acm Advances in Clinical Medicine 2161-8712 2161-8720 beplay体育官网网页版等您来挑战! 10.12677/acm.2025.151301 acm-106736 Articles 医药卫生 多组学生物标志物联合诊断肝细胞癌的研究 进展
Research Advances in Hepatocellular Carcinoma Combined Diagnosis of Multiomics Biomarker
姜红梅 1 周喜汉 2 黎秋麟 3 黄彬彬 1 林心艳 1 王衍鑫 1 右江民族医学院研究生学院,广西 百色 右江民族医学院附属医院消化内科,广西 百色 柳州市人民医院呼吸与危重症医学科,广西 柳州 07 01 2025 15 01 2297 2306 27 12 :2024 21 12 :2024 21 1 :2025 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 肝细胞癌(hepatocellular carcinoma, HCC)在预后方面存在显著差异,早期诊断仍是一个具有挑战性的难题。众所周知,甲胎蛋白(Alpha-fetoprotein, AFP)虽然是HCC临床上常用的诊断标志物,但它的敏感性和特异性并不是最佳。随着多种生物技术在HCC诊断中得到开发和应用,寻找新的分子标志物和多组学联合诊断方法,对HCC的早期诊断和预后十分重要。因此,本文我们根据多组学(循环肿瘤细胞、循环肿瘤DNA、基因突变、RNA转录组学、蛋白质组学)综合分析了各种HCC生物标志物在诊断方面的潜在价值和应用前景。
Hepatocellular carcinoma (HCC) has significant differences in prognosis, and early diagnosis remains a challenging problem. As is well known, alpha fetoprotein (AFP) is a commonly used diagnostic biomarker for HCC in clinical practice, but its sensitivity and specificity are not optimal. With the development and application of various biotechnologies in the diagnosis of HCC, the search for new molecular markers and multiomics combined diagnostic methods is crucial for the early diagnosis and prognosis of HCC. Therefore, in this article, we comprehensively analyzed the potential value and application prospects of various HCC biomarkers in diagnosis based on multiomics (circulating tumor cells, circulating tumor DNA, gene mutations, RNA transcriptomics, proteomics).
肝细胞癌,诊断,生物标志物,多组学
Hepatocellular Carcinoma
Diagnosis Biomarkers Multiomics
1. 引言

肝癌为常见恶性肿瘤之一,在我国,原发性肝癌是第4大常见恶性肿瘤及第2大肿瘤致死病因,仅次于肺癌。HCC占所有肝癌的75%至85% [1] 。HCC是一种由多种风险因素引起的多因素疾病。乙型肝炎病毒(Hepatitis B virus, HBV)或丙型肝炎病毒、黄曲霉毒素污染的食物、大量饮酒、肥胖、吸烟和2型糖尿病是HCC的主要危险因素 [2] [3] 。HCC的发生是病毒特异性因素、免疫机制、环境因素和遗传学共同作用的结果,肝癌发病隐匿,早期诊断很困难 [4] 。大多数患者发现时为晚期HCC,预后情况差,5年生存率仅为14.4% [5]

临床症状、影像学诊断和分子生物标志物是HCC检测最常用的诊断依据 [6] 。尽管影像方面腹部超声一直是HCC筛查的首选方法,但其检测早期肝细胞癌的灵敏度明显较低,仅为47% [7] 。因此,HCC生物标志物已经成为肝癌早期诊断研究领域的焦点,这些生物标志物可以提高早期HCC检测的敏感性。但HCC异质性显著限制了HCC患者的诊断和治疗 [8] - [10] ,单一生物标志物在HCC诊断上仍存在局限性。随着高通量测序的出现和精准医学的发展,基于个体异质性的组织学诊断使个体化诊断和靶向HCC治疗成为可能 [11] [12] 。多组学包括循环肿瘤细胞、基因组、转录组、蛋白质组等,联合诊断应用,确定了生物学异质性,并为HCC诊断提供了新的见解。

本文我们从多组学数据方面综合分析了各种HCC生物标志物在诊断方面的潜在价值和应用前景。

2. 循环肿瘤细胞

循环肿瘤细胞(Circulating tumor cells, CTC)常被认为从原位癌内渗到外周血或淋巴系统的一类肿瘤细胞,是远处转移和复发的主要细胞来源之一 [13] [14] 。涉及多种机制,包括上皮–间充质转化(Epithelial-me-mesenchymal transition, EMT)和非EMT介导的易位 [14] 。这个过程发生在肿瘤发展的每个阶段。因此,CTC作为液体活检技术是HCC诊断和动态检测的有用工具 [15]

CTC可以使用基于其物理和生物特性的方法进行分离和富集。物理特性包括大小、密度、迁移能力和电荷,并且可以防止不表达特定标记物的CTC逃逸。然而,CTC的分离和富集对癌症的特异性较低 [15] 。各种生物特性技术依赖于与CTC表面标志物结合的特异性抗体,包括但不限于上皮细胞粘附分子(Epithelial cell adhesion molecules, EpCAM)、人表皮生长因子受体、细胞角蛋白(Cytokeratin, CK)家族成员(CK8、CK18和CK19)和间充质标志物。在这些标志物中,CD90和EpCAM用于检测具有肿瘤干细胞活性的CTC [16] 。从基因组、转录组学、蛋白质组学和代谢组学水平获得的大量分子数据有助于开发基于CTC的特异性生物标志物组合,从而有助于疾病监测 [17]

