hjbm Hans Journal of Biomedicine 2161-8976 2161-8984 beplay体育官网网页版等您来挑战! 10.12677/hjbm.2025.151022 hjbm-106031 Articles 医药卫生 多囊卵巢综合症与表观 遗传DNA甲基化调控的 研究进展
Research Progress on Polycystic Ovary Syndrome and Epigenetic DNA Methylation Regulation
蔡灵诗 盛书豪 郑记锁 张雅玲 嘉兴大学医学院,浙江 嘉兴 06 12 2024 15 01 190 197 4 12 :2024 13 12 :2024 13 1 :2025 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 多囊卵巢综合征(polycystic ovary syndrome, PCOS)是育龄妇女中最常见的内分泌疾病。尽管它的发生率很高,也被认为是无排卵性不孕症的主要原因,但人们对这种综合征知之甚少,并且仍然未得到充分诊断与治疗,致使女性患者的治疗方案研究进展缓慢。这种复杂疾病的异质性是遗传、环境、内分泌和行为因素共同发生的结果。通常与卵巢增大和功能失调、雄激素水平过高、胰岛素抵抗等有关。目前来说,没有单一的病因学因素可以完全解释PCOS的发病机制,大多证据表明PCOS是一种复杂的多因素疾病,且具有高度的遗传性。而表观遗传是指基因组和基因表达的可遗传改变,但DNA序列没有发生任何变化,表观遗传包括DNA甲基化、组蛋白修饰(乙酰化、磷酸化、甲基化等)和非编码RNA (ncRNA)含量的变化。现有研究表明表观遗传学,尤其是DNA甲基化,在PCOS的发病机制中起关键作用。
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of childbearing age. Despite its high incidence and being considered the main cause of anovulatory infertility, the syndrome is still poorly understood and remains underdiagnosed and undertreated, leading to slow progress in the research of treatment options for female patients. The heterogeneity of this complex disease is the result of a combination of genetic, environmental, endocrine, and behavioral factors. It is commonly associated with enlarged and dysfunctional ovaries, elevated levels of androgens, and insulin resistance. At present, there is no single etiological factor that can fully explain the pathogenesis of PCOS. Most evidence suggests that PCOS is a complex multifactorial disease with a high degree of heritability. Epigenetics refers to heritable changes in genome and gene expression without any alterations in DNA sequence. Epigenetics includes changes in DNA methylation, histone modifications (acetylation, phosphorylation, methylation, etc.), and non coding RNA (ncRNA) content. Existing research suggests that epigenetics, particularly DNA methylation, plays a crucial role in the pathogenesis of PCOS.
PCOS,表观遗传学,DNA甲基化,炎症,肥胖,胰岛素抵抗,lncRNA
PCOS
Epigenetics DNA Methylation Inflammation Obesity Insulin Resistance lncRNA
1. 前言

PCOS的主要特征是排卵功能障碍、高雄激素血症和多囊卵巢形态,高雄激素血症的阈值是血清睾酮 > 0.7 ng/L,PCOS的阈值是每个卵巢存在>20个卵泡和/或通过超声测量任一卵巢的卵巢体积 ≥ 10 ml [1] - [5] 。根据Rotterdam标准,需要具备上述三个特征中的两个才能诊断PCOS [6] 。PCOS有两种分型一种是分为2种不同的表型亚型:生殖性以较高的黄体生成素(LH)和性激素结合球蛋白(SHBG)水平为特征,但体重指数(BMI)和空腹胰岛素(Ins0)水平相对较低,以及代谢组以较高的BMI和空腹血糖(Glu0)和Ins0水平为特征,而SHBG和LH水平相对较低 [7] 。另一种分型则按照鹿特丹标准定义的PCOS表型:表型A:闭经或月经稀发 + 高雄 + 超声多囊;表型B:闭经或月经稀发 + 高雄;表型C:高雄 + 超声多囊;表型D:闭经或月经稀发 + 超声多囊 [8] (见 表1 )。

<xref></xref>Table 1. Phenotype and classification of PCOSTable 1. Phenotype and classification of PCOS 表1. PCOS的表型分类

