Effects of Film Lined Rice Technology on Soil Nematode Community Characteristics in Horqin Sandy Land
In order to analyze the influence of film lined rice on the composition and structural characteristics of soil nematode community in Horqin Sandy Land, and to find out the causes of different treatments on the composition and distribution of trophic groups of soil nematode community in Horqin Sandy Land, this study took the uncultivated sandy land as a control, and analyzed the changing characteristics of soil nematode community in 0~10, 10~20, 20~30 cm soil layers of rice fields and fallow land. The results showed that: (1) There were differences in the dominant genera of nematodes among sandy land, paddy fields, and fallow land, with Rhabditidae being the common dominant genus. With the restoration of paddy fields and fallow land, Wilsonema and Prodorylaimium became new dominant genera; (2) With the restoration of paddy fields and fallow land, the total number of soil nematodes showed a trend of first increasing and then decreasing. There were significant differences in the total number of soil nematodes between paddy fields and sandy and fallow land in the 0~10 and 10~20 cm soil layers; However, there was no significant difference in the total number of soil nematodes among sandy land, paddy fields, and fallow land in the soil layer of 20~30 cm; (3) The strategies for the life history of soil nematodes in sandy land, paddy fields, and fallow land are mainly based on c-p1 in the 0~20 cm soil layer, leaning towards the r strategy, while in the 20~30 cm soil layer, the strategies for the life history of soil nematodes are mainly based on c-p4 and c-p5, leaning towards the K strategy. Especially after the restoration of rice fields, the relative abundance of nematodes in different c-p groups in various soil layers of fallow land gradually stabilized compared to sandy land, and gradually shifted towards K strategies, with c-p4 being the main dominant group; (4) The individual density of soil nematode trophic groups in sandy and fallow land is as follows: omnivorous predatory nematodes > bacterial eating nematodes > fungal eating nematodes > herbivorous nematodes, while the individual density of soil nematode trophic groups in paddy fields is as follows: bacterial eating nematodes > omnivorous predatory nematodes > herbivorous nematodes > fungal eating nematodes. The distribution characteristics of soil nematode community can reflect the changes of soil microenvironment caused by film lined rice technology in Horqin Sandy Land, have a certain indication effect on soil quality, and can provide theoretical support for the scientific management of soil ecosystem in Horqin Sandy Land.