已经进行了大量研究验证CTC的诊断价值。Cui等 [18] 对20项研究(共1191名患者)进行的荟萃分析表明,基于CTC的HCC诊断具有95%的敏感性和60%的特异性,尽管CTC的敏感性高,但其特异性低。Guo等 [19] 发现,与健康对照组相比,使用基于优化的实时荧光定量逆转录聚合酶链反应平台在HCC患者中可检测到的CTC上皮细胞粘附分子信使核糖核酸(Epithelial cell adhesion molecule Messenger RNA, EpCAM mRNA)阳性率明显更高(P < 0.05),而CTC (EpCAM mRNA+)结合AFP水平用作区分HCC与对照组的曲线下面积(Area Under Curve, AUC)为0.857,灵敏度为73.0%,特异性为93.4%,利用CTC联合AFP能准确检测早期HCC和AFP阴性的HCC。此外CTC在诊断HBV相关HCC具有重要的临床意义,Guo等 [20] 使用优化的实时荧光定量聚合酶链反应的检测平台,对CTC与肿瘤干细胞表型进行了分层分析,发现联合使用四种肿瘤干细胞的生物标志物(EpCAM、CD90、CD133和CK19)检测在诊断HCC方面优于单独使用EpCAM,并且在训练集和验证集中的AUC分别为0.88和0.93。CTC不仅可以进行早期检测,还可以深入了解肿瘤转移和复发,在预后中发挥重要作用 [21] - [23] 。Qi等 [22] 证明CTC和间充质CTC的百分比与早期复发、多发性肝内复发和肺转移显著相关。Kelley等 [24] 人发现,CTC ≥ 1/7.5个/mL的患者更可能出现AFP ≥ 400 ng/mL (P = 0.008)和血管浸润,与患者生存率降低相关。

尽管CTC在HCC诊断中显示出较高的敏感性,但其特异性仍然较低。未来研究应着重提高CTC检测的特异性,并探讨CTC与其他生物标志物(如循环肿瘤DNA和基因突变)的组合使用,以提高诊断准确性 [25] [26] 。研究表明,通过优化CTC富集和鉴定方法,可以在一定程度上提高特异性 [25] 。此外,将CTC与其他液体活检标志物结合使用,如循环肿瘤DNA和基因突变分析,有望进一步提高诊断的准确性 [26] 。未来的研究方向应集中在开发更精确的CTC分离技术,以及探索多种生物标志物的联合检测策略。

3. 循环肿瘤DNA

循环肿瘤(Circulating tumor DNA, ctDNA)是血浆或血清中的细胞外DNA,源自肿瘤细胞的代谢分泌、凋亡或坏死。ctDNA携带肿瘤特异性的遗传和表观遗传变异,如DNA甲基化、突变和拷贝数变化。ctDNA的微创特性使得通过少量外周血样本即可进行肿瘤基因组监测,为癌症遗传分析提供了一种便捷而准确的途径 [27] 。ctDNA是肿瘤诊断和预后评估的重要生物标志物 [27] ,尤其在HCC中,它不仅是复发、转移和总生存期的独立预后因素,还能提供肿瘤侵袭性的信息 [28] 。Chan等 [29] 对39例原发性肝细胞肿瘤患者进行了研究,对比了单独依赖循环游离DNA (Circulating cell-free DNA, cfDNA)浓度作为肝癌检测指标的敏感性为56.4%,而利用cfDNA浓度联合甲胎蛋白作为依据的检测敏感性可达71.8%。

在基因表观遗传组学方面,ctDNA中的甲基化模式可用于HCC的诊断 [30] 。HCC中甲基化改变可能导致抑癌基因(Tumor suppressor genes, TSG)的抑制或癌基因的促进,从而导致肝癌的发生和发展 [31] 。研究表明,HCC患者肿瘤组织中DNA甲基化发生变化,包括谷胱甘肽S-转移酶P1 (Glutathione S-transferase P1, GSTP1)启动子区的异常甲基化和细胞周期蛋白依赖性激酶抑制剂p15和p16 [32] [33] 。已观察到HCC患者ctDNA中的高甲基化位点:GSTP1、p15和p16等 [34] - [36] 。Wang等人 [34] 进行的研究显示,GSTP1启动子CpG位点在26个肿瘤组织中的23个(88.5%)和26个相应非肿瘤组织中的18个(69%)中具有高甲基化。Huang等 [30] 分析了血浆中腺瘤样结肠息肉易感基因、GSTP1基因的甲基化状态,基因的联合诊断将AUC增加到0.933,区分HCC患者与正常健康对照者的敏感性为92.7%,特异性为81.9%,证明了ctDNA对肝细胞癌具有足够的诊断价值。Ahn等人 [37] 在另一项研究得出免疫缺陷伴血小板减少综合征蛋白家族成员2 (Wiskott-Aldrich Syndrome Protein Family, Member 2, WASF2)甲基化状态与mRNA表达呈负相关,位于WASF2启动子中的CpG位点高甲基化在HCC中过表达,在临床上与不良预后相关。甲基化特异性聚合酶链反应已广泛用于甲基化研究,提供了一种快速简便、高灵敏度和准确性的方法。ctDNA中甲基化模式的组织特异性可能有助于确定原始肿瘤位置。上述结果表明,综合评估ctDNA中的甲基化模式,可能是诊断HCC的有力工具。

ctDNA甲基化分析在HCC诊断中展现出巨大潜力,但仍存在一些关键问题需要解决。首先,甲基化位点的选择对诊断准确性至关重要,需要建立严格的筛选标准 [38] 。其次,不同的检测方法各有优缺点,如亚硫酸氢盐测序和甲基化特异性PCR,需要根据具体情况选择最适合的技术 [39] 。最后,整合多个甲基化标志物和其他生物标志物(如甲胎蛋白和突变基因)的联合检测策略,有望显著提高HCC诊断的敏感性和特异性 [40]

4. TP53基因

在HCC中,TP53细胞周期是基因突变(定义为突变频率 > 5%)主要关联的信号通路。现有的HCC基因组图谱主要基于肿瘤的静态体细胞突变,尚未充分解释肿瘤内突变如何影响肿瘤免疫微环境。