表型A

表型B

闭经/月经稀发

高雄

超声多囊

闭经/月经稀发

高雄

表型C

表型D

高雄

超声多囊

闭经/月经稀发

超声多囊

患有PCOS的女性均有出现卵巢缺陷的表现,例如卵泡发育停滞、无排卵和卵母细胞质量差,这对他们的生殖健康产生了不利的影响。虽然现如今PCOS的发病机制在很大程度上仍然还是未知的,但有研究证明PCOS患者的卵泡停滞在小窦卵泡阶段,它们不能发育成成熟的卵泡,从而导致女性排卵异常 [5] 。本篇综述将从产前抗苗勒管激素(AMH)水平、炎症、肥胖、IR相关基因水平和IncRNA、线粒体中DMNT1表达的改变这四个方面来讲述现如今PCOS和表观遗传机制的研究进展。

2. 产前AMH水平与DNA甲基化

AMH由窦前和小窦卵泡的颗粒细胞分泌,是卵巢卵泡生成的调节分子 [9] 。有研究表明母亲子宫内过量的AMH会影响女性胎儿的发育 [9] [10] 。研究显示将有生物活性形式的AMH (AMHc)注射到妊娠晚期小鼠体内,会导致后代出现高雄激素PCOS表型。然而在这个被称为PAMH的模型中,妊娠期间的高浓度AMH会导致促性腺激素释放激素(GnRH)和LH增加,得以出现高雄激素血症这一临床表现。过量的母体LH单独或与AMH联合都会导致胎盘芳香酶减少,睾酮增加,从而导致胎儿暴露于过量的雄激素之中。导致在成年后代中,GnRH神经元兴奋性增加。GnRH神经元的过度活跃将会刺激卵巢类固醇产生,并通过减少雌二醇(E2)和孕酮(P)对LH的负反馈来参与PCOS中的恶性循环。有学者在PAMH模型小鼠中使用了GnRH拮抗剂进行产前治疗,发现可防止先前在后代中观察到的疾病发生,使其神经内分泌表型正常化 [10]

此外,有研究显示产前AMH能推动PCOS跨代传递 [11] ,导致第三代后代卵巢转录组谱发生改变,发现PAMH谱系中上调的基因参与脂肪酸生物合成过程、转化生长因子β (TGF-β)的产生和代谢过程等 [12] ,而受影响最大的通路是TGF-β信号通路,它参与了卵泡发生、卵巢功能、炎症反应、葡萄糖和能量稳态 [13] 。导致出现高血糖,高胰岛素血症和高雄激素血症的PCOS临床表现,但也发现使用甲基供体S-腺苷甲硫氨酸(SAM)治疗使其神经内分泌、生殖和代谢表型正常化 [12] 。这证明了PCOS性状在小鼠中的传递是通过改变的DNA甲基化发生的。

3. 炎症与DNA甲基化

有许多研究表明,PCOS与卵巢组织和全身的慢性低度炎症之间存在很强的相关性 [14] [15] 。PCOS患者的C反应蛋白(CPR) [16] 、白细胞介素-18 (IL-18)、单核细胞趋化蛋白-1 (MCP-1)和巨噬细胞炎症蛋白-1α (MIP-1α) [14] 、白细胞计数(WBC) [17] 、晚期糖基化终产物(AGEs) [18] 、晚期糖基化终末产物受体(RAGE) [19] 等相关慢性炎症的指标都有所升高 [14]