Soil Nematode
土壤线虫是全球最丰富的后生动物,广泛地存在于各种生境中。因线虫形态和习性多样,数量巨大,是土壤食物网功能群的重要组成部分,对土壤有机质的分解、物质循环和能量流动具有重要的作用
试验样地位于科尔沁沙地南部,行政区划隶属于内蒙古自治区通辽市奈曼旗(42˚14'40''N~43˚32'30''N,120˚19'40''E~121˚31'44''E),研究区属于北温带大陆性季风干旱气候,春夏季降水较多,秋冬季降水较少
研究区设置三种处理样地,分别为:沙地即未修复沙漠土壤(CK)、水稻田即衬膜水稻修复10年土壤(PF)、休耕地即种植衬膜水稻9年后休耕1年土壤(FF)。以沙地为对照,于2024年8月,分别在上述3个样地中,采用五点取样法,选取5个1 m × 1 m取样点,用土钻分别采集3个研究区的0~10、10~20、20~30 cm土层土样。将每个采样点0~10、10~20、20~30 cm土层的土壤样品中的根系、杂质等直接剔除,然后混合均匀,用四分法缩分至密封袋中贴上标签,每个样地重复3次。将土样带回实验室,用于测定分析。
采集好的新鲜土壤样品要放置于4℃冰箱冷藏保存,以便于进行线虫的分离、提取和鉴定。线虫的分离提取采用改良的浅盘法
根据土壤线虫的食性特征、食道(oesophagus/esophagus)的结构和捕食方法等,Yeates等
根据土壤线虫的生活史对策又将线虫划分为5种不同的功能群,即c-p (colonizer-persister)值1~5类群,这5个类群表明线虫在r-对策和K-对策之间变化
线虫数据进行ln (x + 1)转化后采用SPSS 25和Excel 2408进行统计分析,图表的绘制采用OriginPro 2021。
本研究土壤样品共采集到3403条线虫,隶属于22科35属。由
对所有线虫属进行方差分析发现(
属 |
c-p |
CK |
PF |
FF |
||||||
c-p group |
0~10 cm |
10~20 cm |
20~30 cm |
0~10 cm |
10~20 cm |
20~30 cm |
0~10 cm |
10~20 cm |
20~30 cm |
|
植物寄生线虫Plant-parasites |
||||||||||
裸矛属Psilenchus |
2 |
0.33bc |
1.00ab |
0.33bc |
1.00ab |
1.33a |
1.00ab |
0.00c |
0.00c |
0.00c |
锥科Dolichodoridae |
3 |
1.00a |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
0.67ab |
0.00b |
盘旋属Rotylenchus |
3 |
19.67a |
0.00c |
4.33b |
0.00c |
0.00c |
0.00c |
5.33b |
2.00bc |
3.00bc |
短体属Pratylenchus |
3 |
0.67 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
Zygotylenchus |
3 |
2.67a |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
Macroposthonia |
3 |
1.33a |
0.00b |
0.00b |
1.00a |
0.00b |
0.00b |
1.67a |
1.67a |
0.00b |
食真菌线虫Fungivores |
||||||||||
茎属Ditylenchus |
2 |
0.00 |
0.00 |
0.00 |
0.00 |
1.00 |
0.00 |
0.00 |
0.00 |
0.00 |
真滑刃属Aphelenchus |
2 |
4.33a |
2.33b |
2.00b |
0.00c |
0.00c |
0.00c |
4.00a |
4.00a |
0.00c |
垫咽属Tylencholaimus |
4 |
0.00c |
0.00c |
0.00c |
6.00a |
0.00c |
0.00c |
1.33b |
0.00c |
0.00c |
食细菌线虫Bacterivores |
||||||||||
小杆总科Rhabditidae |
1 |
2.33c |
3.00c |
0.00c |
67.33b |
93.67a |
0.67c |
1.33c |
0.33c |
0.00c |
头叶属Cephalobus |
2 |
1.33a |
0.00c |
0.00c |
0.00c |
0.00c |
0.00c |
0.00c |
0.00c |
0.67b |
