References
Szukiewicz, D., Trojanowski, S., Kociszewska, A. and Szewczyk, G. (2022) Modulation of the Inflammatory Response in Polycystic Ovary Syndrome (PCOS)—Searching for Epigenetic Factors. International Journal of Molecular Sciences, 23, Article 14663. >https://doi.org/10.3390/ijms232314663
Sadeghi, H.M., Adeli, I., Calina, D., Docea, A.O., Mousavi, T., Daniali, M., et al. (2022) Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing. International Journal of Molecular Sciences, 23, Article 583. >https://doi.org/10.3390/ijms23020583
Pan, J., Tan, Y., Wang, F., Hou, N., Xiang, Y., Zhang, J., et al. (2018) Aberrant Expression and DNA Methylation of Lipid Metabolism Genes in PCOS: A New Insight into Its Pathogenesis. Clinical Epigenetics, 10, Article No. 6. >https://doi.org/10.1186/s13148-018-0442-y
Vatier, C. and Christin-Maitre, S. (2024) Epigenetic/Circadian Clocks and PCOS. Human Reproduction, 39, 1167-1175. >https://doi.org/10.1093/humrep/deae066
Geng, X., Zhao, J., Huang, J., Li, S., Chu, W., Wang, W., et al. (2021) Lnc-MAP3K13-7:1 Inhibits Ovarian GC Proliferation in PCOS via DNMT1 Downregulation-Mediated CDKN1A Promoter Hypomethylation. Molecular Therapy, 29, 1279-1293. >https://doi.org/10.1016/j.ymthe.2020.11.018
Wang, K. and Li, Y. (2023) Signaling Pathways and Targeted Therapeutic Strategies for Polycystic Ovary Syndrome. Frontiers in Endocrinology, 14, Article 1191759. >https://doi.org/10.3389/fendo.2023.1191759
Dapas, M., Lin, F.T.J., Nadkarni, G.N., Sisk, R., Legro, R.S., Urbanek, M., et al. (2020) Distinct Subtypes of Polycystic Ovary Syndrome with Novel Genetic Associations: An Unsupervised, Phenotypic Clustering Analysis. PLOS Medicine, 17, e1003132. >https://doi.org/10.1371/journal.pmed.1003132
Fahs, D., Salloum, D., Nasrallah, M. and Ghazeeri, G. (2023) Polycystic Ovary Syndrome: Pathophysiology and Controversies in Diagnosis. Diagnostics, 13, Article 1559. >https://doi.org/10.3390/diagnostics13091559
Dewailly, D., Barbotin, A., Dumont, A., Catteau-Jonard, S. and Robin, G. (2020) Role of Anti-Müllerian Hormone in the Pathogenesis of Polycystic Ovary Syndrome. Frontiers in Endocrinology, 11, Article 641. >https://doi.org/10.3389/fendo.2020.00641
Tata, B., Mimouni, N.E.H., Barbotin, A., Malone, S.A., Loyens, A., Pigny, P., et al. (2018) Elevated Prenatal Anti-Müllerian Hormone Reprograms the Fetus and Induces Polycystic Ovary Syndrome in Adulthood. Nature Medicine, 24, 834-846. >https://doi.org/10.1038/s41591-018-0035-5
Risal, S., Pei, Y., Lu, H., Manti, M., Fornes, R., Pui, H., et al. (2019) Prenatal Androgen Exposure and Transgenerational Susceptibility to Polycystic Ovary Syndrome. Nature Medicine, 25, 1894-1904. >https://doi.org/10.1038/s41591-019-0666-1
Mimouni, N.E.H., Paiva, I., Barbotin, A., Timzoura, F.E., Plassard, D., Le Gras, S., et al. (2021) Polycystic Ovary Syndrome Is Transmitted via a Transgenerational Epigenetic Process. Cell Metabolism, 33, 513-530.e8. >https://doi.org/10.1016/j.cmet.2021.01.004
