursolic Acid and Its Derivatives as Bioactive Agents. Molecules, 24, Article 2751.
>https://doi.org/10.3390/molecules24152751
Gayathri, R., Priya, D.K., Gunassekaran, G.R., et al. (2009) Ursolic Acid Attenuates Oxidative Stress-Mediated Hepatocellular Carcinoma Induction by Diethylnitrosamine in Male Wistar Rats. Asian Pacific Journal of Cancer Prevention, 10, 933-938.
Saravanakumar, K., Park, S., Sathiyaseelan, A., Kim, K., Cho, S., Mariadoss, A.V.A., et al. (2021) Metabolite Profiling of Methanolic Extract of Gardenia Jaminoides by LC-MS/MS and GC-MS and Its Anti-Diabetic, and Anti-Oxidant Activities. Pharmaceuticals, 14, Article 102.
>https://doi.org/10.3390/ph14020102
Franza, L., Carusi, V., Nucera, E. and Pandolfi, F. (2021) Luteolin, Inflammation and Cancer: Special Emphasis on Gut Microbiota. BioFactors, 47, 181-189.
>https://doi.org/10.1002/biof.1710
Aziz, N., Kim, M. and Cho, J.Y. (2018) Anti-Inflammatory Effects of Luteolin: A Review of in Vitro, in Vivo, and in Silico Studies. Journal of Ethnopharmacology, 225, 342-358.
>https://doi.org/10.1016/j.jep.2018.05.019
Chen, M., Xiao, J., El-Seedi, H.R., et al. (2022) Kaempferol and Atherosclerosis: From Mechanism to Medicine. Critical Reviews in Food Science and Nutrition, 64, 2157-2175.
Huynh, D.L., Ngau, T.H., Nguyen, N.H., Tran, G. and Nguyen, C.T. (2020) Potential Therapeutic and Pharmacological Effects of Wogonin: An Updated Review. Molecular Biology Reports, 47, 9779-9789.
>https://doi.org/10.1007/s11033-020-05972-9
Lei, L., Zhao, J., Liu, X., Chen, J., Qi, X., Xia, L., et al. (2021) Wogonin Alleviates Kidney Tubular Epithelial Injury in Diabetic Nephropathy by Inhibiting PI3K/Akt/NF-κB Signaling Pathways. Drug Design, Development and Therapy, 15, 3131-3150.
>https://doi.org/10.2147/dddt.s310882
Dai, J., Guo, W., Tan, Y., Niu, K., Zhang, J., Liu, C., et al. (2021) Wogonin Alleviates Liver Injury in Sepsis through Nrf2-Mediated NF-κB Signalling Suppression. Journal of Cellular and Molecular Medicine, 25, 5782-5798.
>https://doi.org/10.1111/jcmm.16604
Willemsen, J., Neuhoff, M., Hoyler, T., Noir, E., Tessier, C., Sarret, S., et al. (2021) TNF Leads to mtDNA Release and cGAS/STING-Dependent Interferon Responses That Support Inflammatory Arthritis. Cell Reports, 37, Article 109977.
>https://doi.org/10.1016/j.celrep.2021.109977
Zhong, Z., Wen, Z. and Darnell, J.E. (1994) Stat3: A STAT Family Member Activated by Tyrosine Phosphorylation in Response to Epidermal Growth Factor and Interleukin-6. Science, 264, 95-98.
>https://doi.org/10.1126/science.8140422
Tuazon Kels, M.J., Ng, E., Al Rumaih, Z., Pandey, P., Ruuls, S.R., Korner, H., et al. (2020) TNF Deficiency Dysregulates Inflammatory Cytokine Production, Leading to Lung Pathology and Death during Respiratory Poxvirus Infection. Proceedings of the National Academy of Sciences, 117, 15935-15946.
>https://doi.org/10.1073/pnas.2004615117
梁木林, 党红星, 鲁雪, 等. 抑制mTOR信号通路对幼鼠肺损伤时p-AKT1分子的影响及意义[J]. 中国病理生理杂志, 2019, 35(3): 506-514.
Cao, P., Aoki, Y., Badri, L., Walker, N.M., Manning, C.M., Lagstein, A., et al. (2017) Autocrine Lysophosphatidic Acid Signaling Activates Β-Catenin and Promotes Lung Allograft Fibrosis. Journal of Clinical Investigation, 127, 1517-1530.
>https://doi.org/10.1172/jci88896
Sun, J., Jin, T., Niu, Z., Guo, J., Guo, Y., Yang, R., et al. (2022) Lncrna DACH1 Protects against Pulmonary Fibrosis by Binding to SRSF1 to Suppress CTNNB1 Accumulation. Acta Pharmaceutica Sinica B, 12, 3602-3617.
>https://doi.org/10.1016/j.apsb.2022.04.006
Abramson, S. and Yazici, Y. (2006) Biologics in Development for Rheumatoid Arthritis: Relevance to Osteoarthritis. Advanced Drug Delivery Reviews, 58, 212-225.
>https://doi.org/10.1016/j.addr.2006.01.008
Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Smith, N., et al. (2020) Impaired Type I Interferon Activity and Inflammatory Responses in Severe COVID-19 Patients. Science, 369, 718-724.
>https://doi.org/10.1126/science.abc6027
Menter, A., Krueger, G.G., Paek, S.Y., Kivelevitch, D., Adamopoulos, I.E. and Langley, R.G. (2021) Interleukin-17 and Interleukin-23: A Narrative Review of Mechanisms of Action in Psoriasis and Associated Comorbidities. Dermatology and Therapy, 11, 385-400.
>https://doi.org/10.1007/s13555-021-00483-2
Kayama, H., Tani, H., Kitada, S., Opasawatchai, A., Okumura, R., Motooka, D., et al. (2019) BATF2 Prevents T-Cell-Mediated Intestinal Inflammation through Regulation of the IL-23/IL-17 Pathway. International Immunology, 31, 371-383.
>https://doi.org/10.1093/intimm/dxz014
Morrow, K.N., Coopersmith, C.M. and Ford, M.L. (2019) IL-17, IL-27, and IL-33: A Novel Axis Linked to Immunological Dysfunction during Sepsis. Frontiers in Immunology, 10, Article 1982.
>https://doi.org/10.3389/fimmu.2019.01982
Ritchie, N.D., Ritchie, R., Bayes, H.K., Mitchell, T.J. and Evans, T.J. (2018) IL-17 Can Be Protective or Deleterious in Murine Pneumococcal Pneumonia. PLOS Pathogens, 14, e1007099.
>https://doi.org/10.1371/journal.ppat.1007099
Yamaguchi, S., Nambu, A., Numata, T., Yoshizaki, T., Narushima, S., Shimura, E., et al. (2018) The Roles of IL-17C in T Cell-Dependent and Independent Inflammatory Diseases. Scientific Reports, 8, Article No. 15750.
>https://doi.org/10.1038/s41598-018-34054-x
闫百灵, 唐颖, 付尧, 等. HMGB1-IL-17信号传导轴在老年重症肺炎患者中作用及机制[J]. 中国老年学杂志, 2018, 38(14): 3380-3382.
Pacha, O., Sallman, M.A. and Evans, S.E. (2020) COVID-19: A Case for Inhibiting Il-17? Nature Reviews Immunology, 20, 345-346.
>https://doi.org/10.1038/s41577-020-0328-z