事实上,PCOS女性患者在单核细胞和巨噬细胞中的整体DNA甲基化较低,这可能会导致促炎基因表达上调 [1] 。如另一研究所述,CD14、CD16炎性单核细胞与PCOS患者的高同型半胱氨酸血症和IR有关,且CD14、CD16单核细胞有可能是导致PCOS女性IR的发病机制 [20] 。此外,基因激活的重编程也适用于其他DNA甲基化水平较低的免疫细胞,例如辅助性T细胞、细胞毒性T细胞和B细胞 [21] 。雄激素是PCOS慢性低度炎症的诱导因子。研究显示,高雄激素诱导卵巢局部及颗粒细胞氧化应激(OS)和慢性炎症,且促进NLRP3、TLR4、caspase-1和GSDMD等因子表达,提示高雄导致颗粒细胞焦亡 [22] 。m6A甲基转移酶WTAP通过激活NF-κB/NLRP3信号通路,参与脂多糖应激的内皮细胞焦亡和炎症的形成 [23] 。胚胎期高雄激素调控雄激素代谢相关基因表遗传修饰(如甲基化),PCOS卵巢细胞LHR基因CpG岛甲基化异常也是成年后易发生PCOS的主要原因 [24]

4. 肥胖与DNA甲基化

有研究发现DNA甲基化调控不同的胰岛素信号转导基因,如胰岛素(INS)、胰岛素样生长因子-1/2 (IGF-1/2)、胰岛素受体底物1 (IRS1)、胰岛素样生长因子结合蛋白1/2 (IGFBP-1/2)和磷脂酰肌醇3-激酶调节亚基(PIK3R1) [25] 。这些基因的甲基化状态在肥胖和IR中均会发生改变。而且有实验发现参与脂质代谢和类固醇合成的差异甲基化基因是低甲基化的,并且基因表达水平和启动子甲基化水平之间存在负相关 [3]

除此之外,还有文章提及通过DNA甲基化和小型非编码RNA (microRNA)调控进行的表观遗传调节似乎是PCOS中脂肪组织(AT)功能障碍的重要机制 [26]

5. IR与DNA甲基化

有实验证明在伴有和不伴有IR的PCOS女性中发现了79个差异甲基化基因 [27] 。还有研究发现LMNA基因启动子区CpG岛的甲基化状态发生了变化,她们采用病例对照实验检测了LMNA基因中的CpG岛的20个CG位点(DNA序列中特定的胞嘧啶和鸟嘌呤碱基对所在的位置),其中有12个CpG位点在两组间差异显著,由此得出结论,LMNA基因CpG岛高甲基化状态的变化与PCOS患者的IR有关,可能参与了PCOS相关IR的调节 [28]

MicroRNA (miRNA)是参与基因转录后调控的小非编码RNA,它们直接调节靶分子并与表观遗传机制相连,参与反馈调节回路,其目的是微调基因表达 [29] 。作为基因表达的调节因子,miRNA参与了控制雄激素的合成、炎症反应、脂肪生成和信号传导,更重要的是在PCOS女性和健康女性之间,miRNA表达水平存在显著差异 [30] 。有研究表明,滤泡液(FF)衍生的外泌体中的miR-143-3p和miR-155-5p拮抗调节PCOS中糖酵解介导的GCs滤泡发育不良 [31] 。除此之外,有研究者通过logistic二元回归分析,发现miR-222与血清胰岛素呈正相关 [32] ,这些都恰恰表明了它们作为PCOS生物标志物的潜在价值。

6. lncRNA与DNA甲基化

lncRNA被定义为200多个核苷酸的转录本,这些转录本未被翻译成蛋白质。它们包括一类异质的基因间转录本、增强子RNA (eRNA)以及与其他基因重叠的正义或反义转录本 [33]

通过RNA测序数据分析,发现lncRNA在患有和不患有PCOS的女性的人类滤泡液中表达差异 [34] 。有研究证明,lncRNA参与了Ⅱ型糖尿病发生、卵母细胞发育、卵巢颗粒细胞(GC)增殖和脂肪生成 [35] 。InC-MAP3K13-7:1是一种功能性lncRNA,可以直接结合并催化DNA甲基转移酶(DNMTI)的泛素化,使得DMNT1表达降低或沉默,从而使人卵巢颗粒细胞(KGN)中的启动子低甲基化,同时增加了KGN细胞中CDKN1A的表达,控制了增殖抑制剂P21 (Waf1/Cip1)的表达,从而实现阻止G1/S细胞周期的进程,即增加了G1期细胞的百分比,并降低了S期细胞的百分比,得以抑制细胞增殖,使得卵巢卵泡停滞、减少,即会有更少的成熟卵泡和更频繁的无排卵 [5]

