acm Advances in Clinical Medicine 2161-8712 2161-8720 beplay体育官网网页版等您来挑战! 10.12677/acm.2025.153861 acm-110068 Articles 医药卫生 长链非编码RNA在胃癌血管生成中的研究进展
Research Progress of Long Non-Coding RNAs in Gastric Cancer Angiogenesis
1 王长友 2 华北理工大学临床医学院,河北 唐山 华北理工大学附属医院胃肠肿瘤外科,河北 唐山 04 03 2025 15 03 2240 2245 21 2 :2025 14 2 :2025 14 3 :2025 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 胃癌是全球最常见的恶性肿瘤之一,也是导致癌症相关死亡的主要原因之一。血管生成是肿瘤生长和转移的关键过程,异常的血管生成在胃癌的发生和发展中起着重要作用。近年来,长链非编码RNA作为一类不编码蛋白质但具有重要功能的分子,在肿瘤血管生成中发挥了关键作用。长链非编码RNA通过调控血管内皮生长因子信号通路、血管生成拟态及内皮细胞的活性等途径,促进胃癌血管生成,推动肿瘤进展。本文主要综述了长链非编码RNA在胃癌血管生成中的研究进展,并探讨了其通过不同机制影响胃癌血管生成的分子机制。
Gastric cancer is one of the most prevalent malignant tumors globally and a leading cause of cancer-related mortality. Angiogenesis plays a pivotal role in tumor growth and metastasis, with aberrant vascular formation being a key factor in the onset and progression of gastric cancer. In recent years, long non-coding RNAs (lncRNAs), which do not encode proteins but perform critical regulatory functions, have emerged as significant contributors to tumor angiogenesis. LncRNAs modulate angiogenesis in gastric cancer by regulating the Vascular Endothelial Growth Factor (VEGF) signaling pathway, vascular mimicry, and endothelial cell activity, thereby promoting tumor vascularization and progression. This review summarizes the research advances in lncRNAs in gastric cancer angiogenesis and explores the molecular mechanisms through which they influence gastric cancer through different mechanisms.
长链非编码RNA,胃癌,血管生成
Long Non-Coding RNA
Gastric Cancer Angiogenesis
1. 引言

胃癌(Gastric Cancer, GC)是全球范围内最常见的恶性肿瘤之一,也是癌症相关死亡的主要原因之一 [1] 。据WHO的数据显示,胃癌在癌症发病率中排名第五,每年约有96.9万新病例被确诊,同时胃癌是导致癌症死亡的第三大原因,每年造成超过66万人死亡 [2] 。胃癌的发病率具有显著的地域性,主要集中在东亚、东欧、南美等地区,尤其是在中国、日本和韩国等国家,胃癌的发病率相对较高 [3] 。如何有效地抑制肿瘤的生长和扩散,仍然是胃癌治疗中面临的主要挑战之一。血管生成(Angiogenesis)是指现有的毛细血管及毛细血管后微静脉形式生成新血管的过程 [4] 。然而,在胃癌中,肿瘤微环境的变化往往会导致血管生成的异常激活,这种病理性血管生成是癌症的关键标志之一 [5] 。1971年,Folkman提出肿瘤的生长与转移依赖于血管生成 [6] 。研究证实,抑制血管生成可以抑制肿瘤进展,针对血管生成相关因子及信号通路开发的药物已经成为抗肿瘤治疗的新靶点 [7] 。长链非编码核糖核酸(Long non-coding Ribonucleic Acid, LncRNA)是指一类其长度跨越超过200个核苷酸碱基序列,但并不具备编码蛋白质功能的核糖核酸分子 [8] 。尽管lncRNA不编码蛋白质,但它们通过多种机制调控基因表达,包括转录、转录后及表观遗传调控。研究表明,lncRNA在胃癌血管生成过程中起到重要作用,例如通过调控VEGF信号通路、血管生成拟态(VM)和内皮细胞的活性来影响血管生成 [9] 。现将lncRNA在胃癌血管生成中的作用及分子机制研究进展综述如下,以期为临床医生在胃癌治疗中提供治疗依据。

