经典途径:依赖于caspase-1的活化。在细菌、病毒等信号的刺激下,细胞内的模式识别受体(如NLR)作为感受器,识别这些信号,并通过接头蛋白ASC与caspase-1前体结合,形成多蛋白复合物,激活caspase-1。活化的caspase-1一方面切割Gasdermin D (GSDMD),形成含有GSDM-NT活性域的肽段,诱导细胞膜穿孔
[28]
、细胞破裂,释放内容物,引起炎症反应;另一方面,活化的caspase-1还对IL-1β和IL-18的前体进行切割,形成有活性的IL-1β和IL-18,并释放到胞外,募集炎症细胞聚集,扩大炎症反应。
References
Malireddi, R.K.S., Sharma, B.R. and Kanneganti, T. (2024) Innate Immunity in Protection and Pathogenesis during Coronavirus Infections and Covid-19. Annual Review of Immunology, 42, 615-645. >https://doi.org/10.1146/annurev-immunol-083122-043545
Kanneganti, T. (2020) Intracellular Innate Immune Receptors: Life Inside the Cell. Immunological Reviews, 297, 5-12. >https://doi.org/10.1111/imr.12912
Hitomi, J., Christofferson, D.E., Ng, A., Yao, J., Degterev, A., Xavier, R.J., et al. (2008) Identification of a Molecular Signaling Network That Regulates a Cellular Necrotic Cell Death Pathway. Cell, 135, 1311-1323. >https://doi.org/10.1016/j.cell.2008.10.044
Zychlinsky, A., Prevost, M.C. and Sansonetti, P.J. (1992) Shigella Flexneri Induces Apoptosis in Infected Macrophages. Nature, 358, 167-169. >https://doi.org/10.1038/358167a0
Kerr, J.F.R., Wyllie, A.H. and Currie, A.R. (1972) Apoptosis: A Basic Biological Phenomenon with Wideranging Implications in Tissue Kinetics. British Journal of Cancer, 26, 239-257. >https://doi.org/10.1038/bjc.1972.33
Anding, A.L. and Baehrecke, E.H. (2015) Autophagy in Cell Life and Cell Death. In: Current Topics in Developmental Biology, Elsevier, 67-91. >https://doi.org/10.1016/bs.ctdb.2015.07.012
Sundaram, B., Tweedell, R.E., Prasanth Kumar, S. and Kanneganti, T. (2024) The NLR Family of Innate Immune and Cell Death Sensors. Immunity, 57, 674-699. >https://doi.org/10.1016/j.immuni.2024.03.012
Christgen, S., Tweedell, R.E. and Kanneganti, T. (2022) Programming Inflammatory Cell Death for Therapy. Pharmacology&Therapeutics, 232, Article ID: 108010. >https://doi.org/10.1016/j.pharmthera.2021.108010
Sundaram, B., Pandian, N., Mall, R., Wang, Y., Sarkar, R., Kim, H.J., et al. (2023) NLRP12-PANoptosome Activates PANoptosis and Pathology in Response to Heme and PAMPs. Cell, 186, 2783-2801.e20. >https://doi.org/10.1016/j.cell.2023.05.005
Lee, S., Karki, R., Wang, Y., Nguyen, L.N., Kalathur, R.C. and Kanneganti, T. (2021) AIM2 Forms a Complex with Pyrin and ZBP1 to Drive PANoptosis and Host Defence. Nature, 597, 415-419. >https://doi.org/10.1038/s41586-021-03875-8
Karki, R., Sharma, B.R., Tuladhar, S., Williams, E.P., Zalduondo, L., Samir, P., et al. (2021) Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell, 184, 149-168.e17. >https://doi.org/10.1016/j.cell.2020.11.025
Dai, W., Zheng, P., Wu, J., Chen, S., Deng, M., Tong, X., et al. (2024) Integrated Analysis of Single-Cell RNA-Seq and Chipset Data Unravels PANoptosis-Related Genes in Sepsis. Frontiers in Immunology, 14, Article ID: 1247131. >https://doi.org/10.3389/fimmu.2023.1247131
Lin, J., Hu, P., Wang, Y., Tan, Y., Yu, K., Liao, K., et al. (2022) Phosphorylated NFS1 Weakens Oxaliplatin-Based Chemosensitivity of Colorectal Cancer by Preventing PANoptosis. Signal Transduction and Targeted Therapy, 7, Article No. 54. >https://doi.org/10.1038/s41392-022-00889-0
Sundaram, B., Pandian, N., Kim, H.J., Abdelaal, H.M., Mall, R., Indari, O., et al. (2024) NLRC5 Senses NAD