TP53基因作为一个高度突变的抑癌基因,涉及人类多数肿瘤。该基因位于染色体17p13.1,由12个外显子和10个内含子组成,其蛋白产物P53维持着细胞正常的基本活动,如细胞周期、细胞衰老、细胞凋亡和DNA损伤修复 [41] [42] 。TP53基因突变作为HCC里最常见的突变,与黄曲霉毒素B1和HBV感染有关 [43] 。TP53不仅与肿瘤增殖、迁移、生长、侵袭及化疗药物的耐药性相关 [44] [45] ,同时具有TP53基因突变的患者肝癌复发时间和总生存期也会受到影响 [46] 。单核苷酸多态性(single nucleotidepolymorphism, SNP)作为基因重要的变异形式,影响肝细胞癌患者术后预后 [47] 。此外,有研究对DNA高甲基化区域进行了聚类分析和基因功能富集分析,发现TP53的靶基因在DNA高甲基化片段中显著富集 [48] 。TP53作为体内重要的转录因子,参与调节细胞生长、维持基因组稳定性和抑制肿瘤血管生成 [49] ,野生型TP53作为抑癌基因,可抑制肿瘤的发生 [50] 。TP53的丝氨酸249 (Serine at position 249, Ser249)是HCC患者中最常报道的突变位点,导致特异性DNA结合能力丧失 [51] ,TP53的Ser249突变与中国人患有肝硬化和HCC密切相关 [52]

TP53基因突变在HCC发生发展中扮演着重要角色,其在液体活检中的检测为非侵入性诊断提供了新的途径。研究表明,TP53突变与CTC和ctDNA水平存在一定的相关性,可能反映肿瘤的异质性和进展程度 [53] 。然而,TP53突变检测仍面临着敏感性和特异性的挑战,需要进一步优化检测方法。未来的研究应着重探索TP53突变与其他生物标志物的组合使用策略,以提高诊断准确性 [54]

5. 转录组学

转录组学研究表明,循环微小RNA在HCC中呈现特异性异常表达 [55] - [57] ,结合常规的AFP和超声筛查,在高危人群中筛查HCC具有很好的应用前景 [4] [58] 。目前,血清中的RNA,包括mRNA、环状RNA、微小RNA和长链非编码RNA,已成为HCC诊断生物标志物研究的热点。下文将重点阐述微小RNA和长链非编码RNA。

5.1. 微小RNA

微小RNA (Micro-RNA, miRNA)是由大约22个核苷酸组成的非编码RNA,通过促进mRNA降解或抑制翻译降低靶基因蛋白表达并调控受体细胞的表型及功能 [59] 。miRNA的化学性质不稳定,但血浆中循环的miRNA使其成为研究HCC的理想生物标志物。Yang等人 [60] 报道了8个miRNA在HCC中失调。在他们的III期研究中,用于HCC诊断的8个miRNA的AUC在其患者队列中达到0.802。研究表明,血浆miR-224在HCC患者中显著表达。早期HCC患者的诊断AUC为0.888~0.899 [61] 。Zuo等 [62] 研究发现,对于甲胎蛋白(AFP)阴性的HCC患者,联合使用miRNA-125b和miRNA-27a诊断HBV相关的早期HCC的灵敏度和特异度分别为80.0%、87.2%。miRNA不仅是潜在的诊断标志物,还与HCC预后密切相关。有研究证实,HCC患者血清miR-203a和癌组织miR-203a及其靶基因表达与患者总生存期(Overall Survival, OS)率有关:血清和HCC组织miR-203a低表达患者OS率均显著低于高表达患者(χ2 = 11.434、10.726,P值 < 0.01) [63] ,这些miRNA的性能在临床使用前需要进一步验证。

5.2. 长链非编码RNA

长链非编码RNA (Long noncoding RNA,lncRNA)通常超过200个核苷酸。它们在RNA稳定性、蛋白质和DNA结合中发挥作用。lncRNA已被证明对HCC具有诊断价值。Li等 [64] 研究显示,肝细胞癌中高表达的长链非编码RNA LINC00152 (也被称为细胞骨架调节因子)在HCC诊断中的AUC为0.87,将它进一步与AFP结合后AUC可提高至0.89。在另一项研究中,通过血液中的3种长链非编码RNA (LINC00152、RP11-160H22.5和XLOC014172)建立了一个联合诊断肝癌的模型,能够有效区分健康或慢性肝炎患者与肝细胞癌患者,其AUC值可达到0.985至0.986 [65]

此外在HCC的发展中,一些长链非编码RNA (lncRNA)如:MIR31HG、CASC2、01093被报道能够抑制HCC的发生发展 [66] [67] ,而其他如:HOXA-AS2、DLX6-AS1的lncRNA则能促进HCC的恶性进展 [68] [69]

6. 蛋白质组学

蛋白质组学中多种生物标志物已被发现对HCC的早期诊断具有重要价值,这些标志物包括AFP、甲胎蛋白异质体L3 (Alpha fetoprotein isoform L3, AFP-L3)、异常凝血酶原(Des-gamma-carboxyprothrombin, DCP)、高尔基体跨膜糖蛋白73 (Golgi protein 73, GP73)等 [70] [71] 。虽然这些蛋白质组学分子可以作为HCC的诊断标志物,但它们单一诊断HCC的敏感性和特异性存在差异 [72] [73]