2. lncRNA影响胃癌血管内皮生成因子的分泌

血管内皮生长因子(VEGF)家族及其受体(VEGFR)被认为是血管生成的中心介质 [10] 。VEGF家族包括五种结构和功能相关的蛋白,即VEGF-A、VEGF-B、VEGF-C、VEGF-D和胎盘生长因子(PlGF) [11] 。VEGFR (血管内皮生长因子受体)是VEGF家族信号传导的主要受体,其家族成员包括VEGFR-1、VEGFR-2和VEGFR-3,在血管和淋巴管生成中起关键作用。其中,VEGFR-2尤其重要,主要负责调控血管内皮细胞的增殖、迁移和管腔形成,在肿瘤的血管生成及恶性进展中发挥广泛作用。

多种lncRNA被发现通过不同信号通路上调VEGF家族成员或VEGFR的表达,从而促进胃癌的血管生成。例如,PVT1通过激活STAT3/VEGFA轴上调VEGFA,从而显著促进胃癌的血管生成及肿瘤进展 [12] ;TUG1则通过靶向miR-29c-3p间接上调VEGFA,增强胃腺癌细胞的血管生成能力并提升其侵袭性 [13] 。此外,CRART16通过竞争性内源RNA (ceRNA)机制调控胃癌血管生成的过程。具体而言,CRART16通过与miR-122-5p结合,抑制miR-122-5p对其靶基因FOS的抑制作用。FOS,作为转录因子AP-1复合物的重要成员,能够通过上调VEGF-D的表达,显著促进胃癌中的血管生成。VEGF-D通过与其受体VEGFR-2结合,激活血管生成相关通路,推动肿瘤的生长与转移。研究表明,CRART16的过表达不仅增强了VEGF-D的表达,还促进了胃癌细胞对抗血管生成治疗(如贝伐单抗)的耐药性。CRART16通过miR-122-5p/FOS/VEGF-D轴在胃癌中的血管生成过程中起着关键作用,揭示了lncRNA在肿瘤微环境中的复杂调控网络,为胃癌的早期诊断与治疗提供了新的分子靶点 [14] 。在调控VEGFR方面,NKX2-1-AS1可通过上调SERPINE1激活VEGFR-2信号通路,促进胃癌细胞的血管生成及侵袭,加速肿瘤进展 [15]

值得注意的是,VEGF-A是血管形成和血管通透性的主要调节因子,在肿瘤的生长、增殖、侵袭、转移、血管生成和耐药性等过程中发挥着不可替代的作用 [16] 。在早期的研究中,VEGF-D通常被认为是调控淋巴管生成的关键分子 [17] ,但最近的研究显示,VEGF-D也能调控胃癌的血管生成 [14] 。这些研究揭示了lncRNA通过复杂的调控机制上调VEGF家族成员及VEGFR表达,以驱动胃癌的血管生成过程,为抗血管生成治疗提供了潜在靶点。

3. lncRNA通过ceRNA机制影响胃癌血管生成

竞争性内源RNA (competing endogenous RNA, ceRNA)网络是由lncRNA、miRNA和mRNA之间相互作用形成的基因表达调控新模式,这是一种典型的转录后调控方式 [18] 。在CeRNA网络中,lncRNA可以充当miRNA的“海绵”,通过吸附miRNA以减少miRNA对mRNA的抑制作用,从而达到维持基因稳定的目的,进而调控细胞功能和促进肿瘤等病理过程的发生与发展 [19]

在胃癌中,HNF1A-AS1通过吸附miR-30b-3p,进而上调PIK3CD的表达。PIK3CD是PI3K/AKT信号通路的重要组成部分。HNF1A-AS1通过这种机制激活PI3K/AKT信号通路,增加VEGF-A与VEGF-C的表达促进肿瘤的血管生成和淋巴管生成,加速了胃癌的进展 [20] 。此外,LncRNA NKX2-1-AS1被认为是胃癌潜在的预后指标和治疗靶点,它能够促进胃癌的血管生成和进展。其作用机制是,NKX2-1-AS1通过竞争性结合miR-145-5p,抑制miR-145-5p的功能,进而上调SERPINE1的表达。SERPINE1作为VEGFR-2信号通路的上游分子,能够调控VEGFR-2的活性,增加血管生成 [15] 。另一项研究显示,作为一种新的血管生成调节因子,LncRNA NEAT1在胃癌中表达上调,并且与更差的预后相关。其具体机制是,LncRNA NEAT1通过吸附miR-17-5p,进而上调TGFβR2的表达。TGFβR2作为TGF-β信号通路的一个关键受体,能够激活下游的Smad通路,调控VEGF的表达,促进血管生成 [21]