Dupont, J. and Scaramuzzi, R.J. (2016) Insulin Signalling and Glucose Transport in the Ovary and Ovarian Function during the Ovarian Cycle. Biochemical Journal, 473, 1483-1501. >https://doi.org/10.1042/bcj20160124
Rudnicka, E., Suchta, K., Grymowicz, M., Calik-Ksepka, A., Smolarczyk, K., Duszewska, A.M., et al. (2021) Chronic Low Grade Inflammation in Pathogenesis of PCOS. International Journal of Molecular Sciences, 22, Article 3789. >https://doi.org/10.3390/ijms22073789
Aboeldalyl, S., James, C., Seyam, E., Ibrahim, E.M., Shawki, H.E. and Amer, S. (2021) The Role of Chronic Inflammation in Polycystic Ovarian Syndrome—A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 22, Article 2734. >https://doi.org/10.3390/ijms22052734
Kelly, C.C.J., Lyall, H., Petrie, J.R., Gould, G.W., Connell, J.M.C. and Sattar, N. (2001) Low Grade Chronic Inflammation in Women with Polycystic Ovarian Syndrome. The Journal of Clinical Endocrinology & Metabolism, 86, 2453-2455. >https://doi.org/10.1210/jcem.86.6.7580
Rudnicka, E., Kunicki, M., Suchta, K., Machura, P., Grymowicz, M. and Smolarczyk, R. (2020) Inflammatory Markers in Women with Polycystic Ovary Syndrome. BioMed Research International, 2020, Article 4092470. >https://doi.org/10.1155/2020/4092470
Garg, D. and Merhi, Z. (2016) Relationship between Advanced Glycation End Products and Steroidogenesis in PCOS. Reproductive Biology and Endocrinology, 14, Article No. 71. >https://doi.org/10.1186/s12958-016-0205-6
Diamanti‐Kandarakis, E., Piperi, C., Kalofoutis, A. and Creatsas, G. (2004) Increased Levels of Serum Advanced Glycation End‐Products in Women with Polycystic Ovary Syndrome. Clinical Endocrinology, 62, 37-43. >https://doi.org/10.1111/j.1365-2265.2004.02170.x
Zhang, B., Qi, X., Zhao, Y., Li, R., Zhang, C., Chang, H., et al. (2018) Elevated CD14
++CD16
+ Monocytes in Hyperhomocysteinemia-Associated Insulin Resistance in Polycystic Ovary Syndrome. Reproductive Sciences, 25, 1629-1636. >https://doi.org/10.1177/1933719118756772
Hiam, D., Simar, D., Laker, R., Altıntaş, A., Gibson-Helm, M., Fletcher, E., et al. (2019) Epigenetic Reprogramming of Immune Cells in Women with PCOS Impact Genes Controlling Reproductive Function. The Journal of Clinical Endocrinology & Metabolism, 104, 6155-6170. >https://doi.org/10.1210/jc.2019-01015
高慧慧, 钱贝冉, 倪艳, 等. 多囊卵巢综合征发病机制研究进展[J]. 四川大学学报(医学版), 2024, 55(4): 1049-1054.
Wang, D., Weng, Y., Zhang, Y., Wang, R., Wang, T., Zhou, J., et al. (2020) Exposure to Hyperandrogen Drives Ovarian Dysfunction and Fibrosis by Activating the NLRP3 Inflammasome in Mice. Science of The Total Environment, 745, Article 141049. >https://doi.org/10.1016/j.scitotenv.2020.141049
梁梦梦, 赵燕, 张艳新, 等. 高雄激素诱导多囊卵巢综合征表观遗传机制的研究进展[J]. 中国病理生理杂志, 2024, 40(1): 164-171.