7. 线粒体功能与DNA甲基化

线粒体在ATP产生、细胞稳态、代谢和活性氧(ROS)产生中起关键作用 [36] ,它们完全是母系遗传的,包含一个16 kbps的环状基因组 [37] 。虽然mtDNA中只有13个多肽编码,但线粒体蛋白质组包括了1500多种的蛋白质,这些蛋白质由核基因编码并易位到线粒体中以维持线粒体的功能 [38] 。不过与细胞核不同,线粒体甲基化变化发生在非CpG位点 [39]

有实验研究发现,多囊卵巢卵泡液中同型半胱氨酸(Hcy)的浓度明显升高。而且滤泡液中Hcy升高的水平与所激活的一碳代谢途径、DNMT1表达上调以及mtDNA高甲基化相符合。这些代谢和表观遗传变化可能是导致PCOS母猪线粒体功能障碍的原因,从而导致母猪的卵母细胞质量恶化 [40] 。但目前来看,具体将Hcy与PCOS联系起来的机制还尚未完全明晰。简而言之,线粒体基质中mtDNMT1表达增加,使得mtDNA高甲基化 [36] ,从而令线粒体功能障碍,导致卵母细胞质量差,例如:极体挤压受损、卵裂、囊胚速率显著降低 [40]

8. 结论与展望

PCOS患者的发病原因是多个因素共同作用的结果,但不可否认的是PCOS与表观遗传机制之间存在着千丝万缕的关系,从RNA上发现IncRNA在卵泡成熟上发挥着重要抑制作用,从PCOS患者常见的临床表现入手,我们可以发现不管是肥胖、炎症还是IR,它们相关的基因或多或少甲基化状态都发生了改变,从细胞器入手,发现线粒体DNA高甲基化。除此之外,还了解到产前过高的AMH水平对于女性胎儿来说,会增加患PCOS的概率。目前,在PCOS患者的血清、卵巢、颗粒细胞、卵母细胞、下丘脑、骨骼肌、脂肪组织中发现了DNA甲基化的变化,这些变化与PCOS的IR、脂质代谢和卵泡发育密切相关 [41] - [43]

前期研究阐明PCOS可能的表观遗传学机制:宫内高雄激素、高AMH通过诱导表观遗传变化(如DNA甲基化)发挥其作用,这些修饰会导致PCOS子代疾病易感性增加,造成子代神经内分泌及代谢障碍 [44] 。提出了PCOS表观遗传治疗的新方向。未来仍需要进一步的体内外功能实验,以更好地了解PCOS中DNA甲基化改变的潜在机制,评估候选生物标志物。DNA甲基化与PCOS易感性相关,以及某些MicroRNA可能参与PCOS发生的作用机制。PCOS在组蛋白修饰方面的研究较少,组蛋白乙酰化增加和卵母细胞中活性氧(ROS)增加有关,从而影响PCOS排卵 [45] [46]

一种机制涉及甲基化的蛋白质“阅读器”,即DNA甲基化编码信息的识别读取。在众多负责识别读取甲基化DNA的家族中,甲基化CpG结合域蛋白(MBD)家族是最先被研究发现的,且MBD家族蛋白结构中含有进化上高度保守的甲基化CpG结合域,其中MBD2与甲基化的CpG DNA具有最高的结合活性 [47] [48] ,还可以形成抑制转录复合体,其中包含核小体重塑和组蛋白去乙酰化复合体(NuRD),共同介导基因的沉默 [49] 。研究表明MBD2被定位为合适的抗癌药物靶点,其表达在几个肿瘤抑制基因的启动子区域中对甲基化DNA显示出相对更大的亲和力。对MBD2基因敲除小鼠的研究表明,MBD2不具有胚胎致死性。因此检测靶向MBD2或其结合甲基化DNA的能力是否在PCOS患者中产生保护作用以降低PCOS的发病率和不孕率也同样具有吸引力。探究MBD2调控相关基因启动子甲基化调控卵泡发育的关键机制,为揭示PCOS卵巢发育异常的表观遗传机制和干预靶点提供新的思路和分子生物学依据。