4. lncRNA通过表观遗传调控影响胃癌血管生成

有研究表明,lncRNA不仅通过ceRNA机制调控miRNA的活性,还可能通过招募表观遗传修饰酶,影响血管生成相关基因的转录水平。因此,ceRNA与表观遗传调控机制在胃癌血管生成中的作用可能是相辅相成的,二者的相互作用值得进一步探索。研究显示,位于细胞核的lncRNA主要在转录过程中起调控作用,而当lncRNA定位于细胞质时则调控转录后水平 [22] 。最近的研究揭示,lncRNA能通过与DNA、RNA及蛋白质等生物大分子相互作用,在基因表达调控中发挥多维度作用,其调控网络覆盖表观遗传修饰、转录水平调控、转录后加工调控以及翻译后蛋白修饰等关键生物学过程 [23] 。lncRNA作为表观调控因子在介导肿瘤血管生成、EMT以及细胞侵袭转移等过程中发挥关键作用 [24] [25]

Zhao等人发现,长链非编码RNA PVT1可通过促进胃癌血管生成显著加速体内外肿瘤进展。其具体机制为:PVT1在细胞核内直接与磷酸化信号转导,与转录激活因子3 (STAT3)发生特异性结合,通过抑制该蛋白的多聚泛素化修饰及蛋白酶体依赖性降解途径,有效维持磷酸化STAT3的蛋白稳定性。这种核内相互作用可激活STAT3信号通路,进而上调血管内皮生长因子A (VEGFA)的表达水平,最终驱动胃癌血管新生过程 [12] 。另一项研究返现,LINC00501主要定位于细胞核,并通过直接结合异质性核糖核蛋白R (hnRNPR),将其招募至EMT关键转录因子SLUG的启动子区域,增强SLUG的转录激活能力。SLUG上调后,可显著促进VEGFA和基质细胞衍生因子12 (CXCL12)的表达,从而加速胃癌血管新生过程。此外,该研究还发现H3K27乙酰化(H3K27ac)在LINC00501启动子区域富集,并通过P300乙酰转移酶的介导,显著促进LINC00501的异常表达 [26] 。Wang等人发现,LINC01021通过调控转录因子CDX2的磷酸化状态,介导胃癌抑癌基因KISS1的表观遗传调控,进而影响胃癌的侵袭和血管生成,未来可通过小分子抑制剂或RNA干扰技术,靶向LINC01021/CDX2/CDK2轴,恢复KISS1的表达,以抑制胃癌进展 [27]

5. lncRNA影响胃癌血管生成拟态

在1999年的研究中,研究人员首次展示了即使在缺乏内皮细胞的情况下,高度侵袭性黑色素瘤细胞仍能再现人类肿瘤组织中结构化的血管通道。这一现象被命名为血管生成拟态 [28] 。近年来,随着研究的深入,血管生成拟态已被证实在多种恶性肿瘤中广泛存在。与传统的血管生成不同,血管生成拟态不依赖于内皮细胞,而是由肿瘤细胞自行构建血管通道,并伴随有细胞外基质的密集沉积 [29] 。血管的特征包括CD31/CD34阴性、PAS阳性细胞以及红细胞出现在血管内 [30]

