acm Advances in Clinical Medicine 2161-8712 2161-8720 beplay体育官网网页版等您来挑战! 10.12677/acm.2025.153859 acm-110066 Articles 医药卫生 颗粒蛋白前体参与肾脏损伤的相关研究进展
Research Progress on the Role of Progranulin in Kidney Injury
卢媛媛 内蒙古医科大学附属医院肾内科,内蒙古 呼和浩特 04 03 2025 15 03 2227 2233 21 2 :2025 14 2 :2025 14 3 :2025 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 肾脏疾病是临床上最常见的疾病之一,包含原发性和继发性等多种分类,具有多种表现。其进展至终末期肾衰竭将严重危害人类健康,因此对其发病机制的探讨研究以及寻求有效延缓疾病进展的治疗手段意义重大。颗粒蛋白前体(progranulin, PGRN)是一种富含半胱氨酸的分泌蛋白,广泛表达于多种组织及细胞中,在神经退行性变、肿瘤形成、免疫调节、炎症中发挥重要的作用。最近有研究发现,颗粒蛋白前体在肾脏疾病中也具有重要作用。本文总结了近年来PGRN在肾脏损伤方面的研究,以期对临床肾脏病的防治提供新的方向。
Kidney disease is one of the most common clinical conditions, encompassing primary and secondary classifications, among others, and presents with a variety of manifestations. Its progression to end-stage renal failure poses a serious threat to human health, making the exploration of its pathogenesis and the search for effective treatments to delay disease progression of significant importance. Progranulin (PGRN), a cysteine-rich secretory protein, is widely expressed in various tissues and cells and plays a crucial role in neurodegeneration, tumor formation, immune regulation, and inflammation. Recent studies have found that progranulin also plays an important role in kidney diseases. This article summarizes recent research on PGRN in kidney injury, aiming to provide new directions for the prevention and treatment of clinical kidney diseases.
颗粒蛋白前体,肾病,肾损伤,肾炎,免疫,炎症
Progranulin
Kidney Disease Kidney Injury Nephritis Immunity Inflammation
1. 引言

颗粒蛋白前体(progranulin, PGRN)是一种在上皮细胞、免疫细胞、神经元和脂肪细胞中表达的富含半胱氨酸的分泌蛋白。它首先因其生长因子特性而被发现,参与早期胚胎形成、组织重塑和伤口修复,充当抗炎分子。有研究表明,颗粒蛋白前体在中枢神经系统中具有营养和保护神经的作用,而神经退行性变和额颞叶痴呆(frontotemporal dementia, FTD)与PGRN缺乏有关。PGRN在肿瘤的发生发展过程中也起着重要作用,其对肿瘤增殖、侵袭和细胞存活起到促进作用。PGRN对自体免疫疾病也起着至关重要的作用,参与促进或抑制多种自体免疫疾病的发生和发展。世界范围内各国肾脏疾病的发病率都较高,发展到终末期会对人体健康造成严重威胁,是目前临床上较为常见的一种疾病。近年越来越多的研究显示,PGRN在肾脏疾病发展中也发挥了一些作用。本文就PGRN在肾脏疾病中的研究进展,在急性肾损伤、糖尿病肾脏疾病(diabetic kidney disease, DKD)、系统性红斑狼疮性肾炎(lupus nephritis, LN)中的作用作一综述,为进一步探讨PGRN在相关疾病中的作用机制提供参考。

2. 颗粒蛋白前体(PGRN)的结构特性与生物学功能 2.1. PGRN的结构特性及表达分布

PGRN是一种富含半胱氨酸的多效分泌型蛋白,又被称为颗粒蛋白–上皮素前体(granulin-epithelinprecursor, GEP)、原上皮素和PC细胞衍生的生长因子(PC cell derived growth factor, PCDGF/GP88) [1] 。PGRN以完整形式分泌,被蛋白酶水解后,生成7.5个相对分子质量约为6 kDa、分子结构高度保守、具有生物学活性的多肽片段(Grn A~G)。称为颗粒蛋白(granulin, Grn) [2] [3] 。人源性PGRN是由位于染色体17q21.33上的GRN (PGRN编码基因)编码的、由593个氨基酸残基组成的分泌性糖蛋白,它在多种细胞中进行表达,包括上皮细胞 [4] 、免疫细胞 [5] 、巨噬细胞 [6] 、神经元 [7] 和脂肪细胞 [8] 、成纤维细胞 [9] 、软骨细胞 [10] 。每个PGRN相对分子质量约为88 kDa,含有7.5个重复序列的结构域(CX5-6CX5CCX8CCX6CCXDX2HCCPX4CX5-6C),每个结构域由12个半胱氨酸组成。