Li, M., Chi, X., Wang, Y., Setrerrahmane, S., Xie, W. and Xu, H. (2022) Trends in Insulin Resistance: Insights into Mechanisms and Therapeutic Strategy. Signal Transduction and Targeted Therapy, 7, Article No. 216. >https://doi.org/10.1038/s41392-022-01073-0
Bril, F., Ezeh, U., Amiri, M., Hatoum, S., Pace, L., Chen, Y., et al. (2023) Adipose Tissue Dysfunction in Polycystic Ovary Syndrome. The Journal of Clinical Endocrinology & Metabolism, 109, 10-24. >https://doi.org/10.1210/clinem/dgad356
Shen, H., Qiu, L., Zhang, Z., Qin, Y., Cao, C. and Di, W. (2013) Genome-Wide Methylated DNA Immunoprecipitation Analysis of Patients with Polycystic Ovary Syndrome. PLOS ONE, 8, e64801. >https://doi.org/10.1371/journal.pone.0064801
Ting, W., Yanyan, Q., Jian, H., Keqin, H. and Duan, M. (2013) The Relationship between Insulin Resistance and CpG Island Methylation of LMNA Gene in Polycystic Ovary Syndrome. Cell Biochemistry and Biophysics, 67, 1041-1047. >https://doi.org/10.1007/s12013-013-9602-z
Ilie, I.R. and Georgescu, C.E. (2015) Polycystic Ovary Syndrome-Epigenetic Mechanisms and Aberrant MicroRNA. Advances in Clinical Chemistry, 71, 25-45. >https://doi.org/10.1016/bs.acc.2015.06.001
Zhao, H., Zhang, J., Cheng, X., Nie, X. and He, B. (2023) Insulin Resistance in Polycystic Ovary Syndrome across Various Tissues: An Updated Review of Pathogenesis, Evaluation, and Treatment. Journal of Ovarian Research, 16, Article No. 9. >https://doi.org/10.1186/s13048-022-01091-0
Cao, J., Huo, P., Cui, K., Wei, H., Cao, J., Wang, J., et al. (2022) Follicular Fluid-Derived Exosomal miR-143-3p/miR-155-5p Regulate Follicular Dysplasia by Modulating Glycolysis in Granulosa Cells in Polycystic Ovary Syndrome. Cell Communication and Signaling, 20, Article No. 61. >https://doi.org/10.1186/s12964-022-00876-6
Long, W., Zhao, C., Ji, C., Ding, H., Cui, Y., Guo, X., et al. (2014) Characterization of Serum MicroRNAs Profile of PCOS and Identification of Novel Non-Invasive Biomarkers. Cellular Physiology and Biochemistry, 33, 1304-1315. >https://doi.org/10.1159/000358698
Kopp, F. and Mendell, J.T. (2018) Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell, 172, 393-407. >https://doi.org/10.1016/j.cell.2018.01.011
Zhao, J., Huang, J., Geng, X., Chu, W., Li, S., Chen, Z., et al. (2019) Polycystic Ovary Syndrome: Novel and Hub LncRNAs in the Insulin Resistance-Associated LncRNA-mRNA Network. Frontiers in Genetics, 10, Article 772. >https://doi.org/10.3389/fgene.2019.00772
Huang, X., Hao, C., Bao, H., Wang, M. and Dai, H. (2015) Aberrant Expression of Long Noncoding RNAs in Cumulus Cells Isolated from PCOS Patients. Journal of Assisted Reproduction and Genetics, 33, 111-121. >https://doi.org/10.1007/s10815-015-0630-z
Shukla, P. and Melkani, G.C. (2023) Mitochondrial Epigenetic Modifications and Nuclear-Mitochondrial Communication: A New Dimension towards Understanding and Attenuating the Pathogenesis in Women with PCOS. Reviews in Endocrine and Metabolic Disorders, 24, 317-326. >https://doi.org/10.1007/s11154-023-09789-2
Shock, L.S., Thakkar, P.V., Peterson, E.J., Moran, R.G. and Taylor, S.M. (2011) DNA Methyltransferase 1, Cytosine Methylation, and Cytosine Hydroxymethylation in Mammalian Mitochondria. Proceedings of the National Academy of Sciences, 108, 3630-3635. >https://doi.org/10.1073/pnas.1012311108