+ Depletion, Forming a Panoptosome and Driving PANoptosis and Inflammation. Cell, 187, 4061-4077.e17. >https://doi.org/10.1016/j.cell.2024.05.034
Liu, H., Liu, Y., Fan, W. and Fan, B. (2022) Fusobacterium Nucleatum Triggers Proinflammatory Cell Death via Z-DNA Binding Protein 1 in Apical Periodontitis. Cell Communication and Signaling, 20, Article No. 196. >https://doi.org/10.1186/s12964-022-01005-z
Rajesh, Y. and Kanneganti, T. (2022) Innate Immune Cell Death in Neuroinflammation and Alzheimer’s Disease. Cells, 11, Article No. 1885. >https://doi.org/10.3390/cells11121885
Liu, X., Tang, A., Chen, J., Gao, N., Zhang, G. and Xiao, C. (2023) RIPK1 in the Inflammatory Response and Sepsis: Recent Advances, Drug Discovery and Beyond. Frontiers in Immunology, 14, Article ID: 1114103. >https://doi.org/10.3389/fimmu.2023.1114103
He, Y., Deng, J., Zhou, C., Jiang, S., Zhang, F., Tao, X., et al. (2023) Ursodeoxycholic Acid Alleviates Sepsis-Induced Lung Injury by Blocking PANoptosis via STING Pathway. International Immunopharmacology, 125, Article ID: 111161. >https://doi.org/10.1016/j.intimp.2023.111161
Shi, F., Li, Q., Xu, R., Yuan, L., Chen, Y., Shi, Z., et al. (2023) Blocking Reverse Electron Transfer-Mediated Mitochondrial DNA Oxidation Rescues Cells from PANoptosis. Acta Pharmacologica Sinica, 45, 594-608. >https://doi.org/10.1038/s41401-023-01182-8
D’Arcy, M.S. (2019) Cell Death: A Review of the Major Forms of Apoptosis, Necrosis and Autophagy. Cell Biology International, 43, 582-592. >https://doi.org/10.1002/cbin.11137
Ai, Y., Meng, Y., Yan, B., Zhou, Q. and Wang, X. (2024) The Biochemical Pathways of Apoptotic, Necroptotic, Pyroptotic, and Ferroptotic Cell Death. Molecular Cell, 84, 170-179. >https://doi.org/10.1016/j.molcel.2023.11.040
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. >https://doi.org/10.1001/jama.2016.0287
Pasparakis, M. and Vandenabeele, P. (2015) Necroptosis and Its Role in Inflammation. Nature, 517, 311-320. >https://doi.org/10.1038/nature14191
Gong, Y., Fan, Z., Luo, G., Yang, C., Huang, Q., Fan, K., et al. (2019) The Role of Necroptosis in Cancer Biology and Therapy. Molecular Cancer, 18, Article No. 100. >https://doi.org/10.1186/s12943-019-1029-8
Frank, D. and Vince, J.E. (2018) Pyroptosis versus Necroptosis: Similarities, Differences, and Crosstalk. Cell Death&Differentiation, 26, 99-114. >https://doi.org/10.1038/s41418-018-0212-6
Bolognese, A.C., Yang, W., Hansen, L.W., Denning, N., Nicastro, J.M., Coppa, G.F., et al. (2018) Inhibition of Necroptosis Attenuates Lung Injury and Improves Survival in Neonatal Sepsis. Surgery, 164, 110-116. >https://doi.org/10.1016/j.surg.2018.02.017
Kitur, K., Wachtel, S., Brown, A., Wickersham, M., Paulino, F., Peñaloza, H.F., et al. (2016) Necroptosis Promotes Staphylococcus aureus Clearance by Inhibiting Excessive Inflammatory Signaling. Cell Reports, 16, 2219-2230. >https://doi.org/10.1016/j.celrep.2016.07.039
Vasudevan, S.O., Behl, B. and Rathinam, V.A. (2023) Pyroptosis-Induced Inflammation and Tissue Damage. Seminars in Immunology, 69, Article ID: 101781. >https://doi.org/10.1016/j.smim.2023.101781
Zheng, X., Chen, W., Gong, F., Chen, Y. and Chen, E. (2021) The Role and Mechanism of Pyroptosis and Potential Therapeutic Targets in Sepsis: A Review. Frontiers in Immunology, 12, Article ID: 711939. >https://doi.org/10.3389/fimmu.2021.711939