结合临床变量(如年龄和性别)和联合应用生物标志物(如AFP、AFP-L3、DCP和GP73)能显著提高HCC的早期诊断准确性 [74] [75] 。GALAD评分系统,结合了临床因素和生物标志物,能提高区分HCC和肝硬化的性能 [76] 。特别是,DCP在AFP阴性的HCC患者中具有较好的诊断价值,而GP73作为一种新型血清肿瘤标记物,在HCC中的表达水平显著升高,与肿瘤的进展和转移密切相关,单一生物标志物可能不足以提供最佳的敏感性和特异性,尤其是对于检测早期HCC,但联合多个生物标志物可以提高HCC早期诊断率 [77] 。这些发现强调了多个标志物联合检测在提高HCC早期诊断中的重要性。

7. 总结与展望

肝细胞癌的发生发展机制复杂,早期症状隐匿,缺乏有效的早期筛查技术,导致部分HCC患者在确诊时已处于中晚期。比如:影像学诊断HCC在非肝硬化、小结节(<1 cm)或非典型特征患者中诊断有局限性,需进一步行肝活检。但肝活检在小病变中穿刺难度较大,且假阴性率为3%~11% [78] 。由于早期诊断率相对较低,这直接影响了患者的5年生存率,通常仅为14.4% [5]

本文根据多项研究结果总结后发现,单一生物标志物在HCC诊断中存在局限性,缺少足够的前瞻性多中心研究的支持。通过整合基因组学、表观遗传学、转录组学、蛋白质组学等多组学生物标志物数据,构建更精确的诊断模型,可以提高HCC诊断的准确性。如:HCC异质性强,AFP检测可结合蛋白质组学、基因组学等多组学方法,提高检出率,比传统活检更快速、经济,有助于肿瘤分析 [79] 。但仍存在一些局限性,如:液体活检技术检测灵敏度和特异性仍需进一步提高,特别是对于早期HCC的诊断 [80] 。其次,不同实验室和平台之间的检测结果缺乏标准化,影响了结果的可比性和临床应用。液体活检在临床实践中的推广还面临着成本、技术复杂性和医疗保险覆盖等问题 [81] 。解决这些挑战将是未来研究的重要方向,以充分发挥液体活检在HCC诊断中的潜力。

相信高通量测序技术的发展将推动多组学生物标志物在HCC早期诊断中的应用,提高诊断准确性并改善患者预后。未来联合多组学标志物研究可聚焦于标志物的表达、诊断临界值、检测技术优化以及多组学间的关联性,以发现新的肿瘤标志物或早期诊断技术,为促进HCC早期诊断和改善预后提供希望。