在胃癌中血管生成拟态往往预示着更短的总生存期、更差的病理学分级、更高的临床分期 [31] 。LncRNA已被证实在胃癌血管生成拟态的形成中发挥重要的调控作用。例如UCA1通过海绵吸附miR-1-3p解除其对凋亡蛋白及PI3K/AKT通路的抑制,直接促进血管生成拟态的形成 [32] ;PVT1则激活STAT3/Slug轴,驱动上皮–间质转化并增强VE-cadherin表达,诱导肿瘤细胞模拟内皮管道结构 [33] ;而MALAT1通过协调VE-cadherin/β-catenin复合体、ERK/MMP信号以及FAK/paxillin通路,协同促进细胞迁移、基质重塑及血管生成拟态形成 [34] 。这些lncRNA的高表达均与胃癌血管生成拟态密度增加、侵袭转移及不良预后显著相关,提示其作为治疗靶点及预后标志物的潜力。

6. 总结与展望

本综述深入了解了lncRNA在胃癌血管生成中的分子机制,尤其是与其密切相关的在血管生成中的作用,对于开发新的治疗策略具有重要意义。未来的研究需要进一步揭示不同lncRNA在肿瘤微环境中的作用网络,探索它们如何与其他分子相互作用,共同调控血管生成过程。随着精准医学的发展,基于lncRNA的诊断和治疗策略有望为胃癌患者提供新的治疗选择。通过深入研究lncRNA在胃癌血管生成中的作用机制,不仅能为胃癌的早期诊断、预后评估提供新的视角,还可能为肿瘤的个性化治疗开辟新的路径。综上所述,lncRNA在胃癌血管生成中的作用不仅为我们提供了新的生物标志物和治疗靶点,也为胃癌的精准治疗带来了新的希望。未来的研究应致力于揭示更多lncRNA与胃癌相关的分子机制,推动其在临床治疗中的应用。