2.2. PGRN的生物学功能

颗粒蛋白前体拥有类似生长因子的特性,主要通过激活细胞外信号调节激酶(ERK)以及磷脂酰肌醇3激酶(PI3K)-蛋白激酶B (Akt)通路调节细胞存活和迁移,促进细胞进行有丝分裂 [7] [11] 。临床前研究表明,PGRN在大鼠的生殖及胚胎细胞中持续保持高水平表达,且能促进大鼠胚胎的发育生长及脑部的功能性男性化 [12] [13] 。在胚胎发育的早期阶段,PGRN在神经系统中广泛表达,能够促进神经元轴突生长与修复,并增加突触的分支,被视为一种重要的神经营养因子。还有研究表明,PGRN在胎盘组织中具有较高的表达水平,并可能通过参与胚胎和胎盘的血管形成,在妊娠相关并发症的发生中起重要作用,并且PGRN的水平的升高可提高滋养层细胞的增殖、侵袭能力,抑制其凋亡 [14] 。有研究表示,在小鼠经皮穿刺伤口中,PGRN表达增加,并且在损伤后的真皮成纤维细胞和血管内皮细胞中起到诱导作用。PGRN诱导伤口中中性粒细胞、巨噬细胞的聚集增加,促进成纤维细胞和内皮细胞分裂、迁移和新生毛细血管的形成,加速了伤口愈合及组织重塑 [15] 。重组PGRN局部给药可有效促进骨折愈合。PGRN还可通过TNF-α-Akt和Erk1/2通路诱导软骨内骨化过程中的合成代谢 [16] 。通过上述相同的通路(ERK、PI3K-AKt),PGRN还有助于肿瘤增殖、侵袭和细胞存活。PGRN在黑色素瘤 [17] 、卵巢癌 [18] 、乳腺癌 [19] 、膀胱癌 [20] 、前列腺癌 [21] 、肾细胞癌 [22] 、胃癌 [23] 、结直肠癌 [24] 、多发性骨髓瘤 [25] 、淋巴瘤 [26] 、淋巴细胞性白血病 [27] 中发现表达较正常人显著增加,其中部分可作为预后标志物或分级标准 [17] [20] [25] [26]

PGRN具有营养和保护中枢神经的作用 [28] 。它参与神经突触的生长,并可能在成人大脑的可塑性和重塑中发挥作用 [7] 。此外,PGRN还保护神经元免于过早死亡 [29] ,并对应激 [28] 和神经炎症 [28] 起作用。研究显示,神经退行性改变和额颞叶痴呆症(FTD)与PGRN裂解短肽片段GRN功能突变有关 [30] 。然而,PGRN在神经退行性疾病 [31] 中的小胶质细胞中表达上调,表现为FTD,特别是在具有实质性病理的脑区 [32] 。目前尚不清楚它是小胶质细胞损伤反应后的结果,还是促进疾病进展的原因 [28]