利益冲突声明

所有作者均声明不存在利益冲突。

基金项目

由嘉兴大学大学生科技训练(SRT)项目(8517231317)资助。

NOTES

*通讯作者。

References Szukiewicz, D., Trojanowski, S., Kociszewska, A. and Szewczyk, G. (2022) Modulation of the Inflammatory Response in Polycystic Ovary Syndrome (PCOS)—Searching for Epigenetic Factors. International Journal of Molecular Sciences, 23, Article 14663. >https://doi.org/10.3390/ijms232314663 Sadeghi, H.M., Adeli, I., Calina, D., Docea, A.O., Mousavi, T., Daniali, M., et al. (2022) Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing. International Journal of Molecular Sciences, 23, Article 583. >https://doi.org/10.3390/ijms23020583 Pan, J., Tan, Y., Wang, F., Hou, N., Xiang, Y., Zhang, J., et al. (2018) Aberrant Expression and DNA Methylation of Lipid Metabolism Genes in PCOS: A New Insight into Its Pathogenesis. Clinical Epigenetics, 10, Article No. 6. >https://doi.org/10.1186/s13148-018-0442-y Vatier, C. and Christin-Maitre, S. (2024) Epigenetic/Circadian Clocks and PCOS. Human Reproduction, 39, 1167-1175. >https://doi.org/10.1093/humrep/deae066 Geng, X., Zhao, J., Huang, J., Li, S., Chu, W., Wang, W., et al. (2021) Lnc-MAP3K13-7:1 Inhibits Ovarian GC Proliferation in PCOS via DNMT1 Downregulation-Mediated CDKN1A Promoter Hypomethylation. Molecular Therapy, 29, 1279-1293. >https://doi.org/10.1016/j.ymthe.2020.11.018 Wang, K. and Li, Y. (2023) Signaling Pathways and Targeted Therapeutic Strategies for Polycystic Ovary Syndrome. Frontiers in Endocrinology, 14, Article 1191759. >https://doi.org/10.3389/fendo.2023.1191759 Dapas, M., Lin, F.T.J., Nadkarni, G.N., Sisk, R., Legro, R.S., Urbanek, M., et al. (2020) Distinct Subtypes of Polycystic Ovary Syndrome with Novel Genetic Associations: An Unsupervised, Phenotypic Clustering Analysis. PLOS Medicine, 17, e1003132. >https://doi.org/10.1371/journal.pmed.1003132 Fahs, D., Salloum, D., Nasrallah, M. and Ghazeeri, G. (2023) Polycystic Ovary Syndrome: Pathophysiology and Controversies in Diagnosis. Diagnostics, 13, Article 1559. >https://doi.org/10.3390/diagnostics13091559 Dewailly, D., Barbotin, A., Dumont, A., Catteau-Jonard, S. and Robin, G. (2020) Role of Anti-Müllerian Hormone in the Pathogenesis of Polycystic Ovary Syndrome. Frontiers in Endocrinology, 11, Article 641. >https://doi.org/10.3389/fendo.2020.00641 Tata, B., Mimouni, N.E.H., Barbotin, A., Malone, S.A., Loyens, A., Pigny, P., et al. (2018) Elevated Prenatal Anti-Müllerian Hormone Reprograms the Fetus and Induces Polycystic Ovary Syndrome in Adulthood. Nature Medicine, 24, 834-846. >https://doi.org/10.1038/s41591-018-0035-5 Risal, S., Pei, Y., Lu, H., Manti, M., Fornes, R., Pui, H., et al. (2019) Prenatal Androgen Exposure and Transgenerational Susceptibility to Polycystic Ovary Syndrome. Nature Medicine, 25, 1894-1904. >https://doi.org/10.1038/s41591-019-0666-1 Mimouni, N.E.H., Paiva, I., Barbotin, A., Timzoura, F.E., Plassard, D., Le Gras, S., et al. (2021) Polycystic Ovary Syndrome Is Transmitted via a Transgenerational Epigenetic Process. Cell Metabolism, 33, 513-530.e8. >https://doi.org/10.1016/j.cmet.2021.01.004 Dupont, J. and