NOTES

*通讯作者。

References Thrift, A.P. and El-Serag, H.B. (2020) Burden of Gastric Cancer. Clinical Gastroenterology and Hepatology, 18, 534-542. >https://doi.org/10.1016/j.cgh.2019.07.045 Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. >https://doi.org/10.3322/caac.21834 Arnold, M., Abnet, C.C., Neale, R.E., Vignat, J., Giovannucci, E.L., McGlynn, K.A., et al. (2020) Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology, 159, 335-349.e15. >https://doi.org/10.1053/j.gastro.2020.02.068 Yu, P., Wang, Y., Yuan, D., Sun, Y., Qin, S. and Li, T. (2023) Vascular Normalization: Reshaping the Tumor Microenvironment and Augmenting Antitumor Immunity for Ovarian Cancer. Frontiers in Immunology, 14, Article 1276694. >https://doi.org/10.3389/fimmu.2023.1276694 Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. >https://doi.org/10.1016/j.cell.2011.02.013 Sherwood, L.M., Parris, E.E. and Folkman, J. (1971) Tumor Angiogenesis: Therapeutic Implications. New England Journal of Medicine, 285, 1182-1186. >https://doi.org/10.1056/nejm197111182852108 Lugano, R., Ramachandran, M. and Dimberg, A. (2019) Tumor Angiogenesis: Causes, Consequences, Challenges and Opportunities. Cellular and Molecular Life Sciences, 77, 1745-1770. >https://doi.org/10.1007/s00018-019-03351-7 Teng, F., Zhang, J., Chang, Q., Wu, X., Tang, W., Wang, J., et al. (2020) Correction to: LncRNA MYLK-AS1 Facilitates Tumor Progression and Angiogenesis by Targeting miR-424-5p/E2F7 Axis and Activating VEGFR-2 Signaling Pathway in Hepatocellular Carcinoma. Journal of Experimental&Clinical Cancer Research, 39, Article No. 277. >https://doi.org/10.1186/s13046-020-01780-y Zhang, S., Xia, Y., Chen, W., Dong, H., Cui, B., Liu, C., et al. (2024) Regulation and Therapeutic Application of Long Non-Coding RNA in Tumor Angiogenesis. Technology in Cancer Research&Treatment, 23, 1-16. >https://doi.org/10.1177/15330338241273239 Deng, F., Zhou, R., Lin, C., Yang, S., Wang, H., Li, W., et al. (2019) Tumor-Secreted Dickkopf2 Accelerates Aerobic Glycolysis and Promotes Angiogenesis in Colorectal Cancer. Theranostics, 9, 1001-1014. >https://doi.org/10.7150/thno.30056 Dakowicz, D., Zajkowska, M. and Mroczko, B. (2022) Relationship between VEGF Family Members, Their Receptors and Cell Death in the Neoplastic Transformation of Colorectal Cancer. International Journal of Molecular Sciences, 23, Article 3375. >https://doi.org/10.3390/ijms23063375 Zhao, J., Du, P., Cui, P., Qin, Y., Hu, C., Wu, J., et al. (2018) LncRNA PVT1 Promotes Angiogenesis via Activating the STAT3/VEGFA Axis in Gastric Cancer. Oncogene, 37, 4094-4109. >https://doi.org/10.1038/s41388-018-0250-z Jin, Y., Cao, J., Hu, X. and Cheng, H. (2021) Long Noncoding RNA TUG1 Upregulates VEGFA to Enhance Malignant Behaviors in Stomach Adenocarcinoma by Sponging miR‐29c‐3p. Journal of Clinical Laboratory Analysis, 35, e24106. >https://doi.org/10.1002/jcla.24106 Zhang, J., Pang, X., Lei, L., Zhang, J., Zhang, X., Chen, Z., et al. (2022) LncRNA CRART16/miR-122-5p/FOS Axis Promotes Angiogenesis of Gastric Cancer by Upregulating VEGFD Expression. Aging, 14, 4137-4157. >https://doi.org/10.18632/aging.204078 Teng, F., Zhang, J., Chen, Y., Shen, X., Su, C., Guo, Y., et al. (2021) LncRNA NKX2‐1‐AS1 Promotes Tumor Progression and Angiogenesis via Upregulation of SERPINE1 Expression and Activation of the VEGFR‐2 Signaling Pathway in Gastric Cancer. Molecular Oncology, 15, 1234-1255. >https://doi.org/10.1002/1878-0261.12911 Claesson‐Welsh, L. and Welsh, M. (2013) VEGFA and Tumour Angiogenesis. Journal of Internal Medicine, 273, 114-127. >https://doi.org/10.1111/joim.12019 Yonemura, Y., Endo, Y., Tabata, K., Kawamura, T., Yun, H., Bandou, E., et al. (2005) Role of VEGF-C and VEGF-D in Lymphangiogenesis in Gastric Cancer. International Journal of Clinical Oncology, 10, 318-327. >https://doi.org/10.1007/s10147-005-0508-7 Wang, L., Cho, K.B., Li, Y., Tao, G., Xie, Z. and Guo, B. (2019) Long Noncoding RNA (LncRNA)-Mediated Competing Endogenous RNA Networks Provide Novel Potential Biomarkers and Therapeutic Targets for Colorectal Cancer. International Journal