免疫系统与炎症机制的变化密不可分。当机体受到损伤或有病原微生物侵袭时,往往伴有急性炎症,这是机体保护机制中重要的一环。然而,不受控制的炎症反应和持续的免疫反应可能导致免疫系统疾病的发生。其中,肿瘤坏死因子α (TNF-α)等细胞因子在免疫反应中至关重要,TNF-α是炎症级联反应的顶端,TNF-α/TNFR信号通路协调大量炎症反应过程,激活此信号通路可能会损害机体组织,导致自身免疫性疾病的发生发展。全长的PGRN与TNF可结合同一受体,通过TNF受体1 (TNF-α1)发挥抗炎作用,通过与TNF受体2 (TNF-α2)结合刺激CD4CD25Foxp3调节性T细胞(Treg)活性,限制TNF-α在一些免疫介导的疾病(如类风湿性关节炎和炎症性肠病)中的作用。即PGRN可作为拮抗剂阻断TNF的生物活性,通过抑制TNF和TNF-α2的结合而拮抗TNF介导的炎症反应 [33] 。在关节炎小鼠模型中,PGRN可预防炎症 [33] 。在类风湿性关节炎中,观察到血清PGRN水平升高,但其与疾病发病机制的关系尚不清楚 [34] 。在银屑病患者、小鼠皮炎模型 [35] [36] 和伤口 [15] 的皮肤中观察到PGRN水平升高。一些研究者认为,在这些情况下,PGRN具有减轻炎症的作用,可作为抗炎分子 [35] [36] 。在SLE患者中,血清PGRN水平较对照组显著升高。PGRN在体外被弹性蛋白酶裂解以产生GRN多肽片段,GRN在先天免疫的防御感染中起着至关重要的作用。通过GRN与Toll样受体9 (TLR9)结合,增强对细菌入侵的先天免疫力,从而协助在巨噬细胞中募集CpG寡核苷酸(CpG-ODN) [37] [38] 。例如,PGRN可能通过增强TLR9信号转导来促进SLE的组织损伤并发挥促炎功能,加重组织损伤 [39]

3. PGRN与肾损伤

肾损伤包括原发性和继发性,原发性肾脏病中包括原发性肾病综合征,急、慢性肾小球肾炎,急进性肾小球肾炎及IgA肾病等。而继发性肾脏疾病是由其他疾病进展进而导致的肾脏的病变,如糖尿病肾病、狼疮性肾炎、乙肝相关性肾脏病、痛风性肾病、高血压性肾脏病、过敏性紫癜性肾炎、肾淀粉样变性等。在此研究基础上,我们发现其中PGRN与狼疮肾炎、糖尿病肾病及肾脏炎症性损伤的机制有相关性。

3.1. PGRN与系统性红斑狼疮性肾炎(LN)

系统性红斑狼疮(systemic lupus erythematosus, SLE)是一种慢性自身免疫性疾病,影响包括肾脏在内的许多器官。系统性红斑狼疮性肾炎(lupus nephritis, LN)是一种免疫复合物介导的肾小球肾炎,是SLE最严重的并发症之一,其特征是产生抗双链DNA (dsDNA)抗体和免疫介导的肾小球损伤 [40] 。越来越多的证据表明,PGRN参与了LN的发生。例如,最近的一项研究表明,LN小鼠模型的血清PGRN水平显著高于对照组,GRN可通过促进巨噬细胞M2b极化而加重LN [41] 。有研究证实,与正常对照组相比,活动性LN患者的血清PGRN水平要高得多。经过3周的激素治疗后,血清PGRN水平明显降低 [42] 。更重要的是,Tanaka等人发现,SLE患者的血清PGRN水平与疾病活动指数显著相关,PGRN在SLE患者中上调,并且与促炎细胞因子和抗dsDNA抗体相关。糖皮质激素可下调SLE患者PGRN的表达 [43]

3.2. PGRN与2型糖尿病(Type 2 Diabetes Mellitus, T2DM)

2型糖尿病(T2DM)的特征是对胰岛素作用的抵抗和胰岛素分泌的代偿性不足,导致血糖升高 [44] 。糖尿病肾病是其主要并发症之一。而PGRN被认定是一种关键的脂肪因子,通过脂肪组织中的IL-6介导高脂肪饮食诱导的胰岛素抵抗和肥胖。有研究显示,PGRN及其受体与2型糖尿病患者肾功能下降有相关性 [45]