Scaramuzzi, R.J. (2016) Insulin Signalling and Glucose Transport in the Ovary and Ovarian Function during the Ovarian Cycle. Biochemical Journal, 473, 1483-1501. >https://doi.org/10.1042/bcj20160124 Rudnicka, E., Suchta, K., Grymowicz, M., Calik-Ksepka, A., Smolarczyk, K., Duszewska, A.M., et al. (2021) Chronic Low Grade Inflammation in Pathogenesis of PCOS. International Journal of Molecular Sciences, 22, Article 3789. >https://doi.org/10.3390/ijms22073789 Aboeldalyl, S., James, C., Seyam, E., Ibrahim, E.M., Shawki, H.E. and Amer, S. (2021) The Role of Chronic Inflammation in Polycystic Ovarian Syndrome—A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 22, Article 2734. >https://doi.org/10.3390/ijms22052734 Kelly, C.C.J., Lyall, H., Petrie, J.R., Gould, G.W., Connell, J.M.C. and Sattar, N. (2001) Low Grade Chronic Inflammation in Women with Polycystic Ovarian Syndrome. The Journal of Clinical Endocrinology & Metabolism, 86, 2453-2455. >https://doi.org/10.1210/jcem.86.6.7580 Rudnicka, E., Kunicki, M., Suchta, K., Machura, P., Grymowicz, M. and Smolarczyk, R. (2020) Inflammatory Markers in Women with Polycystic Ovary Syndrome. BioMed Research International, 2020, Article 4092470. >https://doi.org/10.1155/2020/4092470 Garg, D. and Merhi, Z. (2016) Relationship between Advanced Glycation End Products and Steroidogenesis in PCOS. Reproductive Biology and Endocrinology, 14, Article No. 71. >https://doi.org/10.1186/s12958-016-0205-6 Diamanti‐Kandarakis, E., Piperi, C., Kalofoutis, A. and Creatsas, G. (2004) Increased Levels of Serum Advanced Glycation End‐Products in Women with Polycystic Ovary Syndrome. Clinical Endocrinology, 62, 37-43. >https://doi.org/10.1111/j.1365-2265.2004.02170.x Zhang, B., Qi, X., Zhao, Y., Li, R., Zhang, C., Chang, H., et al. (2018) Elevated CD14 ++CD16 + Monocytes in Hyperhomocysteinemia-Associated Insulin Resistance in Polycystic Ovary Syndrome. Reproductive Sciences, 25, 1629-1636. >https://doi.org/10.1177/1933719118756772 Hiam, D., Simar, D., Laker, R., Altıntaş, A., Gibson-Helm, M., Fletcher, E., et al. (2019) Epigenetic Reprogramming of Immune Cells in Women with PCOS Impact Genes Controlling Reproductive Function. The Journal of Clinical Endocrinology & Metabolism, 104, 6155-6170. >https://doi.org/10.1210/jc.2019-01015 高慧慧, 钱贝冉, 倪艳, 等. 多囊卵巢综合征发病机制研究进展[J]. 四川大学学报(医学版), 2024, 55(4): 1049-1054. Wang, D., Weng, Y., Zhang, Y., Wang, R., Wang, T., Zhou, J., et al. (2020) Exposure to Hyperandrogen Drives Ovarian Dysfunction and Fibrosis by Activating the NLRP3 Inflammasome in Mice. Science of The Total Environment, 745, Article 141049. >https://doi.org/10.1016/j.scitotenv.2020.141049 梁梦梦, 赵燕, 张艳新, 等. 高雄激素诱导多囊卵巢综合征表观遗传机制的研究进展[J]. 