References
Bridgewater, J., Galle, P.R., Khan, S.A., Llovet, J.M., Park, J., Patel, T., et al. (2014) Guidelines for the Diagnosis and Management of Intrahepatic Cholangiocarcinoma. Journal of Hepatology, 60, 1268-1289. >https://doi.org/10.1016/j.jhep.2014.01.021
von Hahn, T., Ciesek, S., Wegener, G., Plentz, R.R., Weismüller, T.J., Wedemeyer, H., et al. (2011) Epidemiological Trends in Incidence and Mortality of Hepatobiliary Cancers in Germany. Scandinavian Journal of Gastroenterology, 46, 1092-1098. >https://doi.org/10.3109/00365521.2011.589472
Khan, S.A., Davidson, B.R., Goldin, R.D., Heaton, N., Karani, J., Pereira, S.P., et al. (2012) Guidelines for the Diagnosis and Treatment of Cholangiocarcinoma: An Update. Gut, 61, 1657-1669. >https://doi.org/10.1136/gutjnl-2011-301748
Mavros, M.N., Economopoulos, K.P., Alexiou, V.G. and Pawlik, T.M. (2014) Treatment and Prognosis for Patients with Intrahepatic Cholangiocarcinoma. JAMA Surgery, 149, 565-574. >https://doi.org/10.1001/jamasurg.2013.5137
Fan, B., Malato, Y., Calvisi, D.F., Naqvi, S., Razumilava, N., Ribback, S., et al. (2012) Cholangiocarcinomas Can Originate from Hepatocytes in Mice. Journal of Clinical Investigation, 122, 2911-2915. >https://doi.org/10.1172/jci63212
Holczbauer, Á., Factor, V.M., Andersen, J.B., Marquardt, J.U., Kleiner, D.E., Raggi, C., et al. (2013) Modeling Pathogenesis of Primary Liver Cancer in Lineage-Specific Mouse Cell Types. Gastroenterology, 145, 221-231. >https://doi.org/10.1053/j.gastro.2013.03.013
Sekiya, S. and Suzuki, A. (2012) Intrahepatic Cholangiocarcinoma Can Arise from Notch-Mediated Conversion of Hepatocytes. Journal of Clinical Investigation, 122, 3914-3918. >https://doi.org/10.1172/jci63065
Guest, R.V., Boulter, L., Kendall, T.J., Minnis-Lyons, S.E., Walker, R., Wigmore, S.J., et al. (2014) Cell Lineage Tracing Reveals a Biliary Origin of Intrahepatic Cholangiocarcinoma. Cancer Research, 74, 1005-1010. >https://doi.org/10.1158/0008-5472.can-13-1911
Zender, S., Nickeleit, I., Wuestefeld, T., Sörensen, I., Dauch, D., Bozko, P., et al. (2013) A Critical Role for Notch Signaling in the Formation of Cholangiocellular Carcinomas. Cancer Cell, 23, 784-795. >https://doi.org/10.1016/j.ccr.2013.04.019
Dill, M.T., Tornillo, L., Fritzius, T., Terracciano, L., Semela, D., Bettler, B., et al. (2013) Constitutive Notch2 Signaling Induces Hepatic Tumors in Mice. Hepatology, 57, 1607-1619. >https://doi.org/10.1002/hep.26165
Chen, X. and Calvisi, D.F. (2014) Hydrodynamic Transfection for Generation of Novel Mouse Models for Liver Cancer Research. The American Journal of Pathology, 184, 912-923. >https://doi.org/10.1016/j.ajpath.2013.12.002
O’Dell, M.R., Li Huang, J., Whitney-Miller, C.L., Deshpande, V., Rothberg, P., Grose, V., et al. (2012) Kras
G12D and p53 Mutation Cause Primary Intrahepatic Cholangiocarcinoma. Cancer Research, 72, 1557-1567. >https://doi.org/10.1158/0008-5472.can-11-3596