真头叶属Eucephalobus |
2 |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
12.33a |
0.00b |
0.00b |
0.00b |
异头叶属Heterocephalobus |
2 |
14.33b |
0.33d |
8.33c |
1.33d |
0.00d |
2.67d |
2.33d |
34.33a |
13.33b |
丽突属Acrobeles |
2 |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
29.00a |
1.00b |
1.00b |
拟丽突属Acrobeloides |
2 |
2.00a |
0.00c |
1.00b |
0.00c |
0.00c |
0.00c |
0.00c |
0.00c |
0.00c |
板唇属Chiloplacus |
2 |
1.33a |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
威尔斯属Wilsonema |
2 |
0.00c |
0.00c |
0.00c |
10.67a |
2.00b |
0.00c |
0.00c |
0.00c |
0.00c |
连胃属Chronogaster |
3 |
0.33b |
0.00b |
0.00b |
0.00b |
0.00b |
1.00a |
0.00b |
0.00b |
0.00b |
柱咽属Cylindrolaimus |
3 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
棱咽属Prismatolaimus |
3 |
0.00 |
0.00 |
0.00 |
0.00 |
1.00 |
0.00 |
0.00 |
0.00 |
0.00 |
杂食–捕食线虫Omnivores-predators |
||||||||||
Clarkus |
4 |
0.00c |
0.00c |
1.67a |
0.67b |
0.00c |
0.00c |
0.00c |
0.00c |
0.00c |
Aetholaimus |
5 |
0.00b |
0.00b |
0.67a |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
托那斯属Thonus |
4 |
6.67a |
2.67b |
2.00bc |
0.00d |
0.00d |
0.33d |
0.00d |
0.67cd |
3.00b |
真矛线属Eudorylaimus |
4 |
6.67a |
1.33c |
0.67c |
0.00c |
0.00c |
0.00c |
4.00b |
4.00b |
7.67a |
表矛线属Epidorylaimus |
4 |
2.00b |
0.00c |
3.33a |
1.33b |
0.00c |
0.00c |
4.33a |
0.00c |
0.00c |
Dorydorella |
4 |
0.00d |
0.00d |
3.00b |
0.00d |
0.33d |
0.00d |
0.00d |
9.67a |
1.67c |
小矛线属Microdorylaimus |
4 |
0.00 |
0.00 |
0.00 |
1.00 |
0.00 |
0.00 |
0.00 |
0.00 |
0.00 |
无孔小咽属Aporcelaimellus |
5 |
14.67c |
8.00d |
3.67e |
0.00f |
0.00f |
2.33ef |
49.33a |
33.67b |
13.67e |
无孔咽属Aporcelaimus |
5 |
0.00b |
1.33a |
0.00b |
0.00b |
0.00b |
0.00b |
0.33b |
0.33b |
0.00b |
盘咽属Discolaimus |
4 |
0.33b |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
0.00b |
0.67ab |
1.33a |
拟矛线属Dorylaimoides |
4 |
0.67b |
0.00b |
0.00b |
0.00b |
0.00b |
1.67a |
0.00b |
0.00b |
0.00b |
前矛线属Prodorylaimium |
4 |
0.67cd |
0.00d |
0.00d |
15.67a |
3.00c |
0.00d |
2.33cd |
9.67b |
9.67b |
中矛线属Mesodorylaimus |
4 |
7.33b |
0.00d |
1.33cd |
0.00d |
0.33d |
19.00a |
0.67cd |
3.67c |
1.33cd |
咽矛线属Laimydorus |
4 |
2.67b |
0.00c |
4.33a |
0.00c |
0.00c |
0.33c |
1.67b |
0.33c |
1.67b |
螫属Pungentus |
4 |
2.67b |
3.00b |
0.00c |
0.00c |
0.00c |
0.00c |
13.67a |
2.67b |
0.33c |
注:不同小写字母表示处理间的显著差异(P < 0.05);下同。
由
不同处理对各营养类群中个体数量的影响差别较大。由方差分析可得,CK、PF、FF的0~10、10~20、20~30 cm的土层土壤线虫营养类群分布有所差异(