of Molecular Sciences, 20, Article 5758. >https://doi.org/10.3390/ijms20225758 Wu, X., Sui, Z., Zhang, H., Wang, Y. and Yu, Z. (2020) Integrated Analysis of LncRNA-Mediated Cerna Network in Lung Adenocarcinoma. Frontiers in Oncology, 10, Article 554759. >https://doi.org/10.3389/fonc.2020.554759 Liu, H., Ma, R., Lv, B., Zhang, H., Shi, D., Guo, X., et al. (2020) LncRNA-HNF1A-AS1 Functions as a Competing Endogenous RNA to Activate PI3K/AKT Signalling Pathway by Sponging miR-30b-3p in Gastric Cancer. British Journal of Cancer, 122, 1825-1836. >https://doi.org/10.1038/s41416-020-0836-4 Xu, Y., Li, Y., Qiu, Y., Sun, F., Zhu, G., Sun, J., et al. (2021) LncRNA NEAT1 Promotes Gastric Cancer Progression through miR-17-5p/TGFβR2Axis Up-Regulated Angiogenesis. Frontiers in Cell and Developmental Biology, 9, Article 705697. >https://doi.org/10.3389/fcell.2021.705697 Zhu, Y., You, J., Wei, W., Gu, J., Xu, C. and Gu, X. (2021) Downregulated LncRNA RCPCD Promotes Differentiation of Embryonic Stem Cells into Cardiac Pacemaker-Like Cells by Suppressing HCN4 Promoter Methylation. Cell Death&Disease, 12, Article No. 667. >https://doi.org/10.1038/s41419-021-03949-5 林秀, 孙赛, 毛越苹. 长链非编码RNA在硬皮病表观遗传学发病机制中的研究进展[J]. 广东医学, 2019, 40(S1): 227-229. Guo, X., Wang, Y., Zha, L., Li, H. and Qian, K. (2023) DNA Methylation-Related LncRNAs Predict Prognosis and Immunotherapy Response in Gastric Cancer. Journal of Cancer Research and Clinical Oncology, 149, 14745-14760. >https://doi.org/10.1007/s00432-023-05234-8 Elimam, H., Abdel Mageed, S.S., Hatawsh, A., Moussa, R., Radwan, A.F., Elfar, N., et al. (2024) Unraveling the Influence of LncRNA in Gastric Cancer Pathogenesis: A Comprehensive Review Focus on Signaling Pathways Interplay. Medical Oncology, 41, Article No. 218. >https://doi.org/10.1007/s12032-024-02455-w Dou, R., Han, L., Yang, C., Fang, Y., Zheng, J., Liang, C., et al. (2023) Upregulation of LINC00501 by H3K27 Acetylation Facilitates Gastric Cancer Metastasis through Activating Epithelial‐Mesenchymal Transition and Angiogenesis. Clinical and Translational Medicine, 13, e1432. >https://doi.org/10.1002/ctm2.1432 Wang, Y., Jiang, R., Wang, Q., Li, Y., Sun, Z. and Zhao, H. (2021) Silencing LINC01021 Inhibits Gastric Cancer through Upregulation of KISS1 Expression by Blocking CDK2-Dependent Phosphorylation of CDX2. Molecular Therapy—Nucleic Acids, 24, 832-844. >https://doi.org/10.1016/j.omtn.2021.01.025 Maniotis, A.J., Folberg, R., Hess, A., Seftor, E.A., Gardner, L.M.G., Pe’er, J., et al. (1999) Vascular Channel Formation by Human Melanoma Cells in Vivo and in Vitro: Vasculogenic Mimicry. The American Journal of Pathology, 155, 739-752. >https://doi.org/10.1016/s0002-9440(10)65173-5 Hao, X.S., Sun, B.C., Zhang, S.W., et al. (2003) Correlation between the Expression of Collgen IV, VEGF and Vasculogenic Mimicry. Chinese Journal of Oncology, 25, 524-526. Chen, Y. and Chen, Z. (2014) Vasculogenic Mimicry: A Novel Target for Glioma Therapy. Chinese Journal of Cancer, 33, 74-79. >https://doi.org/10.5732/cjc.012.10292 Wang, J., Xia, W., Huang, Y., Li, H., Tang, Y., Li, Y., et al. (2022) A Vasculogenic Mimicry Prognostic Signature Associated with Immune Signature in Human Gastric Cancer. Frontiers in Immunology, 13, Article 1016612. >https://doi.org/10.3389/fimmu.2022.1016612 Lu, Y., Yang, B., Shen, A., Yu, K., Ma, M., Li, Y., et al. (2024) LncRNA UCA1 Promotes Vasculogenic Mimicry by Targeting miR-1-3p in Gastric Cancer. Carcinogenesis, 45, 658-672. >https://doi.org/10.1093/carcin/bgae031 Zhao, J., Wu, J., Qin, Y., Zhang, W., Huang, G. and Qin, L. (2020) LncRNA PVT1 Induces Aggressive Vasculogenic Mimicry Formation through Activating the STAT3/Slug Axis and Epithelial-to-Mesenchymal Transition in Gastric Cancer. Cellular Oncology, 43, 863-876. >https://doi.org/10.1007/s13402-020-00532-6 Li, Y., Wu, Z., Yuan, J., Sun, L., Lin, L., Huang, N., et al. (2017) Long Non-Coding RNA MALAT1 Promotes Gastric Cancer Tumorigenicity and Metastasis by Regulating Vasculogenic Mimicry and Angiogenesis. Cancer Letters, 395, 31-44. >https://doi.org/10.1016/j.canlet.2017.02.035
Baidu
map