Zhou等人研究发现,线粒体功能障碍和足细胞损伤被认为与2型糖尿病肾功能下降的发生密切相关 [46] 。PPAR-γ coactivator-1α (PGC-1α)被确定是一种线粒体生物发生的重要调节因子。早期研究发现,糖尿病肾病患者肾脏病理中PGC-1α较正常患者或糖尿病无肾病患者水平降低,并且糖尿病肾病的发生被认为与PGC-1α表达或活性降低的线粒体生物发生缺陷有关。研究中显示,在体外,给予糖尿病模型小鼠施用重组人PGRN (rPGRN),rPGRN给药6周后,尿白蛋白排泄水平显著降低、系膜扩张减少、足细胞损伤显著改善以及肾小球细胞凋亡减少,显著改善了肾损伤,并伴有线粒体自噬增强。研究机制上,在高糖条件下,足细胞中的PGC-1α水平和相关线粒体基因水平受到抑制。通过重组PGRN处理诱导PGC-1α后,线粒体DNA含量和呼吸链功能恢复,表明PGRN可能通过线粒体生物发生和靶向PGC-1α来促进足细胞损伤的恢复 [47] 。PGRN通过调节线粒体生物发生和线粒体自噬维持其在线粒体稳态中的作用 [46] 。总的来说,糖尿病模型小鼠和经高葡萄糖处理的肾脏足细胞中的PGRN水平下调。PGRN缺陷加剧了糖尿病小鼠足细胞的死亡和线粒体的损伤。而自噬的抑制干扰了PGRN在高糖诱导的足细胞毒性中的保护作用。此外,还通过实验数据明确恢复自噬和激活CAMKK-AMPK通路确定了PGRN在足细胞损伤中的保护作用 [48]

3.3. PGRN与急性肾损伤(AKI)

在肾缺血再灌注损伤等急性情况下,早期研究显示,小鼠肾脏中PGRN水平明显下降。此外,还观察到PGRN缺陷小鼠较野生型小鼠相比,表现出血清肌酐和血尿素氮升高,形态学改变更严重以及炎症反应升高。研究发现,rPGRN减弱了由缺氧引起的近端肾小管上皮细胞的炎症作用和细胞凋亡,在体外,经rPGRN预处理或延迟给药的小鼠,可以促进肾缺血再灌注损伤后的炎症恢复 [49] 。因此,PGRN在肾缺血再灌注损伤后在肾脏中起保护作用并具有抗炎作用。另一项研究发现,由脂多糖(LPS)诱导的小鼠内毒素血症所致AKI期间,PGRN在肾脏中过表达。PGRN缺陷小鼠与野生小鼠相比,LPS输注后小鼠出现了更严重的肾损伤和炎症反应表现。在rPGRN延迟给药后,PGRN免疫缺陷小鼠肾脏损伤和炎症反应都表现出明显改善。并且Zhang等人的研究显示,补体C5a/C5aR通路通过抑制PGRN表达加重肾缺血再灌注诱导的急性肾损伤,研究中发现肾脏缺血再灌注后C5aR表达较前显著上调,重组C5a加强了TNFα诱导的HK-2细胞中NF-κB活化,导致肾小管上皮细胞(HK-2细胞)中PGRN水平下调,且C5aR缺陷导致PGRN表达显著增加,而C5aR缺陷导致缺血再灌注后24小时NF-κB表达减弱。抑制NF-κB激活,使得C5a诱导的PGRN表达下调,减少炎性细胞因子的产生及肾小管损伤 [50]

4. 总结与展望

PGRN作为一种多效性蛋白,参与了细胞多种信号通路的调节,在细胞发育、细胞周期控制、胚胎发生、血管生成、肿瘤、伤口愈合、炎症过程以及自身免疫过程中显示出强大的调节作用,需要在不同领域进行更加深入的研究,本文就PGRN的结构与功能,以及其在多种肾脏疾病中的调节机制和潜在作用进行阐述。PGRN在系统性红斑狼疮性肾炎中起到促炎作用,而在糖尿病肾病、肾脏缺血再灌注以及内毒素血症所致AKI中起到抗炎保护作用。

目前,对于PGRN的结构和生物学功能的研究正在不断完善,但是异常表达的PGRN造成多种疾病的发病机制尚不清楚,未来对PGRN和GRN的研究仍至关重要,将有助于为临床治疗肾脏损伤提供新思路。