NOTES

*通讯作者。

References Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. >https://doi.org/10.3322/caac.21834 Singal, A.G. and El-Serag, H.B. (2015) Hepatocellular Carcinoma from Epidemiology to Prevention: Translating Knowledge into Practice. Clinical Gastroenterology and Hepatology, 13, 2140-2151. >https://doi.org/10.1016/j.cgh.2015.08.014 Gomes, M.A., Priolli, D.G., Tralhão, J.G. and Botelho, M.F. (2013) Carcinoma Hepatocelular: Epidemiologia, Biologia, diagnóstico e terapias. Revista da Associação Médica Brasileira, 59, 514-524. >https://doi.org/10.1016/j.ramb.2013.03.005 Fu, J. and Wang, H. (2018) Precision Diagnosis and Treatment of Liver Cancer in China. Cancer Letters, 412, 283-288. >https://doi.org/10.1016/j.canlet.2017.10.008 Zeng, H., Zheng, R., Sun, K., Zhou, M., Wang, S., Li, L., et al. (2024) Cancer Survival Statistics in China 2019-2021: A Multicenter, Population-Based Study. Journal of the National Cancer Center, 4, 203-213. >https://doi.org/10.1016/j.jncc.2024.06.005 Forner, A., Llovet, J.M. and Bruix, J. (2012) Hepatocellular Carcinoma. The Lancet, 379, 1245-1255. >https://doi.org/10.1016/s0140-6736(11)61347-0 Tzartzeva, K., Obi, J., Rich, N.E., Parikh, N.D., Marrero, J.A., Yopp, A., et al. (2018) Surveillance Imaging and Alpha Fetoprotein for Early Detection of Hepatocellular Carcinoma in Patients with Cirrhosis: A Meta-Analysis. Gastroenterology, 154, 1706-1718.e1. >https://doi.org/10.1053/j.gastro.2018.01.064 Fattovich, G., Stroffolini, T., Zagni, I. and Donato, F. (2004) Hepatocellular Carcinoma in Cirrhosis: Incidence and Risk Factors. Gastroenterology, 127, S35-S50. >https://doi.org/10.1053/j.gastro.2004.09.014 Arzumanyan, A., Reis, H.M.G.P.V. and Feitelson, M.A. (2013) Pathogenic Mechanisms in HBV-and HCV-Associated Hepatocellular Carcinoma. Nature Reviews Cancer, 13, 123-135. >https://doi.org/10.1038/nrc3449 Tu, T., Budzinska, M., Maczurek, A., Cheng, R., Di Bartolomeo, A., Warner, F., et al. (2014) Novel Aspects of the Liver Microenvironment in Hepatocellular Carcinoma Pathogenesis and Development. International Journal of Molecular Sciences, 15, 9422-9458. >https://doi.org/10.3390/ijms15069422 Schork, N.J. (2015) Personalized Medicine: Time for One-Person Trials. Nature, 520, 609-611. >https://doi.org/10.1038/520609a Cyranoski, D. (2016) China Embraces Precision Medicine on a Massive Scale. Nature, 529, 9-10. >https://doi.org/10.1038/529009a Yin, C., Yuan, C., Qu, Z., Guan, Q., Chen, H. and Wang, F. (2016) Liquid Biopsy of Hepatocellular Carcinoma: Circulating Tumor-Derived Biomarkers. Disease Markers, 2016, Article ID: 1427849. >https://doi.org/10.1155/2016/1427849 Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. >https://doi.org/10.1016/j.cell.2011.02.013 Mann, J., Reeves, H.L. and Feldstein, A.E. (2018) Liquid Biopsy for Liver Diseases. Gut, 67, 2204-2212. >https://doi.org/10.1136/gutjnl-2017-315846 Alix-Panabières, C. and Pantel, K. (2014) Challenges in Circulating Tumour Cell Research. Nature Reviews Cancer, 14, 623-631. >https://doi.org/10.1038/nrc3820 Gawad, C., Koh, W. and Quake, S.R. (2016) Single-Cell Genome Sequencing: Current State of the Science. Nature Reviews Genetics, 17, 175-188. >https://doi.org/10.1038/nrg.2015.16 Cui, K., Ou, Y., Shen, Y., Li, S. and Sun, Z. (2020) Clinical Value of Circulating Tumor Cells for the Diagnosis and Prognosis of Hepatocellular Carcinoma (HCC). Medicine, 99, e22242. >https://doi.org/10.1097/md.0000000000022242 Guo, W., Yang, X., Sun, Y., Shen, M., Ma, X., Wu, J., et al. (2014) Clinical Significance of epcam mRNA-Positive Circulating Tumor Cells in Hepatocellular Carcinoma by an Optimized Negative Enrichment and qRT-PCR-Based Platform. Clinical Cancer Research, 20, 4794-4805. >https://doi.org/10.1158/1078-0432.ccr-14-0251 Guo, W., Sun, Y., Shen, M., Ma, X., Wu, J., Zhang, C., et al. (2018) Circulating Tumor Cells with Stem-Like Phenotypes for Diagnosis, Prognosis, and Therapeutic Response Evaluation in Hepatocellular Carcinoma. Clinical Cancer Research, 24, 2203-2213. >https://doi.org/10.1158/1078-0432.ccr-17-1753 Sun, Y., Xu, Y., Yang, X., Guo, W., Zhang, X., Qiu, S., et al. (2013) Circulating Stem Cell-Like Epithelial Cell Adhesion Molecule-Positive Tumor Cells Indicate Poor Prognosis of Hepatocellular Carcinoma after Curative Resection. Hepatology, 57, 1458-1468. >https://doi.org/10.1002/hep.26151 Qi, L., Xiang, B., Wu, F., Ye, J., Zhong, J., Wang, Y., et al. (2018) Circulating Tumor Cells Undergoing EMT Provide a Metric for Diagnosis and Prognosis of Patients with Hepatocellular Carcinoma. Cancer Research, 78, 4731-4744. >https://doi.org/10.1158/0008-5472.can-17-2459 Schulze, K., Gasch, C., Staufer, K., Nashan, B., Lohse, A.W., Pantel, K., et al. (2013) Presence of Epcam‐Positive Circulating Tumor Cells as Biomarker for Systemic Disease Strongly Correlates to Survival in Patients with Hepatocellular Carcinoma. International Journal of Cancer, 133, 2165-2171. >https://doi.org/10.1002/ijc.28230 