中国病理生理杂志, 2024, 40(1): 164-171. Li, M., Chi, X., Wang, Y., Setrerrahmane, S., Xie, W. and Xu, H. (2022) Trends in Insulin Resistance: Insights into Mechanisms and Therapeutic Strategy. Signal Transduction and Targeted Therapy, 7, Article No. 216. >https://doi.org/10.1038/s41392-022-01073-0 Bril, F., Ezeh, U., Amiri, M., Hatoum, S., Pace, L., Chen, Y., et al. (2023) Adipose Tissue Dysfunction in Polycystic Ovary Syndrome. The Journal of Clinical Endocrinology & Metabolism, 109, 10-24. >https://doi.org/10.1210/clinem/dgad356 Shen, H., Qiu, L., Zhang, Z., Qin, Y., Cao, C. and Di, W. (2013) Genome-Wide Methylated DNA Immunoprecipitation Analysis of Patients with Polycystic Ovary Syndrome. PLOS ONE, 8, e64801. >https://doi.org/10.1371/journal.pone.0064801 Ting, W., Yanyan, Q., Jian, H., Keqin, H. and Duan, M. (2013) The Relationship between Insulin Resistance and CpG Island Methylation of LMNA Gene in Polycystic Ovary Syndrome. Cell Biochemistry and Biophysics, 67, 1041-1047. >https://doi.org/10.1007/s12013-013-9602-z Ilie, I.R. and Georgescu, C.E. (2015) Polycystic Ovary Syndrome-Epigenetic Mechanisms and Aberrant MicroRNA. Advances in Clinical Chemistry, 71, 25-45. >https://doi.org/10.1016/bs.acc.2015.06.001 Zhao, H., Zhang, J., Cheng, X., Nie, X. and He, B. (2023) Insulin Resistance in Polycystic Ovary Syndrome across Various Tissues: An Updated Review of Pathogenesis, Evaluation, and Treatment. Journal of Ovarian Research, 16, Article No. 9. >https://doi.org/10.1186/s13048-022-01091-0 Cao, J., Huo, P., Cui, K., Wei, H., Cao, J., Wang, J., et al. (2022) Follicular Fluid-Derived Exosomal miR-143-3p/miR-155-5p Regulate Follicular Dysplasia by Modulating Glycolysis in Granulosa Cells in Polycystic Ovary Syndrome. Cell Communication and Signaling, 20, Article No. 61. >https://doi.org/10.1186/s12964-022-00876-6 Long, W., Zhao, C., Ji, C., Ding, H., Cui, Y., Guo, X., et al. (2014) Characterization of Serum MicroRNAs Profile of PCOS and Identification of Novel Non-Invasive Biomarkers. Cellular Physiology and Biochemistry, 33, 1304-1315. >https://doi.org/10.1159/000358698 Kopp, F. and Mendell, J.T. (2018) Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell, 172, 393-407. >https://doi.org/10.1016/j.cell.2018.01.011 Zhao, J., Huang, J., Geng, X., Chu, W., Li, S., Chen, Z., et al. (2019) Polycystic Ovary Syndrome: Novel and Hub LncRNAs in the Insulin Resistance-Associated LncRNA-mRNA Network. Frontiers in Genetics, 10, Article 772. >https://doi.org/10.3389/fgene.2019.00772 Huang, X., Hao, C., Bao, H., Wang, M. and Dai, H. (2015) Aberrant Expression of Long Noncoding RNAs in Cumulus Cells Isolated from PCOS Patients. Journal of Assisted Reproduction and Genetics, 33, 111-121. >https://doi.org/10.1007/s10815-015-0630-z Shukla, P. and Melkani, G.C. (2023) Mitochondrial Epigenetic Modifications and Nuclear-Mitochondrial Communication: A New Dimension towards Understanding and Attenuating the Pathogenesis in Women with PCOS. Reviews in Endocrine and Metabolic Disorders, 24, 317-326. >https://doi.org/10.1007/s11154-023-09789-2 Shock, L.S., Thakkar, P.V., Peterson, E.J., Moran, R.G. and Taylor, S.M. (2011) DNA Methyltransferase 1, Cytosine Methylation, and Cytosine Hydroxymethylation in Mammalian Mitochondria. Proceedings of the National Academy of Sciences, 108, 3630-3635. >https://doi.org/10.1073/pnas.1012311108 Sharma, N., Pasala, M.S. and Prakash, A. (2019) Mitochondrial DNA: Epigenetics and Environment. Environmental