NOTES

*通讯作者。

References He, Z. and Bateman, A. (2003) Progranulin (Granulin-Epithelin Precursor, Pc-Cell-Derived Growth Factor, Acrogranin) Mediates Tissue Repair and Tumorigenesis. Journal of Molecular Medicine, 81, 600-612. >https://doi.org/10.1007/s00109-003-0474-3 Zhou, J., Gao, G., Crabb, J.W. and Serrero, G. (1993) Purification of an Autocrine Growth Factor Homologous with Mouse Epithelin Precursor from a Highly Tumorigenic Cell Line. Journal of Biological Chemistry, 268, 10863-10869. >https://doi.org/10.1016/s0021-9258(18)82064-6 Nguyen, A.D., Nguyen, T.A., Martens, L.H., Mitic, L.L. and Farese, R.V. (2013) Progranulin: At the Interface of Neurodegenerative and Metabolic Diseases. Trends in Endocrinology&Metabolism, 24, 597-606. >https://doi.org/10.1016/j.tem.2013.08.003 Plowman, G.D., Green, J.M., Neubauer, M.G., Buckley, S.D., McDonald, V.L., Todaro, G.J., et al. (1992) The Epithelin Precursor Encodes Two Proteins with Opposing Activities on Epithelial Cell Growth. Journal of Biological Chemistry, 267, 13073-13078. >https://doi.org/10.1016/s0021-9258(18)42382-4 Jian, J., Li, G., Hettinghouse, A. and Liu, C. (2018) Progranulin: A Key Player in Autoimmune Diseases. Cytokine, 101, 48-55. >https://doi.org/10.1016/j.cyto.2016.08.007 Daniel, R., He, Z., Carmichael, K.P., Halper, J. and Bateman, A. (2000) Cellular Localization of Gene Expression for Progranulin. Journal of Histochemistry&Cytochemistry, 48, 999-1009. >https://doi.org/10.1177/002215540004800713 Petkau, T.L. and Leavitt, B.R. (2014) Progranulin in Neurodegenerative Disease. Trends in Neurosciences, 37, 388-398. >https://doi.org/10.1016/j.tins.2014.04.003 Matsubara, T., Mita, A., Minami, K., Hosooka, T., Kitazawa, S., Takahashi, K., et al. (2012) PGRN Is a Key Adipokine Mediating High Fat Diet-Induced Insulin Resistance and Obesity through IL-6 in Adipose Tissue. Cell Metabolism, 15, 38-50. >https://doi.org/10.1016/j.cmet.2011.12.002 Bhandari, V., Palfree, R.G. and Bateman, A. (1992) Isolation and Sequence of the Granulin Precursor cDNA from Human Bone Marrow Reveals Tandem Cysteine-Rich Granulin Domains. Proceedings of the National Academy of Sciences of the United States of America, 89, 1715-1719. >https://doi.org/10.1073/pnas.89.5.1715 Abella, V., Scotece, M., Conde, J., López, V., Pirozzi, C., Pino, J., et al. (2016) The Novel Adipokine Progranulin Counteracts IL-1 and TLR4-Driven Inflammatory Response in Human and Murine Chondrocytes via TNFR1. Scientific Reports, 6, Article No. 20356. >https://doi.org/10.1038/srep20356 Gao, X., Joselin, A.P., Wang, L., Kar, A., Ray, P., Bateman, A., et al. (2010) Progranulin Promotes Neurite Outgrowth and Neuronal Differentiation by Regulating GSK-3β. Protein&Cell, 1, 552-562. >https://doi.org/10.1007/s13238-010-0067-1 Suzuki, M. and Nishiahara, M. (2002) Granulin Precursor Gene: A Sex Steroid-Inducible Gene Involved in Sexual Differentiation of the Rat Brain. Molecular Genetics and Metabolism, 75, 31-37. >https://doi.org/10.1006/mgme.2001.3274 Zhao, Y., Tian, Q., Frenkel, S. and Liu, C. (2013) The Promotion of Bone Healing by Progranulin, a Downstream Molecule of BMP-2, through Interacting with TNF/TNFR Signaling. Biomaterials, 34, 6412-6421. >https://doi.org/10.1016/j.biomaterials.2013.05.030 吴秋雨, 郇金亮. 