Kelley, R.K., Magbanua, M.J.M., Butler, T.M., Collisson, E.A., Hwang, J., Sidiropoulos, N., et al. (2015) Circulating Tumor Cells in Hepatocellular Carcinoma: A Pilot Study of Detection, Enumeration, and Next-Generation Sequencing in Cases and Controls. BMC Cancer, 15, Article No. 206. >https://doi.org/10.1186/s12885-015-1195-z Ahn, J.C., Teng, P., Chen, P., Posadas, E., Tseng, H., Lu, S.C., et al. (2021) Detection of Circulating Tumor Cells and Their Implications as a Biomarker for Diagnosis, Prognostication, and Therapeutic Monitoring in Hepatocellular Carcinoma. Hepatology, 73, 422-436. >https://doi.org/10.1002/hep.31165 Rashid, S., Sun, Y., Ali Khan Saddozai, U., Hayyat, S., Usman Munir, M., Usman Akbar, M., et al. (2024) Circulating Tumor DNA and Its Role in Detection, Prognosis and Therapeutics of Hepatocellular Carcinoma. Chinese Journal of Cancer Research, 36, 195-214. >https://doi.org/10.21147/j.issn.1000-9604.2024.02.07 Tang, J., Feng, Y., Guo, T., Xie, A. and Cai, X. (2016) Circulating Tumor DNA in Hepatocellular Carcinoma: Trends and Challenges. Cell&Bioscience, 6, Article No. 32. >https://doi.org/10.1186/s13578-016-0100-z Xu, R., Wei, W., Krawczyk, M., Wang, W., Luo, H., Flagg, K., et al. (2017) Circulating Tumour DNA Methylation Markers for Diagnosis and Prognosis of Hepatocellular Carcinoma. Nature Materials, 16, 1155-1161. >https://doi.org/10.1038/nmat4997 Chan, K.C.A., Lai, P.B.S., Mok, T.S.K., Chan, H.L.Y., Ding, C., Yeung, S.W., et al. (2008) Quantitative Analysis of Circulating Methylated DNA as a Biomarker for Hepatocellular Carcinoma. Clinical Chemistry, 54, 1528-1536. >https://doi.org/10.1373/clinchem.2008.104653 Huang, Z., Hu, Y., Hua, D., Wu, Y., Song, M. and Cheng, Z. (2011) Quantitative Analysis of Multiple Methylated Genes in Plasma for the Diagnosis and Prognosis of Hepatocellular Carcinoma. Experimental and Molecular Pathology, 91, 702-707. >https://doi.org/10.1016/j.yexmp.2011.08.004 Khan, F.S., Ali, I., Afridi, U.K., Ishtiaq, M. and Mehmood, R. (2016) Epigenetic Mechanisms Regulating the Development of Hepatocellular Carcinoma and Their Promise for Therapeutics. Hepatology International, 11, 45-53. >https://doi.org/10.1007/s12072-016-9743-4 Matsuda, Y., Ichida, T., Matsuzawa, J., Sugimura, K. and Asakura, H. (1999) P16ink4 Is Inactivated by Extensive CPG Methylation in Human Hepatocellular Carcinoma. Gastroenterology, 116, 394-400. >https://doi.org/10.1016/s0016-5085(99)70137-x Roncalli, M., Bianchi, P., Bruni, B., Laghi, L., Destro, A., Di Gioia, S., et al. (2002) Methylation Framework of Cell Cycle Gene Inhibitors in Cirrhosis and Associated Hepatocellular Carcinoma. Hepatology, 36, 427-432. >https://doi.org/10.1053/jhep.2002.34852 Wang, J., Qin, Y., Li, B., Sun, Z. and Yang, B. (2006) Detection of Aberrant Promoter Methylation of GSTP1 in the Tumor and Serum of Chinese Human Primary Hepatocellular Carcinoma Patients. Clinical Biochemistry, 39, 344-348. >https://doi.org/10.1016/j.clinbiochem.2006.01.008 Wang, D., Han, S., Peng, R., Jiao, C., Wang, X., Yang, X., et al. (2016) Depletion of Histone Demethylase KDM5B Inhibits Cell Proliferation of Hepatocellular Carcinoma by Regulation of Cell Cycle Checkpoint Proteins P15 and P27. Journal of Experimental&Clinical Cancer Research, 35, Article No. 37. >https://doi.org/10.1186/s13046-016-0311-5 Tao, S. (2012) Anti-Tumor Effect of 5-Aza-2’-Deoxycytidine by Inhibiting Telomerase Activity in Hepatocellular Carcinoma Cells. World Journal of Gastroenterology, 18, Article No. 2334. >https://doi.org/10.3748/wjg.v18.i19.2334 Ahn, H.R., Baek, G.O., Yoon, M.G., Son, J.A., Yoon, J.H., Cheong, J.Y., et al. (2022) Hypomethylation-Mediated Upregulation of the WASF2 Promoter Region Correlates with Poor Clinical Outcomes in Hepatocellular Carcinoma. Journal of Experimental&Clinical Cancer Research, 41, Article No. 158. >https://doi.org/10.1186/s13046-022-02365-7 Bannaga, A.S., Alvarez, R., Zhou, L., Petchey, M., Noufaily, A., Hitchins, M.P., et al. (2021) Role of Methylated Septin 9 as an Adjunct Diagnostic and Prognostic Biomarker in Hepatocellular Carcinoma. HPB, 23, 1595-1606. >https://doi.org/10.1016/j.hpb.2021.03.015 Wang, J., Yang, L., Diao, Y., Liu, J., Li, J., Li, R., et al. (2021) Circulating Tumour DNA Methylation in Hepatocellular Carcinoma Diagnosis Using Digital Droplet PCR. Journal of International Medical Research, 49, Article 300060521992962. >https://doi.org/10.1177/0300060521992962 Guo, D., Huang, A., Wang, Y., Zhou, S., Wang, H., Xing, X., et al. (2024) Early Detection and Prognosis Evaluation for Hepatocellular Carcinoma by Circulating Tumour DNA Methylation: A Multicentre Cohort Study. Clinical and Translational Medicine, 14, e1652. >https://doi.org/10.1002/ctm2.1652 杨洲, 叶林森, 冯啸. 生物信息学分析TP53基因在肝癌中的表达及其对预后的影响[J]. 