Saborowski, A., Saborowski, M., Davare, M.A., Druker, B.J., Klimstra, D.S. and Lowe, S.W. (2013) Mouse Model of Intrahepatic Cholangiocarcinoma Validates FIG-ROS as a Potent Fusion Oncogene and Therapeutic Target. Proceedings of the National Academy of Sciences, 110, 19513-19518. >https://doi.org/10.1073/pnas.1311707110
Xu, X. (2006) Induction of Intrahepatic Cholangiocellular Carcinoma by Liver-Specific Disruption of Smad4 and Pten in Mice. Journal of Clinical Investigation, 116, 1843-1852. >https://doi.org/10.1172/jci27282
Chen, J., Li, Z., Chen, J., Du, Y., Song, W., Xuan, Z., et al. (2019) Downregulation of MGMT Promotes Proliferation of Intrahepatic Cholangiocarcinoma by Regulating P21. Clinical and Translational Oncology, 22, 392-400. >https://doi.org/10.1007/s12094-019-02140-9
Sakata, K., Yoshizumi, T., Izumi, T., Shimokawa, M., Itoh, S., Ikegami, T., et al. (2019) The Role of DNA Repair Glycosylase OGG1 in Intrahepatic Cholangiocarcinoma. Anticancer Research, 39, 3241-3248. >https://doi.org/10.21873/anticanres.13465
Andersen, J.B. and Thorgeirsson, S.S. (2013) Genomic Decoding of Intrahepatic Cholangiocarcinoma Reveals Therapeutic Opportunities. Gastroenterology, 144, 687-690. >https://doi.org/10.1053/j.gastro.2013.02.018
Andersen, J.B. and Thorgeirsson, S.S. (2012) Genetic Profiling of Intrahepatic Cholangiocarcinoma. Current Opinion in Gastroenterology, 28, 266-272. >https://doi.org/10.1097/mog.0b013e3283523c7e
Andersen, J.B. and Thorgeirsson, S.S. (2013) A Perspective on Molecular Therapy in Cholangiocarcinoma: Present Status and Future Directions. Hepatic Oncology, 1, 143-157. >https://doi.org/10.2217/hep.13.4
Sia, D., Tovar, V., Moeini, A. and Llovet, J.M. (2013) Intrahepatic Cholangiocarcinoma: Pathogenesis and Rationale for Molecular Therapies. Oncogene, 32, 4861-4870. >https://doi.org/10.1038/onc.2012.617
Andersen, J.B., Spee, B., Blechacz, B.R., Avital, I., Komuta, M., Barbour, A., et al. (2012) Genomic and Genetic Characterization of Cholangiocarcinoma Identifies Therapeutic Targets for Tyrosine Kinase Inhibitors. Gastroenterology, 142, 1021-1031.e15. >https://doi.org/10.1053/j.gastro.2011.12.005
McKay, S.C., Unger, K., Pericleous, S., Stamp, G., Thomas, G., Hutchins, R.R., et al. (2011) Array Comparative Genomic Hybridization Identifies Novel Potential Therapeutic Targets in Cholangiocarcinoma. HPB, 13, 309-319. >https://doi.org/10.1111/j.1477-2574.2010.00286.x
Sia, D., Hoshida, Y., Villanueva, A., Roayaie, S., Ferrer, J., Tabak, B., et al. (2013) Integrative Molecular Analysis of Intrahepatic Cholangiocarcinoma Reveals 2 Classes That Have Different Outcomes. Gastroenterology, 144, 829-840. >https://doi.org/10.1053/j.gastro.2013.01.001
Xu, R.F., Sun, J.P., Zhang, S.R., Zhu, G.S., Li, L.B., Liao, Y.L., et al. (2011) KRAS and PIK3CA but Not BRAF Genes Are Frequently Mutated in Chinese Cholangiocarcinoma Patients. Biomedicine&Pharmacotherapy, 65, 22-26. >https://doi.org/10.1016/j.biopha.2010.06.009