and Molecular Mutagenesis, 60, 668-682. >https://doi.org/10.1002/em.22319 Patil, V., Cuenin, C., Chung, F., Aguilera, J.R.R., Fernandez-Jimenez, N., Romero-Garmendia, I., et al. (2019) Human Mitochondrial DNA Is Extensively Methylated in a Non-CpG Context. Nucleic Acids Research, 47, 10072-10085. >https://doi.org/10.1093/nar/gkz762 Jia, L., Li, J., He, B., Jia, Y., Niu, Y., Wang, C., et al. (2016) Abnormally Activated One-Carbon Metabolic Pathway Is Associated with mtDNA Hypermethylation and Mitochondrial Malfunction in the Oocytes of Polycystic Gilt Ovaries. Scientific Reports, 6, Article No. 19436. >https://doi.org/10.1038/srep19436 Divoux, A., Erdos, E., Whytock, K., Osborne, T.F. and Smith, S.R. (2022) Transcriptional and DNA Methylation Signatures of Subcutaneous Adipose Tissue and Adipose-Derived Stem Cells in PCOS Women. Cells, 11, Article 848. >https://doi.org/10.3390/cells11050848 Abbott, D.H. and Dumesic, D.A. (2021) Passing on PCOS: New Insights into Its Epigenetic Transmission. Cell Metabolism, 33, 463-466. >https://doi.org/10.1016/j.cmet.2021.02.008 Nakanishi, N., Osuka, S., Kono, T., Kobayashi, H., Ikeda, S., Bayasula, B., et al. (2022) Upregulated Ribosomal Pathway Impairs Follicle Development in a Polycystic Ovary Syndrome Mouse Model: Differential Gene Expression Analysis of Oocytes. Reproductive Sciences, 30, 1306-1315. >https://doi.org/10.1007/s43032-022-01095-7 Mimouni, N.E.H., Paiva, I., Barbotin, A., Timzoura, F.E., Plassard, D., Le Gras, S., et al. (2021) Polycystic Ovary Syndrome Is Transmitted via a Transgenerational Epigenetic Process. Cell Metabolism, 33, 513-530.e8. >https://doi.org/10.1016/j.cmet.2021.01.004 Cao, P., Yang, W., Wang, P., Li, X. and Nashun, B. (2021) Characterization of DNA Methylation and Screening of Epigenetic Markers in Polycystic Ovary Syndrome. Frontiers in Cell and Developmental Biology, 9, Article 664843. >https://doi.org/10.3389/fcell.2021.664843 Eini, F., Novin, M.G., Joharchi, K., Hosseini, A., Nazarian, H., Piryaei, A., et al. (2017) Intracytoplasmic Oxidative Stress Reverses Epigenetic Modifications in Polycystic Ovary Syndrome. Reproduction, Fertility and Development, 29, 2313-2323. >https://doi.org/10.1071/rd16428 Wang, S., Wang, M., Ichino, L., Boone, B.A., Zhong, Z., Papareddy, R.K., et al. (2024) MBD2 Couples DNA Methylation to Transposable Element Silencing during Male Gametogenesis. Nature Plants, 10, 13-24. >https://doi.org/10.1038/s41477-023-01599-3 Kolkman, R.W., Michel-Souzy, S., Wasserberg, D., Segerink, L.I. and Huskens, J. (2022) Density Control over MBD2 Receptor-Coated Surfaces Provides Superselective Binding of Hypermethylated DNA. ACS Applied Materials & Interfaces, 14, 40579-40589. >https://doi.org/10.1021/acsami.2c09641 Schmolka, N., Karemaker, I.D., Cardoso da Silva, R., Recchia, D.C., Spegg, V., Bhaskaran, J., et al. (2023) Dissecting the Roles of MBD2 Isoforms and Domains in Regulating Nurd Complex Function during Cellular Differentiation. Nature Communications, 14, Article No. 3848. >https://doi.org/10.1038/s41467-023-39551-w
Baidu
map