中华肝脏外科手术学电子杂志, 2022, 11(1): 87-91. Yin, J., Hou, W., Vogel, U., Li, X., Ma, Y., Wang, C., et al. (2022) TP53 Common Variants and Interaction with PPP1R13L and CD3EAP Snps and Lung Cancer Risk and Smoking Behavior in a Chinese Population. Biomedical Journal, 45, 169-178. >https://doi.org/10.1016/j.bj.2021.01.006 Villar, S., Ortiz-Cuaran, S., Abedi-Ardekani, B., Gouas, D., Nogueira da Costa, A., Plymoth, A., et al. (2012) Aflatoxin-induced TP53 R249S Mutation in Hepatocellular Carcinoma in Thailand: Association with Tumors Developing in the Absence of Liver Cirrhosis. PLOS ONE, 7, e37707. >https://doi.org/10.1371/journal.pone.0037707 Liu, P., Zhuo, Z., Zhu, J., Yang, Z., Xin, Y., Li, S., et al. (2020) Association of TP53 rs1042522 C > G and miR-34b/c rs4938723 T > C Polymorphisms with Hepatoblastoma Susceptibility: A Seven‐Center Case-Control Study. The Journal of Gene Medicine, 22, e3182. >https://doi.org/10.1002/jgm.3182 Doffe, F., Carbonnier, V., Tissier, M., Leroy, B., Martins, I., Mattsson, J.S.M., et al. (2020) Identification and Functional Characterization of New Missense Snps in the Coding Region of the TP53 Gene. Cell Death&Differentiation, 28, 1477-1492. >https://doi.org/10.1038/s41418-020-00672-0 Wang, J., Huang, A., Wang, Y., Yin, Y., Fu, P., Zhang, X., et al. (2020) Circulating Tumor DNA Correlates with Microvascular Invasion and Predicts Tumor Recurrence of Hepatocellular Carcinoma. Annals of Translational Medicine, 8, 237-237. >https://doi.org/10.21037/atm.2019.12.154 唐豪言, 潘正龙, 刘小方. TP53基因单核苷酸多态性与原发性肝细胞癌预后的关系[J]. 天津医药, 2023, 51(11): 1249-1254. Sun, D., Gan, X., Liu, L., Yang, Y., Ding, D., Li, W., et al. (2022) DNA Hypermethylation Modification Promotes the Development of Hepatocellular Carcinoma by Depressing the Tumor Suppressor Gene ZNF334. Cell Death&Disease, 13, Article No. 446. >https://doi.org/10.1038/s41419-022-04895-6 Levine, A.J. (2020) P53: 800 Million Years of Evolution and 40 Years of Discovery. Nature Reviews Cancer, 20, 471-480. >https://doi.org/10.1038/s41568-020-0262-1 Boutelle, A.M. and Attardi, L.D. (2021) P53 and Tumor Suppression: It Takes a Network. Trends in Cell Biology, 31, 298-310. >https://doi.org/10.1016/j.tcb.2020.12.011 Kirk, G.D., Camus-Randon, A., Mendy, M., Goedert, J.J., Merle, P., Trépo, C., et al. (2000) Ser-249 P53 Mutations in Plasma DNA of Patients with Hepatocellular Carcinoma from the Gambia. JNCI: Journal of the National Cancer Institute, 92, 148-153. >https://doi.org/10.1093/jnci/92.2.148 Hosny, G., Farahat, N., Tayel, H. and Hainaut, P. (2008) Ser-249 TP53 and CTNNB1 Mutations in Circulating Free DNA of Egyptian Patients with Hepatocellular Carcinoma versus Chronic Liver Diseases. Cancer Letters, 264, 201-208. >https://doi.org/10.1016/j.canlet.2008.01.031 Wu, X., Li, J., Gassa, A., Buchner, D., Alakus, H., Dong, Q., et al. (2020) Circulating Tumor DNA as an Emerging Liquid Biopsy Biomarker for Early Diagnosis and Therapeutic Monitoring in Hepatocellular Carcinoma. International Journal of Biological Sciences, 16, 1551-1562. >https://doi.org/10.7150/ijbs.44024 Kim, A.K., Lin, S.Y., Wang, Z., Luu, H., Hamilton, J.P., Song, W., et al. (2023) Impact of Cell-Debris and Room-Temperature Storage on Urine Circulating Tumor DNA from Hepatocellular Carcinoma. The Journal of Molecular Diagnostics, 25, 913-920. >https://doi.org/10.1016/j.jmoldx.2023.08.006 Mitchell, P.S., Parkin, R.K., Kroh, E.M., Fritz, B.R., Wyman, S.K., Pogosova-Agadjanyan, E.L., et al. (2008) Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proceedings of the National Academy of Sciences, 105, 10513-10518. >https://doi.org/10.1073/pnas.0804549105 Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008) Characterization of MicroRNAs in Serum: A Novel Class of Biomarkers for Diagnosis of Cancer and Other Diseases. Cell Research, 18, 997-1006. >https://doi.org/10.1038/cr.2008.282 Zhou, J., Yu, L., Gao, X., Hu, J., Wang, J., Dai, Z., et al. (2011) Plasma MicroRNA Panel to Diagnose Hepatitis B Virus-related Hepatocellular Carcinoma. Journal of Clinical Oncology, 29, 4781-4788. >https://doi.org/10.1200/jco.2011.38.2697 Li, L., Chen, J., Chen, X., Tang, J., Guo, H., Wang, X., et al. (2016) Serum MiRNAs as Predictive and Preventive Biomarker for Pre-Clinical Hepatocellular Carcinoma. Cancer Letters, 373, 234-240. >https://doi.org/10.1016/j.canlet.2016.01.028 张珍珍, 刘一妍, 舒悦. 基于生物信息学的hsa-miR-155-5p通过PTEN调控中央记忆T细胞/辅助T细胞对肝细胞癌免疫微环境的影响研究[J]. 医学信息, 2024, 37(9): 7-15. Wen, Y., Han, J., Chen, J., Dong, J., Xia, Y., Liu, J., et al. (2015) Plasma MiRNAs as Early Biomarkers for Detecting Hepatocellular Carcinoma. International Journal of Cancer, 137, 1679-1690. >https://doi.org/10.1002/ijc.29544 Okajima, W., Komatsu, S., Ichikawa, D., Miyamae, M., Kawaguchi, T., Hirajima, S., et al. (2016) Circulating MicroRNA Profiles in Plasma: Identification of miR-224 as a Novel Diagnostic Biomarker in Hepatocellular Carcinoma Independent of Hepatic Function. Oncotarget, 7, 53820-53836. >https://doi.org/10.18632/oncotarget.10781 Zuo, D., Chen, L., Liu, X., Wang, X., Xi, Q., Luo, Y., et al. (2015) Combination of miR-125b and miR-27a Enhances Sensitivity and Specificity of Afp-Based Diagnosis of Hepatocellular Carcinoma. Tumor Biology, 37, 6539-6549. >https://doi.org/10.1007/s13277-015-4545-1 沈国强, 高云霞, 唐小琦. 