acm Advances in Clinical Medicine 2161-8712 2161-8720 beplay体育官网网页版等您来挑战! 10.12677/acm.2025.153871 acm-110135 Articles 医药卫生 COVID-19与月经不规则及异常子宫出血之间的关系:一项两样本孟德尔随机分析
Association between COVID-19 and Irregular Menstruation and Abnormal Uterine Bleeding: A Two-Sample Mendelian Randomized Analysis
崔紫程 1 陈爱平 2 青岛大学青岛医学院,山东 青岛 青岛大学附属医院妇产科,山东 青岛 04 03 2025 15 03 2357 2368 25 2 :2025 18 2 :2025 18 3 :2025 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 观察性研究发现,在2019冠状病毒大流行期间,女性月经不调、异常子宫出血的发病率较前增加,但没有研究证明两者之间存在因果关系。孟德尔随机化分析可以使用独立于混杂因素的遗传变异来获得因果关系的估计。我们旨在通过MR分析探讨COVID-19感染与异常子宫出血及月经不规则之间的因果关系。采用逆方差加权法(IVW)进行主要分析,并进行敏感性分析和多变量MR分析。结果发现,不同疾病程度的COVID-19患者与子宫内膜息肉存在因果关系,感染、患有严重的呼吸道疾病、住院患者的p值分别为0.0376、0.0298、0.00281,当COVID-19病毒感染进展到严重呼吸道疾病和住院阶段时,月经大出血的风险增大,p值分别为0.0432和0.0338。当接受MR-Egger回归法作为结果时,感染新冠肺炎病毒与宫颈息肉之间存在因果关系(p = 0.0490),因新冠肺炎住院的患者得子宫内膜恶性肿瘤的风险增大(p = 0.0310)。我们进一步研究了COVID-19与可能导致月经不规则的激素之间的关系,发现COVID-19可以影响宿主雌二醇和前列腺素E2的表达(COVID-19感染与前列腺素E2 p = 0.011;COVID-19感染患有严重呼吸道疾病病例与雌二醇p = 0.005;COVID-19感染住院病例与雌二醇p = 0.027)。综上所述,不同程度的新冠肺炎感染增加了女性月经大出血、子宫息肉甚至子宫内膜恶性肿瘤的风险,新冠肺炎感染同样会导致女性雌二醇及前列腺素E2水平降低,这可能进一步影响女性月经。
Observational studies have identified a rise in the incidence of irregular menstruation and abnormal uterine bleeding among women during the COVID-19 pandemic. However, no studies have established a causal link between the two. Mendelian randomization analysis leverages genetic variation, which is independent of confounding factors, to estimate causality. Our aim was to explore the causal relationship between COVID-19 infection and abnormal uterine bleeding as well as irregular menstruation using MR analysis. The main analysis employed the variance inverse weighting method (IVW). Sensitivity analysis and multivariate MR analysis were also conducted. The results indicated a causal relationship between patients with varying disease severity and endometrial polyps, with p-values for patients with infection, severe respiratory disease, and hospitalization being 0.0376, 0.0298, and 0.00281, respectively. As COVID-19 virus infection progressed to severe respiratory disease and hospitalization stages, the risk of heavy menstrual bleeding increased, with p-values of 0.0432 and 0.0338, respectively. When the MR-Egger regression method was considered, there was a causal relationship between COVID-19 virus infection and cervical polyps (p = 0.0490), and the risk of endometrial malignancies in hospitalized patients due to COVID-19 also increased (p = 0.0310). We further investigated the relationship between COVID-19 and hormones that may cause menstrual irregularities. We found that COVID-19 can affect the expression of estradiol and prostaglandin E2 in the host (p = 0.011 for COVID-19 infection and prostaglandin E2; p = 0.005 for patients with severe respiratory disease and estradiol p; p = 0.027 for inpatients with COVID-19 infection and estradiol). In summary, varying degrees of COVID-19 infection elevates the risk of heavy menstrual bleeding, uterine polyps, and even endometrial malignancies in women. COVID-19 infection also leads to lower levels of estradiol and prostaglandin E2 in women, which may further impact their menstruation.
COVID-19,月经不规则,异常的子宫出血,孟德尔随机化,雌激素,前列腺素E2
COVID-19
Irregular Menstruation Abnormal Uterine Bleeding Mendelian Randomization Estrogen Prostaglandin E2
1. 背景

由严重急性呼吸系统综合征冠状病毒2型(SARS-CoV-2)引起的2019冠状病毒病(COVID-19)是一场全球性的流行病,已导致严重的健康危机。COVID-19的主要症状是呼吸系统症状,如感冒、发烧和咳嗽,并可能导致一些不良结局,如肺炎、支气管炎和严重急性呼吸综合征 [1] 。在随后的研究中发现,SARS-CoV-2感染能够引起多系统病变,包括心血管系统 [2] 、肾脏疾病 [3] 和神经系统病变等 [4]

随着新冠肺炎防控措施的开放,临床观察到许多女性感染新冠肺炎后出现月经周期不规律、异常子宫出血或绝经后阴道出血等症状。在美国亚利桑那州开展的一项关于COVID-19长期后果的队列研究中,在一组由127名年龄在18~45岁的非怀孕女性SARS-CoV-2阳性参与者组成的子样本中,16%的人报告了月经周期的变化,包括月经不规律(60%)和月经周期延长(35%) [5] 。2021年3月,英国开展了一项名为“COVID-19大流行与妇女生殖健康”的在线调查 [6] ,其中指出有COVID-19疾病史的育龄期女性出现了月经周期缩短、月经量增大、月经持续时间延长等月经周期改变。相比之下,SARS-CoV-2与在护士健康研究 [7] 中,未观察到感染和月经周期变化相关性。在该样本中,与疫苗接种(n = 3527, 91%)相比,SARS-CoV-2感染的患病率较低(n = 421, 11%),超过一半的COVID-19阳性个体(n = 223)在感染前接种了疫苗,这可能限制了研究检测小到中度影响的能力。虽然COVID-19感染已不再被视为重大国际公共卫生问题,但仍有暴发流行的可能,因此对COVID-19感染潜在后果的研究不能停止。

月经是女性生殖系统的一种周期性生理现象,其正常与否与多种激素的协同作用密切相关,其中包括雌激素(Estrogen)、孕激素(Progesterone)、卵泡刺激素(Follicle Stimulating Hormone, FSH)、黄体生成素(Luteinizing Hormone, LH)、前列腺素(Prostaglandin)和泌乳素(Prolactin)。异常子宫出血(Abnormal Uterine Bleeding, AUB)可以根据有无结构性改变分为两类:有结构改变引起的包括子宫内膜息肉(Polyp)所致AUB (AUB-P)、子官腺肌病(Adenomyosis)所致AUB (AUB-A)、子官平滑肌瘤(Leiomyoma)所致AUB (AUB-L)、子官内膜恶变和不典型增生所致AUB (AUB-M);没有结构改变的异常子宫出血包括全身凝血相关疾病(Coagulopathy)所致AUB (AUB-C)、排卵障碍(Ovulatory Dysfunction)相关的AUB (AUB-O)、子宫内膜局部异常(Endometrial)所致AUB (AUB-E)、医源性(Iatrogenic) AUB (AUB-J)、未分类(Not Yet Classified)的AUB (AUB-N)。

孟德尔随机化(Mendelian Randomization, MR)是一种流行病学方法,已被广泛应用于评估暴露与结果之间的潜在因果关系 [8] 。根据孟德尔定律,基因变异在减数分裂时是随机分配的 [9] 。MR分析使用遗传变异作为工具变量(IVs),可以最大限度地减少混杂因素或反向因果关系的影响。鉴于目前研究方法的局限性,我们试图使用MR方法评估月经紊乱、异常子宫出血及相关因素与COVID-19结局的潜在影响和因果关系。

2. 材料和方法

我们首先基于COVID-19宿主遗传学倡议的GWAS水平汇总数据进行两样本孟德尔随机化(Two Sample Mendelian Randomization, TSMR)分析,探讨异常子宫出血、月经频繁和月经不规则、绝经后阴道流血与COVID-19感染之间的因果关系。然后我们进行了COVID-19感染与月经紊乱相关因素如雌激素、黄体生成素、卵泡刺激素、睾酮、前列腺素E2等的因果分析。本研究的设计如 图1 所示。

2.1. 数据来源:COVID-19宿主遗传学倡议

采用全基因组关联研究(GWAS)数据库进行双样本孟德尔随机化研究。COVID-19的GWASs数据来自COVID-19宿主遗传学倡议 [10] [11] ,这是一项旨在阐明宿主遗传因素在SARS-CoV-2病毒大流行易感性和严重程度中作用的全球倡议。新冠肺炎汇总数据可根据对照分组分为新冠肺炎感染病例与正常人群(ebi-a-GCST011071, ebi-a-GCST011072, ebi-a-GCST011073, ebi-a-GCST011074),新冠肺炎确诊为严重呼吸道疾病病例与正常人群(ebi-a-GCST011075, ebi-a-GCST011076, ebi-a-GCST011077, ebi-a-GCST011078),新冠肺炎住院病例与非住院病例(ebi-a-GCST011079, ebi-a-GCST011080)及因新冠肺炎住院病例与正常人群(ebi-a-GCST011081, ebi-a-GCST011082, ebi-a-GCST011083, ebi-a-GCST011084),具体内容可见 表1 。此数据根据患者的年龄、性别等进行调整,所有病例均通过了明确的临床诊断。

Figure 1. A two-sample Mendelian randomization study design of COVID-19 infection associated with irregular menstruation, abnormal uterine bleeding, and hormones associated with menstruation--图1. COVID-19感染与月经不规则及子宫异常出血、月经相关激素有关的两样本孟德尔随机化研究设计-- <xref></xref>Table 1. The details of IVWs of COVID-19Table 1. The details of IVWs of COVID-19 表1. COVID-19工具变量详情

暴露因素

GWAS ID

发表年份

样本量

SNPs

数目

来源

感染病例

ebi-a-GCST011071

2020

1,588,783

8,103,014

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST011071/

ebi-a-GCST011072

2020

1,058,410

7,750,967

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST011072/

ebi-a-GCST011073

2020

1,683,768

8,660,177

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST011073/

ebi-a-GCST011074

2020

1,348,071

8,666,451

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST011074/

严重呼吸道疾病病例

ebi-a-GCST011075

2020

1,388,342

9,739,225

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST011075/

ebi-a-GCST011076

2020

707,407

7,475,770

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST011076/

ebi-a-GCST011077

2020

1,059,456

7,496,658

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST011077/

ebi-a-GCST011078

2020

1,059,456

9,817,241

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST011078/

新冠肺炎住院病例与非住院病例

ebi-a-GCST011079

2020

10,365

4,971,116

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST011079/

ebi-a-GCST011080

2020

16,645

8,360,206

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST011080/

新冠肺炎住院病例

ebi-a-GCST011081

2020

1,887,658

8,107,040

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST011081/

ebi-a-GCST011082

2020

1,557,411

6,814,406

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST011082/

ebi-a-GCST011083

2020

1,557,411

8,110,403

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST011083/

ebi-a-GCST011084

2020

1,206,629

7,534,178

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST011084/

2.2. 月经紊乱、异常子宫出血的遗传工具

英国生物银行(UKB)是英国最大的关于导致或预防疾病遗传和环境因素的信息库。该项目收集了50万名年龄在40岁至69岁之间的英国志愿者的基因信息、血液样本、生活方式和环境暴露数据,并在之后的几十年里追踪他们的健康记录 [12] 。根据ICD-10的诊断标准,我们的研究获得了UKBB的子宫和阴道异常出血、月经过度频繁和不规则、月经大出血、绝经后阴道流血、子宫肌瘤、子宫腺肌病、子宫息肉及宫颈息肉的GWAS数据。子宫内膜恶性肿瘤的GWAS数据来源于一项关于220种人类深层表型全基因组关联研究 [13] ,详见 表2

<xref></xref>Table 2. The details of IVWs of menstrual disorder and AUBTable 2. The details of IVWs of menstrual disorder and AUB 表2. 月经不规则、异常子宫出血工具变量的详情

结局因素

GWAS ID

发表年份

样本量

SNPs数目

来源

异常的子宫和阴道不明原因的出血

ukb-b-10849

2018

463,010

9,851,867

ukbiobank

月经频繁和月经不规则

ukb-a-578

2017

337,199

10,894,596

ukbiobank

绝经后阴道流血

ukb-b-5712

2018

463,010

9,851,867

ukbiobank

月经大出血

ukb-b-19719

2018

462,933

9,851,867

ukbiobank

子宫息肉

ukb-b-15136

2018

462,933

9,851,867

ukbiobank

宫颈息肉

ukb-b-19110

2018

463,010

9,851,867

ukbiobank

子宫肌瘤

ukb-a-522

2018

337,199

9,851,867

ukbiobank

子宫腺肌症

ukb-b-9668

2018

463,010

9,851,867

ukbiobank

子宫内膜恶性肿瘤

ebi-a-GCST90018838

2021

240,027

24,135,295

https://gwas.mrcieu.ac.uk/datasets/ebi-a-GCST90018838/

2.3. 月经相关激素的遗传工具

与月经相关的激素包括雌激素、LH、FSH、泌乳素、睾酮、前列腺素E2的GWAS汇总数据来自欧盟开放GWAS数据项目,仅包括欧洲人群 [14] - [19] 。其中,我们用雌二醇来代表雌激素在人体内的水平 [16] ,详见 表3

<xref></xref>Table 3. The details of IVWs of hormones associated with menstruationTable 3. The details of IVWs of hormones associated with menstruation 表3. 与月经相关激素工具变量详情

结局因素

GWAS ID

发表年份

样本量

SNPs数目

来源

雌二醇

ebi-a-GCST90020092

2020

163,985

7,488,193

PubMed ID: 32042192

FSH

prot-a-528

2021

3301

10,534,735

PubMed ID: 29875488

LH

prot-a-529

2021

3301

10,534,735

PubMed ID: 29875488

泌乳素

ebi-a-GCST90012030

2020

21,758

20,208,673

PubMed ID: 33067605

睾酮

ebi-a-GCST90012104

2020

382,988

16,137,327

PubMed ID: 32042192

前列腺素E2

ebi-a-GCST90019410

2020

10,708

15,566,910

PubMed ID: 33328453

2.4. 工具变量的选择

选择作为工具变量的SNP需要满足孟德尔随机化的三个假设:1) 与暴露相关;2) 独立,不受其他混杂影响;3) 只有暴露因素会对结局变量产生影响。我们设置了一个P < 5 × 106的SNP选择阈值,同时计算F值来检验工具变量的强度,并选择与F > 10作为强相关的工具变量。连锁不平衡系数设为r2 < 0.001,连锁不平衡距离的r2值为10000 kb。

2.5. 数据分析

所有统计分析均使用R软件4.3.3版中的TwoSampleMR R包进行。在这项MR研究中,逆方差加权(Inverse Variance Weighting, IVW)被用作估计总体效应大小的主要方法 [20] 。补充方法包括MR-Egger回归法和加权中位数(Weight Median, WM),用于验证MR结果的稳健性。MR-Presso显示原始Global Test p值 < 0.05,去除异常值后MR结果(p < 0.05)与原始结果有显著差异。Cochrane的Q值用于评估遗传工具估计值之间的异质性,如果未观察到异质性,则采用固定效应模型(p < 0.05);否则,采用随机效应模型。MR-Egger中截取的p值用于检测水平多效性。此外,我们使用“留一法”验证来确定单个SNP是否对MR估计具有显著的独立影响。

3. 结果 3.1. COVID-19与月经不规则及子宫异常出血的孟德尔随机分析

在我们的孟德尔随机研究中,根据MR中的IVW方法,不同疾病程度的COVID-19患者与子宫内膜息肉存在因果关系,感染、患有严重的呼吸道疾病、住院患者的p值分别为0.0376、0.0298、0.00281。当COVID-19病毒感染进展到严重呼吸道疾病和住院阶段时,月经大出血的风险增大,p值分别为0.0432和0.0338。SNPs对暴露和结果的估计效应大小显示在散点图中( 图1 )。研究结果与另外4种MR方法的敏感性分析一致。此外,Cochran’s Q检验和MR-Egger回归在子宫息肉中未发现SNP异质性和定向多效性之间的证据。当接受MR-Egger回归法作为结果时,感染新冠肺炎病毒与宫颈息肉之间存在因果关系(p = 0.0490),因新冠肺炎住院的患者得子宫内膜恶性肿瘤的风险增大(p = 0.0310)。IVW及其他两种方法的beta、se、p值如 表4 所示。 图2 展示了描述主要结果的散点图。

<xref></xref>Table 4. Mendelian randomized analysis of COVID-19 and irregular menstruation and abnormal uterine bleedingTable 4. Mendelian randomized analysis of COVID-19 and irregular menstruation and abnormal uterine bleeding 表4. COVID-19与月经不规则及子宫异常出血的孟德尔随机分析

暴露

结局

方法

SNP

Beta

Se

P-value

COVID-19感染病例

宫颈息肉

MR-Egger

8

0.000944152

0.00405596

0.823668623

Weighted Median

8

0.000974486

0.000896264

0.276915003

Inverse Variance Weighted

8

0.00144232

0.000694028

0.037692257

子宫息肉

MR-Egger

13

0.010681509

0.004830143

0.049095925

Weighted Median

13

−0.000509744

0.001105771

0.644809355

Inverse variance weighted

13

−0.001028386

0.000833324

0.217174223

严重呼吸道疾病病例

子宫息肉

MR-Egger

10

0.001672449

0.001182189

0.194876327

Weighted Median

10

0.000556754

0.000304477

0.067465912

Inverse Variance Weighted

10

0.000514765

0.000236979

0.029840981

月经大出血

MR-Egger

8

0.00219742

0.001049969

0.08127823

Weighted Median

8

0.000691156

0.00028732

0.016149135

Inverse Variance Weighted

8

0.000507868

0.000251205

0.043204201

COVID-19住院病例

子宫息肉

MR-Egger

13

0.000392972

0.001698672

0.821297219

Weighted Median

13

0.000984895

0.000357831

0.005915966

Inverse Variance Weighted

13

0.000772135

0.000258488

0.002816139

月经大出血

MR-Egger

12

0.003788508

0.001697342

0.049671771

Weighted Median

12

0.000676394

0.000320905

0.035051214

Inverse Variance Weighted

12

0.000501559

0.000236397

0.033864763

子宫内膜恶性肿瘤

MR-Egger

33

−0.220156583

0.097443657

0.031040062

WeightedMedian

33

−0.025761848

0.058692278

0.660711686

Inverse Variance Weighted

33

−0.013838251

0.041359809

0.737940354

图2. COVID-19与月经不规则及子宫异常出血的孟德尔随机分析散点图

3.2. COVID-19与月经相关激素的孟德尔随机化分析

我们进一步通过TSMR分析了COVID-19与雌二醇、FSH、LH、IGF-1、催乳素、DHEA-S睾酮、前列腺素E2之间的关系。其中,我们发现COVID-19与雌二醇、前列腺素E2之间存在显著性结果。Cochran’s Q检验和MR-Egger回归发现了SNP异质性和定向多效性之间的证据。IVW及其他两种方法的beta、se、p值如 表5 所示。 图3 展示了描述主要结果的散点图。

<xref></xref>Table 5. Mendelian randomization analysis of COVID-19 and menstrual-related hormonesTable 5. Mendelian randomization analysis of COVID-19 and menstrual-related hormones 表5. COVID-19与月经相关激素的孟德尔随机化分析

暴露

结局

Method

SNP

Beta

Se

P-value

COVID-19

疾病病例

前列腺素E2

MR-Egger

20

−0.131827476

0.204147488

0.526590898

Weighted Median

20

−0.126405422

0.081671163

0.121685802

Inverse Variance Weighted

20

−0.154712009

0.061157811

0.011415427

严重呼吸道疾病病例

雌二醇

MR-Egger

31

0.05541441

0.03691021

0.144081012

Weighted Median

31

0.048291752

0.019287424

0.012286929

Inverse Variance Weighted

31

0.038311368

0.013714806

0.00521521

COVID-19住院病例

雌二醇

MR-Egger

29

0.042900724

0.050472655

0.402810987

Weighted Median

29

0.077346316

0.03210824

0.015999623

Inverse Variance Weighted

29

0.050720295

0.022889121

0.026697476

图3. COVID-19与月经相关激素的孟德尔随机化分析散点图

4. 讨论

新型冠状病毒的传播极大地改变了人们的生活方式,给人们的健康造成了不可估量的危害。这种危害不仅反映在呼吸道症状上,还包括其他系统的许多其他潜在变化 [21] 。一些研究报告称,COVID-19病毒对女性和男性的影响不同,英国的一项前瞻性多中心队列研究发现,50岁以下的女性比同龄男性更容易感染COVID-19,尤其是年轻女性 [22]

COVID-19对女性生殖系统健康的影响引起了众多学者的关注 [21] 。中国武汉的一项回顾性横断面研究调查了COVID-19对育龄妇女卵巢储备功能、性激素和月经周期的影响 [23] ,在参与研究的177名患者中,28%的人月经周期发生了变化,25%的人月经量发生了变化。另一项针对育龄女性保健工作者的横断面研究也报告,新冠肺炎病毒大流行期间月经紊乱的程度明显高于之前,且伴有月经量和经期时间减少 [24] 。据我们所知,这是第一个研究COVID-19与月经不规则、异常子宫出血之间关系的因果研究。

MR利用受孕时基因变异的随机分配,独立于混杂因素,来识别混淆程度较低且不易发生反向因果关系的因果效应 [8] 。我们使用SNP作为工具变量来进行MR研究。三项分析提示COVID-19病毒感染对月经大出血、子宫息肉结局有因果影响。异质性分析和水平多效性分析也支持我们的结果。子宫内膜息肉是导致AUB的常见结构性因素,内源性雌激素增加、慢性炎症、肥胖等都可能导致子宫内膜息肉。子宫内膜易受全身炎症和应激的影响,子宫内膜月经生理异常可导致AUB-E,包括对局部炎症、血管功能、缺氧和组织修复的影响。月经期间的子宫内膜有许多典型的炎症标志物,与正常对照组相比,月经过多女性月经流出物中的促炎细胞因子肿瘤坏死因子α (TNF-α)和前列腺素含量更高 [25] - [27] 。Lucia等对COVID-19感染的子宫内膜进行了RNA测序,发现COVID-19改变了子宫内膜炎性环境,也可能间接影响子宫内膜导致月经不调 [28]

鉴于多次临床回顾性观察,发现COVID-19与月经周期改变存在相关性。我们进一步对COVID-19与月经相关激素的因果关系进行TSMR分析,发现COVID-19与雌二醇和前列腺素E2之间存在负相关因果关系。这表明COVID-19可能会影响雌二醇和前列腺素E2的分泌,进一步导致阴道不规则出血。但这只能部分解释COVID-19引起的阴道不规则出血。有证据表明,新型冠状病毒可引起宿主免疫失调,影响HPO轴,导致下丘脑性腺功能减退,引起暂时性闭经。更重要的是,COVID-19还可能通过引起凝血功能障碍导致月经大量出血 [29]

除了COVID-19感染引起的宿主病理生理变化导致阴道不规则出血外,医源性因素也是AUB的因素之一。一些用于治疗COVID-19早期症状的常见抗病毒药物含有细胞色素P450抑制剂(例如利托那韦)。因COVID-19住院的患者在治疗期间经常给予地塞米松,内源性糖皮质激素已被证明可抑制子宫内膜血管生成 [30] 。COVID-19疫苗引起的月经紊乱和绝经后阴道出血也引起了官方的关注 [31]

新冠肺炎病毒感染作为一个持续了3年的全球大流行感染,社会环境的巨变同样可能引起月经周期的改变。月经周期正常通常被视为女性生殖健康的外在标志,COVID-19病毒引起的月经紊乱和阴道不规则出血在大流行期间增加了女性的焦虑 [32] 。反过来,COVID-19造成的压力和心理困扰会导致月经不规律。这种恶性循环将导致妇女在社会恢复期间不能充分参与工作 [33] 。对COVID-19与月经不规律之间关系的因果分析将有助于临床医生解释新冠肺炎流行期间的不规则阴道出血及月经紊乱相关问题,并帮助患者缓解焦虑。Taha Takmaz对土耳其女性医护人员进行在线问卷调查,研究显示COVID-19大流行引起的焦虑、感知压力、抑郁症状与医疗保健提供者月经周期不规律患病率增加之间存在关联 [34] 。在此之前,也有文献研究了大规模灾害和其他传染病影响男性患严重急性呼吸系统综合症的病死率是否高于女性 [35] - [37] 。沙特阿拉伯的一项关于中东呼吸综合征冠状病毒(MERS-CoV)的流行病学研究显示,男性的发病率(62% vs 38%)与死亡率(52% vs 23%)均高于女性 [35] 。一项关于海湾战争退伍女兵的调查发现,海湾战争导致的慢性疲劳影响了女性的性欲与性生活 [36] 。而卡特琳娜飓风自然灾害影响了年轻女性的生殖保健生活 [37]

虽然与观察性研究相比,孟德尔随机化分析减少了混杂因素,但仍有不足和缺陷。首先,我们的结果是基于欧洲人群的遗传数据,这限制了外推到其他人群的可能性。其次,由于SNPs不足,一些与月经有关的因素,如孕激素和GnRH,未纳入MR分析。

5. 结论

不同程度的新冠肺炎感染增加了女性月经大出血、子宫息肉甚至子宫内膜恶性肿瘤的风险,但与不明原因的异常子宫出血、月经不规则和月经频繁、绝经后阴道出血、宫颈息肉、子宫肌瘤及子宫腺肌病之间不存在因果关系。新冠肺炎感染同样会导致女性雌二醇及前列腺素E2水平降低,但并不会对LH、FSH、泌乳素、睾酮造成影响。

NOTES

*通讯作者。

References Liao, X., Wang, B. and Kang, Y. (2020) Novel Coronavirus Infection during the 2019-2020 Epidemic: Preparing Intensive Care Units—The Experience in Sichuan Province, China. Intensive Care Medicine, 46, 357-360. >https://doi.org/10.1007/s00134-020-05954-2 Gupta, M.D., Girish, M.P., Yadav, G., Shankar, A. and Yadav, R. (2020) Coronavirus Disease 2019 and the Cardiovascular System: Impacts and Implications. Indian Heart Journal, 72, 1-6. >https://doi.org/10.1016/j.ihj.2020.03.006 Jayaraman, P., Rajagopal, M., Paranjpe, I., Suarez-Farinas, M., Liharska, L., Thompson, R., et al. (2025) Peripheral Transcriptomics in Acute and Long-Term Kidney Dysfunction in SARS-CoV2 Infection. Kidney360. >https://doi.org/10.34067/kid.0000000727 Beghi, E., Feigin, V., Caso, V., Santalucia, P. and Logroscino, G. (2020) COVID-19 Infection and Neurological Complications: Present Findings and Future Predictions. Neuroepidemiology, 54, 364-369. >https://doi.org/10.1159/000508991 Khan, S.M., Shilen, A., Heslin, K.M., Ishimwe, P., Allen, A.M., Jacobs, E.T., et al. (2022) SARS-CoV-2 Infection and Subsequent Changes in the Menstrual Cycle among Participants in the Arizona Covhort Study. American Journal of Obstetrics and Gynecology, 226, 270-273. >https://doi.org/10.1016/j.ajog.2021.09.016 Alvergne, A., Kountourides, G., Argentieri, M.A., Agyen, L., Rogers, N., Knight, D., et al. (2023) A Retrospective Case-Control Study on Menstrual Cycle Changes Following COVID-19 Vaccination and Disease. iScience, 26, Article ID: 106401. >https://doi.org/10.1016/j.isci.2023.106401 Wang, S., Mortazavi, J., Hart, J.E., Hankins, J.A., Katuska, L.M., Farland, L.V., et al. (2022) A Prospective Study of the Association between Sars-Cov-2 Infection and COVID-19 Vaccination with Changes in Usual Menstrual Cycle Characteristics. American Journal of Obstetrics and Gynecology, 227, 739.e1-739.e11. >https://doi.org/10.1016/j.ajog.2022.07.003 Burgess, S., Butterworth, A. and Thompson, S.G. (2013) Mendelian Randomization Analysis with Multiple Genetic Variants Using Summarized Data. Genetic Epidemiology, 37, 658-665. >https://doi.org/10.1002/gepi.21758 Boef, A.G.C., Dekkers, O.M. and le Cessie, S. (2015) Mendelian Randomization Studies: A Review of the Approaches Used and the Quality of Reporting. International Journal of Epidemiology, 44, 496-511. >https://doi.org/10.1093/ije/dyv071 COVID-19 Host Genetics Initiative (2020) The COVID-19 Host Genetics Initiative, a Global Initiative to Elucidate the Role of Host Genetic Factors in Susceptibility and Severity of the SARS-CoV-2 Virus Pandemic. European Journal of Human Genetics, 28, 715-718. >https://doi.org/10.1038/s41431-020-0636-6 Sun, Y., Ding, Z., Guo, Y., Yuan, J., Zhu, C., Pan, Y., et al. (2023) Causal Inference of Central Nervous System-Regulated Hormones in COVID-19: A Bidirectional Two-Sample Mendelian Randomization Study. Journal of Clinical Medicine, 12, Article 1681. >https://doi.org/10.3390/jcm12041681 Canela-Xandri, O., Rawlik, K. and Tenesa, A. (2018) An Atlas of Genetic Associations in UK Biobank. Nature Genetics, 50, 1593-1599. >https://doi.org/10.1038/s41588-018-0248-z Sakaue, S., Kanai, M., Tanigawa, Y., Karjalainen, J., Kurki, M., Koshiba, S., et al. (2021) A Cross-Population Atlas of Genetic Associations for 220 Human Phenotypes. Nature Genetics, 53, 1415-1424. >https://doi.org/10.1038/s41588-021-00931-x Sun, B.B., Maranville, J.C., Peters, J.E., Stacey, D., Staley, J.R., Blackshaw, J., et al. (2018) Genomic Atlas of the Human Plasma Proteome. Nature, 558, 73-79. >https://doi.org/10.1038/s41586-018-0175-2 Barton, A.R., Sherman, M.A., Mukamel, R.E. and Loh, P. (2021) Whole-Exome Imputation within UK Biobank Powers Rare Coding Variant Association and Fine-Mapping Analyses. Nature Genetics, 53, 1260-1269. >https://doi.org/10.1038/s41588-021-00892-1 Schmitz, D., Ek, W.E., Berggren, E., Höglund, J., Karlsson, T. and Johansson, Å. (2021) Genome-Wide Association Study of Estradiol Levels and the Causal Effect of Estradiol on Bone Mineral Density. The Journal of Clinical Endocrinology&Metabolism, 106, e4471-e4486. Folkersen, L., Gustafsson, S., Wang, Q., Hansen, D.H., Hedman, Å.K., Schork, A., et al. (2020) Genomic and Drug Target Evaluation of 90 Cardiovascular Proteins in 30,931 Individuals. Nature Metabolism, 2, 1135-1148. >https://doi.org/10.1038/s42255-020-00287-2 Shin, S., Fauman, E.B., Petersen, A., Krumsiek, J., Santos, R., Huang, J., et al. (2014) An Atlas of Genetic Influences on Human Blood Metabolites. Nature Genetics, 46, 543-550. >https://doi.org/10.1038/ng.2982 Pietzner, M., Wheeler, E., Carrasco-Zanini, J., Raffler, J., Kerrison, N.D., Oerton, E., et al. (2021) Author Correction: Genetic Architecture of Host Proteins Involved in SARS-CoV-2 Infection. Nature Communications, 12, Article No. 845. >https://doi.org/10.1038/s41467-021-21370-6 Bowden, S.J., Doulgeraki, T., Bouras, E., Markozannes, G., Athanasiou, A., Grout-Smith, H., et al. (2023) Risk Factors for Human Papillomavirus Infection, Cervical Intraepithelial Neoplasia and Cervical Cancer: An Umbrella Review and Follow-Up Mendelian Randomisation Studies. BMC Medicine, 21, Article No. 274. >https://doi.org/10.1186/s12916-023-02965-w Tayyaba Rehan, S., Imran, L., Mansoor, H., Sayyeda, Q., Hussain, H.u., Cheema, M.S., et al. (2022) Effects of SARS‐CoV‐2 Infection and COVID‐19 Pandemic on Menstrual Health of Women: A Systematic Review. Health Science Reports, 5, e881. >https://doi.org/10.1002/hsr2.881 Sigfrid, L., Drake, T.M., Pauley, E., Jesudason, E.C., Olliaro, P., Lim, W.S., et al. (2021) Long Covid in Adults Discharged from UK Hospitals after Covid-19: A Prospective, Multicentre Cohort Study Using the ISARIC WHO Clinical Characterisation Protocol. The Lancet Regional Health—Europe, 8, Article ID: 100186. >https://doi.org/10.1016/j.lanepe.2021.100186 Li, K., Chen, G., Hou, H., Liao, Q., Chen, J., Bai, H., et al. (2021) Analysis of Sex Hormones and Menstruation in COVID-19 Women of Child-Bearing Age. Reproductive BioMedicine Online, 42, 260-267. >https://doi.org/10.1016/j.rbmo.2020.09.020 Sun, W., Xia, L., Ji, C., Wei, Q., Zhang, J., He, S., et al. (2023) Relationship between Covid-Pandemic Anxiety and Sleep Disorder with Menstrual Disorders among Female Medical Workers. BMC Women’s Health, 23, Article No. 210. >https://doi.org/10.1186/s12905-023-02314-2 Smith, O.P.M., Jabbour, H.N. and Critchley, H.O.D. (2007) Cyclooxygenase Enzyme Expression and E Series Prostaglandin Receptor Signalling Are Enhanced in Heavy Menstruation. Human Reproduction, 22, 1450-1456. >https://doi.org/10.1093/humrep/del503 Smith, S.K., Abel, M.H., Kelly, R.W. and Baird, D.T. (1981) Prostaglandin Synthesis in the Endometrium of Women with Ovular Dysfunctional Uterine Bleeding. BJOG: An International Journal of Obstetrics&Gynaecology, 88, 434-442. >https://doi.org/10.1111/j.1471-0528.1981.tb01009.x Smith, S. (1981) A Role for Prostacyclin (PGI2) in Excessive Menstrual Bleeding. The Lancet, 317, 522-524. >https://doi.org/10.1016/s0140-6736(81)92862-2 de Miguel-Gómez, L., Sebastián-León, P., Romeu, M., Pellicer, N., Faus, A., Pellicer, A., et al. (2022) Endometrial Gene Expression Differences in Women with Coronavirus Disease 2019. Fertility and Sterility, 118, 1159-1169. >https://doi.org/10.1016/j.fertnstert.2022.09.013 Menakuru, S.R., Priscu, A., Dhillon, V.S. and Salih, A. (2022) The Development of Immune Thrombocytopenia Due to COVID-19 Presenting as Menorrhagia. Cureus, 14, e24160. >https://doi.org/10.7759/cureus.24160 Rae, M., Mohamad, A., Price, D., Hadoke, P.W.F., Walker, B.R., Mason, J.I., et al. (2009) Cortisol Inactivation by 11β-Hydroxysteroid Dehydrogenase-2 May Enhance Endometrial Angiogenesis via Reduced Thrombospondin-1 in Heavy Menstruation. The Journal of Clinical Endocrinology&Metabolism, 94, 1443-1450. >https://doi.org/10.1210/jc.2008-1879 Paik, H. and Kim, S.K. (2023) Female Reproduction and Abnormal Uterine Bleeding after COVID-19 Vaccination. Clinical and Experimental Reproductive Medicine, 50, 69-77. >https://doi.org/10.5653/cerm.2023.05925 Phelan, N., Behan, L.A. and Owens, L. (2021) The Impact of the COVID-19 Pandemic on Women’s Reproductive Health. Frontiers in Endocrinology, 12, Article 642755. >https://doi.org/10.3389/fendo.2021.642755 Stewart, S., Newson, L., Briggs, T.A., Grammatopoulos, D., Young, L. and Gill, P. (2021) Long COVID Risk—A Signal to Address Sex Hormones and Women’s Health. The Lancet Regional Health—Europe, 11, Article ID: 100242. >https://doi.org/10.1016/j.lanepe.2021.100242 Takmaz, T., Gundogmus, I., Okten, S.B. and Gunduz, A. (2021) The Impact of Covid‐19‐Related Mental Health Issues on Menstrual Cycle Characteristics of Female Healthcare Providers. Journal of Obstetrics and Gynaecology Research, 47, 3241-3249. >https://doi.org/10.1111/jog.14900 Alghamdi, I., Hussain, I., Alghamdi, M., Almalki, S., Alghamdi, M. and Elsheemy, M. (2014) The Pattern of Middle East Respiratory Syndrome Coronavirus in Saudi Arabia: A Descriptive Epidemiological Analysis of Data from the Saudi Ministry of Health. International Journal of General Medicine, 7, 417-423. >https://doi.org/10.2147/ijgm.s67061 Gilhooly, P.E., Ottenweller, J.E., Lange, G., Tiersky, L. and Natelson, B.H. (2001) Chronic Fatigue and Sexual Dysfunction in Female Gulf War Veterans. Journal of Sex&Marital Therapy, 27, 483-487. >https://doi.org/10.1080/713846825 Kissinger, P., Schmidt, N., Sanders, C. and Liddon, N. (2007) The Effect of the Hurricane Katrina Disaster on Sexual Behavior and Access to Reproductive Care for Young Women in New Orleans. Sexually Transmitted Diseases, 34, 883-886. >https://doi.org/10.1097/olq.0b013e318074c5f8
Baidu
map