Sharma, N., Pasala, M.S. and Prakash, A. (2019) Mitochondrial DNA: Epigenetics and Environment. Environmental and Molecular Mutagenesis, 60, 668-682. >https://doi.org/10.1002/em.22319
Patil, V., Cuenin, C., Chung, F., Aguilera, J.R.R., Fernandez-Jimenez, N., Romero-Garmendia, I., et al. (2019) Human Mitochondrial DNA Is Extensively Methylated in a Non-CpG Context. Nucleic Acids Research, 47, 10072-10085. >https://doi.org/10.1093/nar/gkz762
Jia, L., Li, J., He, B., Jia, Y., Niu, Y., Wang, C., et al. (2016) Abnormally Activated One-Carbon Metabolic Pathway Is Associated with mtDNA Hypermethylation and Mitochondrial Malfunction in the Oocytes of Polycystic Gilt Ovaries. Scientific Reports, 6, Article No. 19436. >https://doi.org/10.1038/srep19436
Divoux, A., Erdos, E., Whytock, K., Osborne, T.F. and Smith, S.R. (2022) Transcriptional and DNA Methylation Signatures of Subcutaneous Adipose Tissue and Adipose-Derived Stem Cells in PCOS Women. Cells, 11, Article 848. >https://doi.org/10.3390/cells11050848
Abbott, D.H. and Dumesic, D.A. (2021) Passing on PCOS: New Insights into Its Epigenetic Transmission. Cell Metabolism, 33, 463-466. >https://doi.org/10.1016/j.cmet.2021.02.008
Nakanishi, N., Osuka, S., Kono, T., Kobayashi, H., Ikeda, S., Bayasula, B., et al. (2022) Upregulated Ribosomal Pathway Impairs Follicle Development in a Polycystic Ovary Syndrome Mouse Model: Differential Gene Expression Analysis of Oocytes. Reproductive Sciences, 30, 1306-1315. >https://doi.org/10.1007/s43032-022-01095-7
Mimouni, N.E.H., Paiva, I., Barbotin, A., Timzoura, F.E., Plassard, D., Le Gras, S., et al. (2021) Polycystic Ovary Syndrome Is Transmitted via a Transgenerational Epigenetic Process. Cell Metabolism, 33, 513-530.e8. >https://doi.org/10.1016/j.cmet.2021.01.004
Cao, P., Yang, W., Wang, P., Li, X. and Nashun, B. (2021) Characterization of DNA Methylation and Screening of Epigenetic Markers in Polycystic Ovary Syndrome. Frontiers in Cell and Developmental Biology, 9, Article 664843. >https://doi.org/10.3389/fcell.2021.664843
Eini, F., Novin, M.G., Joharchi, K., Hosseini, A., Nazarian, H., Piryaei, A., et al. (2017) Intracytoplasmic Oxidative Stress Reverses Epigenetic Modifications in Polycystic Ovary Syndrome. Reproduction, Fertility and Development, 29, 2313-2323. >https://doi.org/10.1071/rd16428
Wang, S., Wang, M., Ichino, L., Boone, B.A., Zhong, Z., Papareddy, R.K., et al. (2024) MBD2 Couples DNA Methylation to Transposable Element Silencing during Male Gametogenesis. Nature Plants, 10, 13-24. >https://doi.org/10.1038/s41477-023-01599-3
Kolkman, R.W., Michel-Souzy, S., Wasserberg, D., Segerink, L.I. and Huskens, J. (2022) Density Control over MBD2 Receptor-Coated Surfaces Provides Superselective Binding of Hypermethylated DNA. ACS Applied Materials & Interfaces, 14, 40579-40589. >https://doi.org/10.1021/acsami.2c09641
Schmolka, N., Karemaker, I.D., Cardoso da Silva, R., Recchia, D.C., Spegg, V., Bhaskaran, J., et al. (2023) Dissecting the Roles of MBD2 Isoforms and Domains in Regulating Nurd Complex Function during Cellular Differentiation. Nature Communications, 14, Article No. 3848. >https://doi.org/10.1038/s41467-023-39551-w