肝细胞癌组织中miR-203a和其靶基因的表达及其临床意义[J]. 中国肿瘤生物治疗杂志, 2023, 30(4): 324-330. Li, J., Wang, X., Tang, J., Jiang, R., Zhang, W., Ji, J., et al. (2015) HULC and Linc00152 Act as Novel Biomarkers in Predicting Diagnosis of Hepatocellular Carcinoma. Cellular Physiology and Biochemistry, 37, 687-696. >https://doi.org/10.1159/000430387 Yuan, W., Sun, Y., Liu, L., Zhou, B., Wang, S. and Gu, D. (2017) Circulating LncRNAs Serve as Diagnostic Markers for Hepatocellular Carcinoma. Cellular Physiology and Biochemistry, 44, 125-132. >https://doi.org/10.1159/000484589 Jin, X., Cai, L., Wang, C., Deng, X., Yi, S., Lei, Z., et al. (2018) Casc2/miR-24/miR-221 Modulates the TRAIL Resistance of Hepatocellular Carcinoma Cell through Caspase-8/Caspase-3. Cell Death&Disease, 9, Article No. 318. >https://doi.org/10.1038/s41419-018-0350-2 Yan, S., Tang, Z., Chen, K., Liu, Y., Yu, G., Chen, Q., et al. (2018) Long Noncoding RNA MIR31HG Inhibits Hepatocellular Carcinoma Proliferation and Metastasis by Sponging MicroRNA-575 to Modulate ST7L Expression. Journal of Experimental&Clinical Cancer Research, 37, Article No. 214. >https://doi.org/10.1186/s13046-018-0853-9 Zhang, Y., Xu, J., Zhang, S., An, J., Zhang, J., Huang, J., et al. (2018) HOXA-AS2 Promotes Proliferation and Induces Epithelial-Mesenchymal Transition via the miR-520c-3p/gpc3 Axis in Hepatocellular Carcinoma. Cellular Physiology and Biochemistry, 50, 2124-2138. >https://doi.org/10.1159/000495056 Liu, X., Peng, D., Cao, Y., Zhu, Y., Yin, J., Zhang, G., et al. (2020) Upregulated LncRNA DLX6-AS1 Underpins Hepatocellular Carcinoma Progression via the miR-513c/Cul4A/ANXA10 Axis. Cancer Gene Therapy, 28, 486-501. >https://doi.org/10.1038/s41417-020-00233-0 Li, J., Wang, T., Jin, B., Li, W., Wang, Z., Zhang, H., et al. (2018) Diagnosis Accuracy of Serum Glypican-3 Level in Patients with Hepatocellular Carcinoma: A Systematic Review with Meta-Analysis. The International Journal of Biological Markers, 33, 353-363. >https://doi.org/10.1177/1724600818784409 Fu, Y., Xu, X., Huang, D., Cui, D., Liu, L., Liu, J., et al. (2017) Plasma Heat Shock Protein 90alpha as a Biomarker for the Diagnosis of Liver Cancer: An Official, Large-Scale, and Multicenter Clinical Trial. EBioMedicine, 24, 56-63. >https://doi.org/10.1016/j.ebiom.2017.09.007 Marrero, J.A., Feng, Z., Wang, Y., Nguyen, M.H., Befeler, A.S., Roberts, L.R., et al. (2009) Α-Fetoprotein, Des-γ Carboxyprothrombin, and Lectin-Bound Α-Fetoprotein in Early Hepatocellular Carcinoma. Gastroenterology, 137, 110-118. >https://doi.org/10.1053/j.gastro.2009.04.005 Sawada, Y., Yoshikawa, T., Nobuoka, D., Shirakawa, H., Kuronuma, T., Motomura, Y., et al. (2012) Phase I Trial of a Glypican-3-Derived Peptide Vaccine for Advanced Hepatocellular Carcinoma: Immunologic Evidence and Potential for Improving Overall Survival. Clinical Cancer Research, 18, 3686-3696. >https://doi.org/10.1158/1078-0432.ccr-11-3044 Johnson, A.M., Dudek, J.M., Edwards, D.K., Myers, T.A., Joseph, P., Laffin, J.J., et al. (2021) Analytical Validation of a Novel Multi-Target Blood-Based Test to Detect Hepatocellular Carcinoma. Expert Review of Molecular Diagnostics, 21, 1245-1252. >https://doi.org/10.1080/14737159.2021.1981290 Singal, A.G., Tayob, N., Mehta, A., Marrero, J.A., El‐Serag, H., Jin, Q., et al. (2021) GALAD Demonstrates High Sensitivity for HCC Surveillance in a Cohort of Patients with Cirrhosis. Hepatology, 75, 541-549. >https://doi.org/10.1002/hep.32185 Kisiel, J.B., Dukek, B.A., V.S.R. Kanipakam, R., Ghoz, H.M., Yab, T.C., Berger, C.K., et al. (2019) Hepatocellular Carcinoma Detection by Plasma Methylated DNA: Discovery, Phase I Pilot, and Phase II Clinical Validation. Hepatology, 69, 1180-1192. >https://doi.org/10.1002/hep.30244 黄晨军, 肖潇, 周琳. 肝癌三项(AFP、AFP-L3%、DCP)与GALAD、类GALAD模型临床应用专家共识[J]. 检验医学, 2023, 38(7): 607-623. Renzulli, M., Pecorelli, A., Brandi, N., Brocchi, S., Tovoli, F., Granito, A., et al. (2022) The Feasibility of Liver Biopsy for Undefined Nodules in Patients under Surveillance for Hepatocellular Carcinoma: Is Biopsy Really a Useful Tool? Journal of Clinical Medicine, 11, Article No. 4399. >https://doi.org/10.3390/jcm11154399 Neumann, M.H.D., Bender, S., Krahn, T. and Schlange, T. (2018) ctDNA and CTCs in Liquid Biopsy-Current Status and Where We Need to Progress. Computational and Structural Biotechnology Journal, 16, 190-195. >https://doi.org/10.1016/j.csbj.2018.05.002 Temraz, S., Nasr, R., Mukherji, D., Kreidieh, F. and Shamseddine, A. (2022) Liquid Biopsy Derived Circulating Tumor Cells and Circulating Tumor DNA as Novel Biomarkers in Hepatocellular Carcinoma. Expert Review of Molecular Diagnostics, 22, 507-518. >https://doi.org/10.1080/14737159.2022.2094706 Maravelia, P., Silva, D.N., Rovesti, G., Chrobok, M., Stål, P., Lu, Y., et al. (2021) Liquid Biopsy in Hepatocellular Carcinoma: Opportunities and Challenges for Immunotherapy. Cancers, 13, Article No. 4334. >https://doi.org/10.3390/cancers13174334
Baidu
map