Khan, S.A., Thomas, H.C., Toledano, M.B., Cox, I.J. and Taylor-Robinson, S.D. (2005) P53 Mutations in Human Cholangiocarcinoma: A Review. Liver International, 25, 704-716. >https://doi.org/10.1111/j.1478-3231.2005.01106.x
Ong, C.K., Subimerb, C., Pairojkul, C., Wongkham, S., Cutcutache, I., Yu, W., et al. (2012) Exome Sequencing of Liver Fluke-Associated Cholangiocarcinoma. Nature Genetics, 44, 690-693. >https://doi.org/10.1038/ng.2273
Wang, P., Dong, Q., Zhang, C., Kuan, P., Liu, Y., Jeck, W.R., et al. (2012) Mutations in Isocitrate Dehydrogenase 1 and 2 Occur Frequently in Intrahepatic Cholangiocarcinomas and Share Hypermethylation Targets with Glioblastomas. Oncogene, 32, 3091-3100. >https://doi.org/10.1038/onc.2012.315
Borger, D.R., Tanabe, K.K., Fan, K.C., Lopez, H.U., Fantin, V.R., Straley, K.S., et al. (2011) Frequent Mutation of Isocitrate Dehydrogenase (IDH)1 and IDH2 in Cholangiocarcinoma Identified through Broad-Based Tumor Genotyping. The Oncologist, 17, 72-79. >https://doi.org/10.1634/theoncologist.2011-0386
Kipp, B.R., Voss, J.S., Kerr, S.E., Barr Fritcher, E.G., Graham, R.P., Zhang, L., et al. (2012) Isocitrate Dehydrogenase 1 and 2 Mutations in Cholangiocarcinoma. Human Pathology, 43, 1552-1558. >https://doi.org/10.1016/j.humpath.2011.12.007
Chan-on, W., Nairismägi, M., Ong, C.K., Lim, W.K., Dima, S., Pairojkul, C., et al. (2013) Exome Sequencing Identifies Distinct Mutational Patterns in Liver Fluke-Related and Non-Infection-Related Bile Duct Cancers. Nature Genetics, 45, 1474-1478. >https://doi.org/10.1038/ng.2806
Jiao, Y., Pawlik, T.M., Anders, R.A., Selaru, F.M., Streppel, M.M., Lucas, D.J., et al. (2013) Exome Sequencing Identifies Frequent Inactivating Mutations in BAP1, ARID1A and PBRM1 in Intrahepatic Cholangiocarcinomas. Nature Genetics, 45, 1470-1473. >https://doi.org/10.1038/ng.2813
Arai, Y., Totoki, Y., Hosoda, F., Shirota, T., Hama, N., Nakamura, H., et al. (2014) Fibroblast Growth Factor Receptor 2 Tyrosine Kinase Fusions Define a Unique Molecular Subtype of Cholangiocarcinoma. Hepatology, 59, 1427-1434. >https://doi.org/10.1002/hep.26890
Gao, Q., Zhao, Y., Wang, X., Guo, W., Gao, S., Wei, L., et al. (2014) Activating Mutations in PTPN3 Promote Cholangiocarcinoma Cell Proliferation and Migration and Are Associated with Tumor Recurrence in Patients. Gastroenterology, 146, 1397-1407. >https://doi.org/10.1053/j.gastro.2014.01.062
Oishi, N., Kumar, M.R., Roessler, S., Ji, J., Forgues, M., Budhu, A., et al. (2012) Transcriptomic Profiling Reveals Hepatic Stem-Like Gene Signatures and Interplay of miR-200c and Epithelial-Mesenchymal Transition in Intrahepatic Cholangiocarcinoma. Hepatology, 56, 1792-1803. >https://doi.org/10.1002/hep.25890
Ahn, K.S., O’Brien, D., Kang, Y.N., Mounajjed, T., Kim, Y.H., Kim, T., et al. (2019) Prognostic Subclass of Intrahepatic Cholangiocarcinoma by Integrative Molecular-Clinical Analysis and Potential Targeted Approach. Hepatology International, 13, 490-500. >https://doi.org/10.1007/s12072-019-09954-3