颗粒蛋白前体通过调控滋养层细胞的侵袭和凋亡影响子痫前期发病[J]. 第三军医大学学报, 2018(20): 1858-1864. He, Z., Ong, C.H.P., Halper, J. and Bateman, A. (2003) Progranulin Is a Mediator of the Wound Response. Nature Medicine, 9, 225-229. >https://doi.org/10.1038/nm816 Ding, Y., Wei, J., Hettinghouse, A., Li, G., Li, X., Einhorn, T.A., et al. (2021) Progranulin Promotes Bone Fracture Healing via TNFR Pathways in Mice with Type 2 Diabetes Mellitus. Annals of the New York Academy of Sciences, 1490, 77-89. >https://doi.org/10.1111/nyas.14568 Voshtani, R., Song, M., Wang, H., Li, X., Zhang, W., Tavallaie, M.S., et al. (2019) Progranulin Promotes Melanoma Progression by Inhibiting Natural Killer Cell Recruitment to the Tumor Microenvironment. Cancer Letters, 465, 24-35. >https://doi.org/10.1016/j.canlet.2019.08.018 Dong, T., Yang, D., Li, R., Zhang, L., Zhao, H., Shen, Y., et al. (2016) PGRN Promotes Migration and Invasion of Epithelial Ovarian Cancer Cells through an Epithelial Mesenchymal Transition Program and the Activation of Cancer Associated Fibroblasts. Experimental and Molecular Pathology, 100, 17-25. >https://doi.org/10.1016/j.yexmp.2015.11.021 Koo, D.H., Park, C., Lee, E.S., Ro, J. and Oh, S.W. (2012) Progranulin as a Prognostic Biomarker for Breast Cancer Recurrence in Patients Who Had Hormone Receptor-Positive Tumors: A Cohort Study. PLOS ONE, 7, e39880. >https://doi.org/10.1371/journal.pone.0039880 Selmy, M.A., Ibrahim, G.H., El Serafi, T.I. and Ghobeish, A.A. (2011) Evaluation of Urinary Proepithelin as a Potential Biomarker for Bladder Cancer Detection and Prognosis in Egyptian Patients. Cancer Biomarkers, 7, 163-170. >https://doi.org/10.3233/cbm-2010-0186 Pan, C., Kinch, M.S., Kiener, P.A., Langermann, S., Serrero, G., Sun, L., et al. (2004) PC Cell-Derived Growth Factor Expression in Prostatic Intraepithelial Neoplasia and Prostatic Adenocarcinoma. Clinical Cancer Research, 10, 1333-1337. >https://doi.org/10.1158/1078-0432.ccr-1123-03 Donald, C.D., Laddu, A., Chandham, P., et al. (2001) Expression of Progranulin and the Epithelin/Granulin Precursor Acrogranin Correlates with Neoplastic State in Renal Epithelium. Anticancer Research, 21, 3739-3742. Wang, H., Sun, Y., Liu, S., Yu, H., Li, W., Zeng, J., et al. (2011) Upregulation of Progranulin by Helicobacter pylori in Human Gastric Epithelial Cells via P38mapk and MEK1/2 Signaling Pathway: Role in Epithelial Cell Proliferation and Migration. FEMS Immunology&Medical Microbiology, 63, 82-92. >https://doi.org/10.1111/j.1574-695x.2011.00833.x Yang, D., Wang, L.L., Dong, T.T., et al. (2015) Progranulin Promotes Colorectal Cancer Proliferation and Angiogenesis through TNFR2/Akt and ERK Signaling Pathways. American Journal of Cancer Research, 5, 3085-3097. Wang, W., Hayashi, J., Kim, W.E. and Serrero, G. (2003) PC Cell-Derived Growth Factor (Granulin Precursor) Expression and Action in Human Multiple Myeloma. Clinical Cancer Research, 9, 2221-2228. Yamamoto, Y., Goto, N., Takemura, M., Yamasuge, W., Yabe, K., Takami, T., et al. (2017) Association