PF和FF显著改变了CK 0~10、10~20、20~30 cm植物寄生线虫、食细菌线虫和杂食–捕食线虫的比例。随着修复的进行,食细菌线虫的比例呈先升高后下降的趋势,而植物寄生线虫、杂食–捕食线虫的比例呈现先降低后升高的趋势。特别是在CK、PF、FF 10~20 cm的土层中食细菌线虫比例与0~10、20~30 cm的土层差异显著(P < 0.05)。
处理 |
深度 |
植物寄生线虫 |
食真菌线虫 |
食细菌线虫 |
杂食–捕食线虫 |
|
CK |
0~10 cm |
27.54 ± 5.35A |
5.68 ± 1.81B |
21.89 ± 2.25A |
44.89 ± 2.17C |
|
10~20 cm |
4.43 ± 0.74C |
10.24 ± 2.42A |
14.19 ± 3.24B |
71.14 ± 3.89A |
||
20~30 cm |
12.84 ± 0.94B |
5.24 ± 1.85B |
25.32 ± 1.06A |
56.6 ± 1.94B |
||
PF |
0~10 cm |
0.95 ± 0.07B |
0.95 ± 0.07A |
80.44 ± 1.38B |
17.67 ± 1.25B |
|
10~20 cm |
1.3 ± 0.59B |
0.97 ± 0.04B |
94.18 ± 1.59A |
3.54 ± 1.38C |
||
20~30 cm |
2.45 ± 0.33A |
0 ± 0B |
40.22 ± 1.63C |
57.33 ± 1.45A |
||
FF |
0~10 cm |
4.39 ± 0.92Ab |
4.68 ± 1A |
28 ± 1.64B |
62.93 ± 1.89Ab |
|
10~20 cm |
2.43 ± 0.44B |
5.16 ± 1.29A |
32.49 ± 4.08A |
59.92 ± 5.57B |
||
20~30 cm |
5.2 ± 1.97A |
0 ± 0B |
25.7 ± 1.6B |
69.1 ± 0.59A |
土壤线虫作为土壤生态系统中的重要角色,对土壤的矿化和提高养分具有重要作用
对3种不同处理模式的0~10、10~20、20~30 cm土层的土壤线虫进行分离和形态学上的鉴定,共分离鉴定出土壤线虫22科35属。针对不同处理方式而言,PF、FF的优势属相较于CK在0~10、10~20、20~30 cm的土层几乎一致,都包括垫咽属(Tylencholaimus)、小杆总科(Rhabditidae)、威尔斯属(Wilsonema)、前矛线属(Prodorylaimium),只有PF的0~10、10~20 cm的土层中垫咽属(Tylencholaimus)不是其优势属。而在CK中,10~20、20~30 cm的土层其优势属几乎一致,包括真滑刃属(Aphelenchus)、小杆总科(Rhabditidae)、螫属(Pungentus)、托那斯属(Thonus)、无孔小咽属(Aporcelaimellus),CK 0~10 cm的土层其优势属为盘旋属(Rotylenchus)、异头叶属(Heterocephalobus)、无孔小咽属(Aporcelaimellus),这不仅与CK的10~20、20~30 cm的土层差异较大,而且还和PF、FF的0~10、10~20、20~30 cm的土层差异较大。可能是因为CK 0~10 cm的土层可能受到一些人为干扰,导致其优势属与其他处理产生一定的差异。而PF、FF的0~10、10~20、20~30 cm土层的土壤线虫优势属相较于CK有所差异,这一现象可能与PF、FF土壤食物网的结构及受干扰程度相关
就土壤线虫总数而言,PF在0~10、10~20 cm的土层中土壤线虫总数量显著高于CK、FF,而PF在20~30 cm的土层中的土壤线虫总数量与CK、FF的20~30 cm的土层差异不显著。这可能是由于水稻种植导致其土壤表层的植被种类、生物量及土壤养分的差异所致
不同c-p类群线虫的相对多度随土层深度的变化规律不同,这与其深度及其引起的土壤环境因子的变化的响应不同
土壤线虫营养类群的组成与结构对土壤环境具有很好的指示效应,是评价土壤线虫群落及土壤质量的重要指标
刘志奇等
综上所述,衬膜水稻种植(PF)确实会影响科尔沁沙地土壤线虫群落特征,我们可以发现衬膜水稻种植(PF)确实能够显著影响土壤线虫的优势属、总数、c-p类群和营养类群结构,但主要集中在0~20 cm的土壤表层。在衬膜水稻种植(PF)中,相较于未修复的沙地(CK)其新增的优势属为垫咽属(Tylencholaimus)、威尔斯属(Wilsonema)、前矛线属(Prodorylaimium)等;土壤线虫的总数与未修复的沙地(CK)之间存在显著差异,并且随着土层深度的增加而逐渐减小;c-p类群偏向于c-p1,以r对策者为主;营养类群结构以食细菌线虫为主。而休耕(FF)后土壤线虫的优势属与衬膜水稻种植(PF)相比几乎没有发生改变;但是土壤线虫的总数出现下降并且和未修复的沙地(CK)无显著变化;c-p类群则以c-p4和c-p5为主,更偏向于K对策者;营养类群结构以杂食–捕食线虫和食细菌线虫为主。由此可见,土壤线虫的群落特征变化与外界环境的变化有很大的关系。通过探究衬膜水稻对荒漠化土壤线虫群落特征的变化,可以有效地指示和反映土壤环境的变化,从而为衬膜水稻修复荒漠化土壤提供一定的科学依据和理论支持。
2022年度沈阳市科学技术计划科研立项:沈阳市浑南区李相街道农村厕卫改造科技特派团(k500000376)。
*通讯作者。