Denton, D. and Kumar, S. (2018) Autophagy-Dependent Cell Death. Cell Death&Differentiation, 26, 605-616. >https://doi.org/10.1038/s41418-018-0252-y
Yan, X., Zhou, R. and Ma, Z. (2019) Autophagy-Cell Survival and Death. In: Advances in Experimental Medicine and Biology, Springer, 667-696. >https://doi.org/10.1007/978-981-15-0602-4_29
Sun, Y., Yao, X., Zhang, Q., Zhu, M., Liu, Z., Ci, B., et al. (2018) Beclin-1-Dependent Autophagy Protects the Heart during Sepsis. Circulation, 138, 2247-2262. >https://doi.org/10.1161/circulationaha.117.032821
Kim, Y.S., Jeong, Y.S., Bae, G.H., Kang, J.H., Lee, M., Zabel, B.A., et al. (2024) CD200R(High) Neutrophils with Dysfunctional Autophagy Establish Systemic Immunosuppression by Increasing Regulatory T Cells. Cellular&Molecular Immunology, 21, 349-361. >https://doi.org/10.1038/s41423-024-01136-y
Dong, Y., Wu, Y., Zhao, G. L., et al. (2019) Inhibition of Autophagy by 3-MA Promotes Hypoxia-Induced Apoptosis in Human Colorectal Cancer Cells. European Review for Medical and Pharmacological Sciences, 23, 1047-1054. >http://10.26355/eurrev_201902_16992
Ferreira, P.M.P., Sousa, R.W.R.d., Ferreira, J.R.d.O., Militão, G.C.G. and Bezerra, D.P. (2021) Chloroquine and Hydroxychloroquine in Antitumor Therapies Based on Autophagy-Related Mechanisms. Pharmacological Research, 168, Article ID: 105582. >https://doi.org/10.1016/j.phrs.2021.105582
Sun, L., Xiong, H., Chen, L., Dai, X., Yan, X., Wu, Y., et al. (2022) Deacetylation of ATG4B Promotes Autophagy Initiation under Starvation. Science Advances, 8, eabo0412. >https://doi.org/10.1126/sciadv.abo0412
Ocansey, D., Yuan, J., Wei, Z., Mao, F. and Zhang, Z. (2023) Role of Ferroptosis in the Pathogenesis and as a Therapeutic Target of Inflammatory Bowel Disease (Review). International Journal of Molecular Medicine, 51, Article No. 53. >https://doi.org/10.3892/ijmm.2023.5256
Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death&Disease, 11, Article No. 88. >https://doi.org/10.1038/s41419-020-2298-2
Zhou, B., Liu, J., Kang, R., Klionsky, D.J., Kroemer, G. and Tang, D. (2020) Ferroptosis Is a Type of Autophagy-Dependent Cell Death. Seminars in Cancer Biology, 66, 89-100. >https://doi.org/10.1016/j.semcancer.2019.03.002
Chen, F., Kang, R., Tang, D. and Liu, J. (2024) Ferroptosis: Principles and Significance in Health and Disease. Journal of Hematology&Oncology, 17, Article No. 41. >https://doi.org/10.1186/s13045-024-01564-3
Shen, K., Wang, X., Wang, Y., Jia, Y., Zhang, Y., Wang, K., et al. (2023) miR-125b-5p in Adipose Derived Stem Cells Exosome Alleviates Pulmonary Microvascular Endothelial Cells Ferroptosis via Keap1/Nrf2/GPX4 in Sepsis Lung Injury. Redox Biology, 62, Article ID: 102655. >https://doi.org/10.1016/j.redox.2023.102655
Zhang, H., Wu, D., Wang, Y., Guo, K., Spencer, C.B., Ortoga, L., et al. (2023) METTL3‐Mediated N6‐Methyladenosine Exacerbates Ferroptosis via m6A-IGF2BP2‐Dependent Mitochondrial Metabolic Reprogramming in Sepsis‐Induced Acute Lung Injury. Clinical and Translational Medicine, 13, e1389. >https://doi.org/10.1002/ctm2.1389