between Increased Serum GP88 (Progranulin) Concentrations and Prognosis in Patients with Malignant Lymphomas. Clinica Chimica Acta, 473, 139-146. >https://doi.org/10.1016/j.cca.2017.07.024 Göbel, M., Eisele, L., Möllmann, M., Hüttmann, A., Johansson, P., Scholtysik, R., et al. (2013) Progranulin Is a Novel Independent Predictor of Disease Progression and Overall Survival in Chronic Lymphocytic Leukemia. PLOS ONE, 8, e72107. >https://doi.org/10.1371/journal.pone.0072107 Toh, H., Chitramuthu, B.P., Bennett, H.P.J. and Bateman, A. (2011) Structure, Function, and Mechanism of Progranulin; the Brain and Beyond. Journal of Molecular Neuroscience, 45, 538-548. >https://doi.org/10.1007/s12031-011-9569-4 Bateman, A. and Bennett, H.P.J. (2009) The Granulin Gene Family: From Cancer to Dementia. BioEssays, 31, 1245-1254. >https://doi.org/10.1002/bies.200900086 Cenik, B., Sephton, C.F., Kutluk Cenik, B., Herz, J. and Yu, G. (2012) Progranulin: A Proteolytically Processed Protein at the Crossroads of Inflammation and Neurodegeneration. Journal of Biological Chemistry, 287, 32298-32306. >https://doi.org/10.1074/jbc.r112.399170 Naphade, S.B., Kigerl, K.A., Jakeman, L.B., Kostyk, S.K., Popovich, P.G. and Kuret, J. (2009) Progranulin Expression Is Upregulated after Spinal Contusion in Mice. Acta Neuropathologica, 119, 123-133. >https://doi.org/10.1007/s00401-009-0616-y Chen-Plotkin, A.S., Xiao, J., Geser, F., Martinez-Lage, M., Grossman, M., Unger, T., et al. (2009) Brain Progranulin Expression in GRN-Associated Frontotemporal Lobar Degeneration. Acta Neuropathologica, 119, 111-122. >https://doi.org/10.1007/s00401-009-0576-2 Tang, W., Lu, Y., Tian, Q., Zhang, Y., Guo, F., Liu, G., et al. (2011) The Growth Factor Progranulin Binds to TNF Receptors and Is Therapeutic against Inflammatory Arthritis in Mice. Science, 332, 478-484. >https://doi.org/10.1126/science.1199214 Yamamoto, Y., Takemura, M., Serrero, G., Hayashi, J., Yue, B., Tsuboi, A., et al. (2014) Increased Serum GP88 (Progranulin) Concentrations in Rheumatoid Arthritis. Inflammation, 37, 1806-1813. >https://doi.org/10.1007/s10753-014-9911-4 Zhao, Y., Tian, Q. and Liu, C. (2013) Progranulin Deficiency Exaggerates, Whereas Progranulin‐Derived Atsttrin Attenuates, Severity of Dermatitis in Mice. FEBS Letters, 587, 1805-1810. >https://doi.org/10.1016/j.febslet.2013.04.037 Huang, K., Chen, A., Zhang, X., Song, Z., Xu, H., Cao, J., et al. (2015) Progranulin Is Preferentially Expressed in Patients with Psoriasis Vulgaris and Protects Mice from Psoriasis‐Like Skin Inflammation. Immunology, 145, 279-287. >https://doi.org/10.1111/imm.12446 Park, B., Buti, L., Lee, S., Matsuwaki, T., Spooner, E., Brinkmann, M.M., et al. (2011) Granulin Is a Soluble Cofactor for Toll-Like Receptor 9 Signaling. Immunity, 34, 505-513. >https://doi.org/10.1016/j.immuni.2011.01.018 Cui, Y., Hettinghouse, A. and Liu, C. (2019) Progranulin: A Conductor of Receptors Orchestra, a Chaperone of Lysosomal Enzymes and a Therapeutic Target for Multiple Diseases. Cytokine&Growth Factor Reviews, 45, 53-64. >https://doi.org/10.1016/j.cytogfr.2019.01.002 Jing, C., Zhang, X., Song, Z., Zheng, Y. and Yin, Y. (2020) Progranulin Mediates Proinflammatory Responses in Systemic Lupus Erythematosus: Implications for the Pathogenesis of Systemic Lupus Erythematosus. Journal of Interferon&Cytokine Research, 40, 33-42. >https://doi.org/10.1089/jir.2019.0047 Herrmann, M., Voll, R.E. and Kalden, J.R. (2000) Etiopathogenesis of Systemic Lupus Erythematosus. Immunology Today, 21, 424-426. >https://doi.org/10.1016/s0167-5699(00)01675-3 Chen, X., Wen, Z., Xu, W. and Xiong, S. (2013) Granulin Exacerbates Lupus Nephritis via Enhancing Macrophage M2b Polarization. PLOS ONE, 8, e65542. >https://doi.org/10.1371/journal.pone.0065542 Qiu, F., Song, L., Ding, F., Liu, H., Shu, Q., Yang, N., et al. (2013) Expression Level of the Growth Factor Progranulin Is Related with Development of Systemic Lupus Erythematosus. Diagnostic Pathology, 8, Article No. 88. >https://doi.org/10.1186/1746-1596-8-88 Tanaka, A., Tsukamoto, H., Mitoma, H., Kiyohara, C., Ueda, N., Ayano, M., et al. (2012) Serum Progranulin Levels Are Elevated in Patients with Systemic Lupus Erythematosus, Reflecting Disease Activity. Arthritis Research&Therapy, 14, Article No. R244. >https://doi.org/10.1186/ar4087 Abdi, H., Hosseinpanah, F., Azizi, F., Hadaegh, F. and Amouzegar, A. (2017) Screening for Dysglycemia: A Comment on Classification and Diagnosis of Diabetes in American Diabetes Association Standards of Medical Care in Diabetes-2016. Archives of Iranian Medicine, 20, 389. Murakoshi, M., Gohda, T., Sakuma, H., Shibata, T., Adachi, E., Kishida, C., et al. (2022) Progranulin and Its Receptor Predict Kidney Function Decline in Patients with Type 2 Diabetes. Frontiers in Endocrinology, 13, Article 849457. >https://doi.org/10.3389/fendo.2022.849457 Zhou, D., Zhou, M., Wang, Z., Fu, Y., Jia, M., Wang, X., et al. (2019) PGRN Acts as a Novel Regulator of Mitochondrial Homeostasis by Facilitating Mitophagy and Mitochondrial Biogenesis to Prevent Podocyte Injury in Diabetic Nephropathy. Cell Death&Disease, 10, Article No. 524. >https://doi.org/10.1038/s41419-019-1754-3 Fang, L., Zhou, Y., Cao, H., Wen, P., Jiang, L., He, W., et al. (2013) Autophagy Attenuates Diabetic Glomerular Damage through Protection of Hyperglycemia-Induced Podocyte Injury. PLOS ONE, 8, e60546. >https://doi.org/10.1371/journal.pone.0060546 Zhou, D., Zhou, M., Wang, Z., Fu, Y., Jia, M., Wang, X., et al. (2019) Progranulin Alleviates Podocyte Injury via Regulating CAMKK/AMPK-Mediated Autophagy under Diabetic Conditions. Journal of Molecular Medicine, 97, 1507-1520. >https://doi.org/10.1007/s00109-019-01828-3 Xu, X., Gou, L., Zhou, M., Yang, F., Zhao, Y., Feng, T., et al. (2016) Progranulin Protects against Endotoxin-Induced Acute Kidney Injury by Downregulating Renal Cell Death and Inflammatory Responses in Mice. International Immunopharmacology, 38, 409-419. >https://doi.org/10.1016/j.intimp.2016.06.022 Zhang, K., Li, G., He, Q., Li, Y., Tang, M., Zheng, Q., et al. (2017) C5a/C5aR Pathway Accelerates Renal Ischemia-Reperfusion Injury by Downregulating PGRN Expression. International Immunopharmacology, 53, 17-23. >https://doi.org/10.1016/j.intimp.2017.10.006
Baidu
map