References
Thrift, A.P. and El-Serag, H.B. (2020) Burden of Gastric Cancer. Clinical Gastroenterology and Hepatology, 18, 534-542. >https://doi.org/10.1016/j.cgh.2019.07.045
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. >https://doi.org/10.3322/caac.21834
Arnold, M., Abnet, C.C., Neale, R.E., Vignat, J., Giovannucci, E.L., McGlynn, K.A., et al. (2020) Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology, 159, 335-349.e15. >https://doi.org/10.1053/j.gastro.2020.02.068
Yu, P., Wang, Y., Yuan, D., Sun, Y., Qin, S. and Li, T. (2023) Vascular Normalization: Reshaping the Tumor Microenvironment and Augmenting Antitumor Immunity for Ovarian Cancer. Frontiers in Immunology, 14, Article 1276694. >https://doi.org/10.3389/fimmu.2023.1276694
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. >https://doi.org/10.1016/j.cell.2011.02.013
Sherwood, L.M., Parris, E.E. and Folkman, J. (1971) Tumor Angiogenesis: Therapeutic Implications. New England Journal of Medicine, 285, 1182-1186. >https://doi.org/10.1056/nejm197111182852108
Lugano, R., Ramachandran, M. and Dimberg, A. (2019) Tumor Angiogenesis: Causes, Consequences, Challenges and Opportunities. Cellular and Molecular Life Sciences, 77, 1745-1770. >https://doi.org/10.1007/s00018-019-03351-7
Teng, F., Zhang, J., Chang, Q., Wu, X., Tang, W., Wang, J., et al. (2020) Correction to: LncRNA MYLK-AS1 Facilitates Tumor Progression and Angiogenesis by Targeting miR-424-5p/E2F7 Axis and Activating VEGFR-2 Signaling Pathway in Hepatocellular Carcinoma. Journal of Experimental&Clinical Cancer Research, 39, Article No. 277. >https://doi.org/10.1186/s13046-020-01780-y
Zhang, S., Xia, Y., Chen, W., Dong, H., Cui, B., Liu, C., et al. (2024) Regulation and Therapeutic Application of Long Non-Coding RNA in Tumor Angiogenesis. Technology in Cancer Research&Treatment, 23, 1-16. >https://doi.org/10.1177/15330338241273239
Deng, F., Zhou, R., Lin, C., Yang, S., Wang, H., Li, W., et al. (2019) Tumor-Secreted Dickkopf2 Accelerates Aerobic Glycolysis and Promotes Angiogenesis in Colorectal Cancer. Theranostics, 9, 1001-1014. >https://doi.org/10.7150/thno.30056
Dakowicz, D., Zajkowska, M. and Mroczko, B. (2022) Relationship between VEGF Family Members, Their Receptors and Cell Death in the Neoplastic Transformation of Colorectal Cancer. International Journal of Molecular Sciences, 23, Article 3375. >https://doi.org/10.3390/ijms23063375
Zhao, J., Du, P., Cui, P., Qin, Y., Hu, C., Wu, J., et al. (2018) LncRNA PVT1 Promotes Angiogenesis via Activating the STAT3/VEGFA Axis in Gastric Cancer. Oncogene, 37, 4094-4109. >https://doi.org/10.1038/s41388-018-0250-z
Jin, Y., Cao, J., Hu, X. and Cheng, H. (2021) Long Noncoding RNA TUG1 Upregulates VEGFA to Enhance Malignant Behaviors in Stomach Adenocarcinoma by Sponging miR‐29c‐3p. Journal of Clinical Laboratory Analysis, 35, e24106. >https://doi.org/10.1002/jcla.24106
Zhang, J., Pang, X., Lei, L., Zhang, J., Zhang, X., Chen, Z., et al. (2022) LncRNA CRART16/miR-122-5p/FOS Axis Promotes Angiogenesis of Gastric Cancer by Upregulating VEGFD Expression. Aging, 14, 4137-4157. >https://doi.org/10.18632/aging.204078
Teng, F., Zhang, J., Chen, Y., Shen, X., Su, C., Guo, Y., et al. (2021) LncRNA NKX2‐1‐AS1 Promotes Tumor Progression and Angiogenesis via Upregulation of SERPINE1 Expression and Activation of the VEGFR‐2 Signaling Pathway in Gastric Cancer. Molecular Oncology, 15, 1234-1255. >https://doi.org/10.1002/1878-0261.12911
Claesson‐Welsh, L. and Welsh, M. (2013) VEGFA and Tumour Angiogenesis. Journal of Internal Medicine, 273, 114-127. >https://doi.org/10.1111/joim.12019
Yonemura, Y., Endo, Y., Tabata, K., Kawamura, T., Yun, H., Bandou, E., et al. (2005) Role of VEGF-C and VEGF-D in Lymphangiogenesis in Gastric Cancer. International Journal of Clinical Oncology, 10, 318-327. >https://doi.org/10.1007/s10147-005-0508-7
Wang, L., Cho, K.B., Li, Y., Tao, G., Xie, Z. and Guo, B. (2019) Long Noncoding RNA (LncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer. International Journal of Molecular Sciences, 20, Article 5758. >https://doi.org/10.3390/ijms20225758
Wu, X., Sui, Z., Zhang, H., Wang, Y. and Yu, Z. (2020) Integrated Analysis of LncRNA-Mediated Cerna Network in Lung Adenocarcinoma. Frontiers in Oncology, 10, Article 554759. >https://doi.org/10.3389/fonc.2020.554759
Liu, H., Ma, R., Lv, B., Zhang, H., Shi, D., Guo, X., et al. (2020) LncRNA-HNF1A-AS1 Functions as a Competing Endogenous RNA to Activate PI3K/AKT Signalling Pathway by Sponging miR-30b-3p in Gastric Cancer. British Journal of Cancer, 122, 1825-1836. >https://doi.org/10.1038/s41416-020-0836-4
Xu, Y., Li, Y., Qiu, Y., Sun, F., Zhu, G., Sun, J., et al. (2021) LncRNA NEAT1 Promotes Gastric Cancer Progression through miR-17-5p/TGFβR2Axis Up-Regulated Angiogenesis. Frontiers in Cell and Developmental Biology, 9, Article 705697. >https://doi.org/10.3389/fcell.2021.705697
Zhu, Y., You, J., Wei, W., Gu, J., Xu, C. and Gu, X. (2021) Downregulated LncRNA RCPCD Promotes Differentiation of Embryonic Stem Cells into Cardiac Pacemaker-Like Cells by Suppressing HCN4 Promoter Methylation. Cell Death&Disease, 12, Article No. 667. >https://doi.org/10.1038/s41419-021-03949-5
林秀, 孙赛, 毛越苹. 长链非编码RNA在硬皮病表观遗传学发病机制中的研究进展[J]. 广东医学, 2019, 40(S1): 227-229.
Guo, X., Wang, Y., Zha, L., Li, H. and Qian, K. (2023) DNA Methylation-Related LncRNAs Predict Prognosis and Immunotherapy Response in Gastric Cancer. Journal of Cancer Research and Clinical Oncology, 149, 14745-14760. >https://doi.org/10.1007/s00432-023-05234-8
Elimam, H., Abdel Mageed, S.S., Hatawsh, A., Moussa, R., Radwan, A.F., Elfar, N., et al. (2024) Unraveling the Influence of LncRNA in Gastric Cancer Pathogenesis: A Comprehensive Review Focus on Signaling Pathways Interplay. Medical Oncology, 41, Article No. 218. >https://doi.org/10.1007/s12032-024-02455-w
Dou, R., Han, L., Yang, C., Fang, Y., Zheng, J., Liang, C., et al. (2023) Upregulation of LINC00501 by H3K27 Acetylation Facilitates Gastric Cancer Metastasis through Activating Epithelial‐Mesenchymal Transition and Angiogenesis. Clinical and Translational Medicine, 13, e1432. >https://doi.org/10.1002/ctm2.1432
Wang, Y., Jiang, R., Wang, Q., Li, Y., Sun, Z. and Zhao, H. (2021) Silencing LINC01021 Inhibits Gastric Cancer through Upregulation of KISS1 Expression by Blocking CDK2-Dependent Phosphorylation of CDX2. Molecular Therapy—Nucleic Acids, 24, 832-844. >https://doi.org/10.1016/j.omtn.2021.01.025
Maniotis, A.J., Folberg, R., Hess, A., Seftor, E.A., Gardner, L.M.G., Pe’er, J., et al. (1999) Vascular Channel Formation by Human Melanoma Cells in Vivo and in Vitro: Vasculogenic Mimicry. The American Journal of Pathology, 155, 739-752. >https://doi.org/10.1016/s0002-9440(10)65173-5
Hao, X.S., Sun, B.C., Zhang, S.W., et al. (2003) Correlation between the Expression of Collgen IV, VEGF and Vasculogenic Mimicry. Chinese Journal of Oncology, 25, 524-526.
Chen, Y. and Chen, Z. (2014) Vasculogenic Mimicry: A Novel Target for Glioma Therapy. Chinese Journal of Cancer, 33, 74-79. >https://doi.org/10.5732/cjc.012.10292
Wang, J., Xia, W., Huang, Y., Li, H., Tang, Y., Li, Y., et al. (2022) A Vasculogenic Mimicry Prognostic Signature Associated with Immune Signature in Human Gastric Cancer. Frontiers in Immunology, 13, Article 1016612. >https://doi.org/10.3389/fimmu.2022.1016612
Lu, Y., Yang, B., Shen, A., Yu, K., Ma, M., Li, Y., et al. (2024) LncRNA UCA1 Promotes Vasculogenic Mimicry by Targeting miR-1-3p in Gastric Cancer. Carcinogenesis, 45, 658-672. >https://doi.org/10.1093/carcin/bgae031
Zhao, J., Wu, J., Qin, Y., Zhang, W., Huang, G. and Qin, L. (2020) LncRNA PVT1 Induces Aggressive Vasculogenic Mimicry Formation through Activating the STAT3/Slug Axis and Epithelial-to-Mesenchymal Transition in Gastric Cancer. Cellular Oncology, 43, 863-876. >https://doi.org/10.1007/s13402-020-00532-6
Li, Y., Wu, Z., Yuan, J., Sun, L., Lin, L., Huang, N., et al. (2017) Long Non-Coding RNA MALAT1 Promotes Gastric Cancer Tumorigenicity and Metastasis by Regulating Vasculogenic Mimicry and Angiogenesis. Cancer Letters, 395, 31-44. >https://doi.org/10.1016/j.canlet.2017.02.035