Jiang, C., Shi, Q., Yang, J., Ren, H., Zhang, L., Chen, S., et al. (2024) Ceria Nanozyme Coordination with Curcumin for Treatment of Sepsis-Induced Cardiac Injury by Inhibiting Ferroptosis and Inflammation. Journal of Advanced Research, 63, 159-170. >https://doi.org/10.1016/j.jare.2023.10.011
Liu, C., Zou, Q., Tang, H., Liu, J., Zhang, S., Fan, C., et al. (2023) Melanin Nanoparticles Alleviate Sepsis-Induced Myocardial Injury by Suppressing Ferroptosis and Inflammation. Bioactive Materials, 24, 313-321. >https://doi.org/10.1016/j.bioactmat.2022.12.026
Malireddi, R.K.S., Kesavardhana, S. and Kanneganti, T. (2019) ZBP1 and TAK1: Master Regulators of NLRP3 Inflammasome/Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 9, Article No. 406. >https://doi.org/10.3389/fcimb.2019.00406
Christgen, S., Zheng, M., Kesavardhana, S., Karki, R., Malireddi, R.K.S., Banoth, B., et al. (2020) Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 10, Article No. 237. >https://doi.org/10.3389/fcimb.2020.00237
Man, S.M. and Kanneganti, T. (2024) Innate Immune Sensing of Cell Death in Disease and Therapeutics. Nature Cell Biology, 26, 1420-1433. >https://doi.org/10.1038/s41556-024-01491-y
Gao, L., Shay, C. and Teng, Y. (2024) Cell Death Shapes Cancer Immunity: Spotlighting PANoptosis. Journal of Experimental & Clinical Cancer Research, 43, Article No. 168. >https://doi.org/10.1186/s13046-024-03089-6
Banoth, B., Tuladhar, S., Karki, R., Sharma, B.R., Briard, B., Kesavardhana, S., et al. (2020) ZBP1 Promotes Fungi-Induced Inflammasome Activation and Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Journal of Biological Chemistry, 295, 18276-18283. >https://doi.org/10.1074/jbc.ra120.015924
Oh, S. and Lee, S. (2023) Recent Advances in ZBP1-Derived PANoptosis against Viral Infections. Frontiers in Immunology, 14, Article ID: 1148727. >https://doi.org/10.3389/fimmu.2023.1148727
Karki, R., Sharma, B.R., Lee, E., Banoth, B., Malireddi, R.K.S., Samir, P., et al. (2020) Interferon Regulatory Factor 1 Regulates PANoptosis to Prevent Colorectal Cancer. JCI Insight, 5, e136720. >https://doi.org/10.1172/jci.insight.136720
Karki, R., Sundaram, B., Sharma, B.R., Lee, S., Malireddi, R.K.S., Nguyen, L.N., et al. (2021) ADAR1 Restricts ZBP1-Mediated Immune Response and PANoptosis to Promote Tumorigenesis. Cell Reports, 37, Article ID: 109858. >https://doi.org/10.1016/j.celrep.2021.109858
Malireddi, R.K.S., Karki, R., Sundaram, B., Kancharana, B., Lee, S., Samir, P., et al. (2021) Inflammatory Cell Death, PANoptosis, Mediated by Cytokines in Diverse Cancer Lineages Inhibits Tumor Growth. ImmunoHorizons, 5, 568-580. >https://doi.org/10.4049/immunohorizons.2100059
Place, D.E., Lee, S. and Kanneganti, T. (2021) PANoptosis in Microbial Infection. Current Opinion in Microbiology, 59, 42-49. >https://doi.org/10.1016/j.mib.2020.07.012
Zeng, F., Zhang, Y., Wang, Z., Zhang, H., Meng, X., Wu, Y., et al. (2024) Neutrophil Extracellular Traps Promote Acetaminophen-Induced Acute Liver Injury in Mice via AIM2. Acta Pharmacologica Sinica, 45, 1660-1672. >https://doi.org/10.1038/s41401-024-01239-2
Wang, Y. and Kanneganti, T. (2021) From Pyroptosis, Apoptosis and Necroptosis to PANoptosis: A Mechanistic Compendium of Programmed Cell Death Pathways. Computational and Structural Biotechnology Journal, 19, 4641-4657. >https://doi.org/10.1016/j.csbj.2021.07.038
Xu, J., Zhu, M., Luo, P. and Gong, Y. (2024) