Figure 2. Model validation--图2. 模型验证--3.2. 膜内离子浓度与电势分布Figure 3. Distribution of H+ concentration and ionic potential within the membrane at a current density of 50 mA/cm2 and SOC of 0.5--图3. 电流密度为50 mA/cm2、SOC为0.5时膜内H+浓度和离子电位分布--
离子的跨膜传输过程取决于膜材料的特性。针对钒离子在Nafion膜中的扩散特性,已有多个研究团队开展了系统性研究
[20]
-
[22]
,然而其实验结果并不一致。研究表明,钒离子的扩散系数与硫酸浓度呈负相关,即随着硫酸浓度的升高,其扩散系数呈现下降趋势
[21]
。在本研究中,我们采用了Gandomi等
[23]
报道的扩散系数数据,该数据显示钒离子的扩散系数遵循V (II) > V (IV) > V (V) > V (III)的递减规律。
图3
展示了在电流密度为50 mA/cm2、SOC为0.5的条件下,膜厚度方向上H+浓度及离子电势的分布特征。在电极/膜界面处,膜内H+浓度呈现显著升高。这一现象可归因于Nafion膜中存在固定阴离子,通过维持膜内阳离子浓度高于其在电极电解质中的浓度,从而满足膜内电中性条件。此外,离子电势在界面处表现为Donnan电势突变,形成从电极侧至膜侧的电势急剧降低。以上结果与理论分析吻合,其界面电势分布较Yang等人
[18]
的研究结果更具合理性。具体而言,Yang等人的研究未对界面处浓度及电势的不连续性进行数学处理,且在界面区域附近存在电势分布的数值波动。相比之下,本研究所得电势分布曲线不仅更加平滑,且更符合物理规律。此外,研究结果还表明,膜内电势分布曲线也与充放电过程中电流方向一致,即充电过程中电流由正极流向负极,而放电过程中则由负极流向正极。
Figure 4. Distribution of vanadium ion concentration within the membrane at a current density of 50 mA/cm2 and SOC of 0.5--图4. 电流密度为50 mA/cm2、SOC为0.5时膜内钒离子浓度分布--3.3. 钒离子跨膜传输分析
Figure 5. Transmembrane flux of vanadium ions during charge-discharge processes under different transport mechanisms (diffusion, migration, and electroosmosis) at a current density of 50 mA/cm2--图5. 电流密度为50 mA/cm2时,扩散、迁移和电渗等不同传输机制下,钒离子在充放电过程中的跨膜传输通量--3.4. 循环过程中钒离子的跨膜传输Figure 6. Transmembrane transport of vanadium ions during cycling processes--图6. 循环过程中钒离子的跨膜传输--
References
Loktionov, P., Pustovalova, A., Pichugov, R., Konev, D. and Antipov, A. (2024) Quantifying Effect of Faradaic Imbalance and Crossover on Capacity Fade of Vanadium Redox Flow Battery. Electrochimica Acta, 485, Article 144047. >https://doi.org/10.1016/j.electacta.2024.144047
Chen, Y., Bao, J., Xu, Z., Gao, P., Yan, L., Kim, S., et al. (2023) A Hybrid Analytical and Numerical Model for Cross-Over and Performance Decay in a Unit Cell Vanadium Redox Flow Battery. Journal of Power Sources, 578, Article 233210. >https://doi.org/10.1016/j.jpowsour.2023.233210
Skyllas-Kazacos, M. and Goh, L. (2012) Modeling of Vanadium Ion Diffusion across the Ion Exchange Membrane in the Vanadium Redox Battery. Journal of Membrane Science, 399, 43-48. >https://doi.org/10.1016/j.memsci.2012.01.024
Lei, Y., Zhang, B.W., Bai, B.F. and Zhao, T.S. (2015) A Transient Electrochemical Model Incorporating the Donnan Effect for All-Vanadium Redox Flow Batteries. Journal of Power Sources, 299, 202-211. >https://doi.org/10.1016/j.jpowsour.2015.08.100
Liu, L., Wang, C., He, Z., Das, R., Dong, B., Xie, X., et al. (2021) An Overview of Amphoteric Ion Exchange Membranes for Vanadium Redox Flow Batteries. Journal of Materials Science&Technology, 69, 212-227. >https://doi.org/10.1016/j.jmst.2020.08.032
Ye, J., Yuan, D., Ding, M., Long, Y., Long, T., Sun, L., et al. (2021) A Cost-Effective Nafion/Lignin Composite Membrane with Low Vanadium Ion Permeation for High Performance Vanadium Redox Flow Battery. Journal of Power Sources, 482, Article 229023. >https://doi.org/10.1016/j.jpowsour.2020.229023
Kim, D.K., Yoon, S.J. and Kim, S. (2020) Transport Phenomena Associated with Capacity Loss of All-Vanadium Redox Flow Battery. International Journal of Heat and Mass Transfer, 148, Article 119040. >https://doi.org/10.1016/j.ijheatmasstransfer.2019.119040
Zhou, J., Liu, Y., Zuo, P., Li, Y., Dong, Y., Wu, L., et al. (2021) Highly Conductive and Vanadium Sieving Microporous Tröger’s Base Membranes for Vanadium Redox Flow Battery. Journal of Membrane Science, 620, Article 118832. >https://doi.org/10.1016/j.memsci.2020.118832
Wang, T., Jeon, J.Y., Han, J., Kim, J.H., Bae, C. and Kim, S. (2020) Poly(Terphenylene) Anion Exchange Membranes with High Conductivity and Low Vanadium Permeability for Vanadium Redox Flow Batteries (VRFBs). Journal of Membrane Science, 598, Article 117665. >https://doi.org/10.1016/j.memsci.2019.117665
Luo, Q., Li, L., Nie, Z., Wang, W., Wei, X., Li, B., et al. (2012) In-Situ Investigation of Vanadium Ion Transport in Redox Flow Battery. Journal of Power Sources, 218, 15-20. >https://doi.org/10.1016/j.jpowsour.2012.06.066
Sing, D.C. and Meyers, J.P. (2013) Direct Measurement of Vanadium Crossover in an Operating Vanadium Redox Flow Battery. ECS Transactions, 50, 61-72. >https://doi.org/10.1149/05045.0061ecst
Tang, A., Bao, J. and Skyllas-Kazacos, M. (2011) Dynamic Modelling of the Effects of Ion Diffusion and Side Reactions on the Capacity Loss for Vanadium Redox Flow Battery. Journal of Power Sources, 196, 10737-10747. >https://doi.org/10.1016/j.jpowsour.2011.09.003
He, Q., Li, Z., Zhao, D., Yu, J., Tan, P., Guo, M., et al. (2023) A 3D Modelling Study on All Vanadium Redox Flow Battery at Various Operating Temperatures. Energy, 282, Article 128934. >https://doi.org/10.1016/j.energy.2023.128934
Badrinarayanan, R., Zhao, J., Tseng, K.J. and Skyllas-Kazacos, M. (2014) Extended Dynamic Model for Ion Diffusion in All-Vanadium Redox Flow Battery Including the Effects of Temperature and Bulk Electrolyte Transfer. Journal of Power Sources, 270, 576-586. >https://doi.org/10.1016/j.jpowsour.2014.07.128
Rao, P. and Jayanti, S. (2023) Physics-Based Electrochemical Model of Vanadium Redox Flow Battery for Low-Temperature Applications. Batteries, 9, Article 374.
Knehr, K.W., Agar, E., Dennison, C.R., Kalidindi, A.R. and Kumbur, E.C. (2012) A Transient Vanadium Flow Battery Model Incorporating Vanadium Crossover and Water Transport through the Membrane. Journal of the Electrochemical Society, 159, A1446-A1459. >https://doi.org/10.1149/2.017209jes
Boettcher, P.A., Agar, E., Dennison, C.R. and Kumbur, E.C. (2015) Modeling of Ion Crossover in Vanadium Redox Flow Batteries: A Computationally-Efficient Lumped Parameter Approach for Extended Cycling. Journal of the Electrochemical Society, 163, A5244-A5252. >https://doi.org/10.1149/2.0311601jes
Yang, X., Ye, Q., Cheng, P. and Zhao, T.S. (2015) Effects of the Electric Field on Ion Crossover in Vanadium Redox Flow Batteries. Applied Energy, 145, 306-319. >https://doi.org/10.1016/j.apenergy.2015.02.038
Wandschneider, F.T., Finke, D., Grosjean, S., Fischer, P., Pinkwart, K., Tübke, J., et al. (2014) Model of a Vanadium Redox Flow Battery with an Anion Exchange Membrane and a Larminie-Correction. Journal of Power Sources, 272, 436-447. >https://doi.org/10.1016/j.jpowsour.2014.08.082
Brahma, K., Nayak, R., Verma, S.K. and Sonika, (2024) Recent Advances in Development and Application of Polymer Nanocomposite Ion Exchange Membrane for High Performance Vanadium Redox Flow Battery. Journal of Energy Storage, 97, Article 112850. >https://doi.org/10.1016/j.est.2024.112850
Lawton, J.S., Jones, A. and Zawodzinski, T. (2013) Concentration Dependence of VO
2+ Crossover of Nation for Vanadium Redox Flow Batteries. Journal of the Electrochemical Society, 160, A697-A702. >https://doi.org/10.1149/2.004306jes
Sreenath, S., P S, N., Krebsz, M., Andrews, J. and Nagarale, R.K. (2024) Ion Exchange Membranes: Latest Developments toward High-Performance Vanadium Redox Flow Batteries. ACS Applied Energy Materials, 7, 10846-10876. >https://doi.org/10.1021/acsaem.4c01714
Ashraf Gandomi, Y., Aaron, D.S. and Mench, M.M. (2016) Coupled Membrane Transport Parameters for Ionic Species in All-Vanadium Redox Flow Batteries. Electrochimica Acta, 218, 174-190. >https://doi.org/10.1016/j.electacta.2016.09.087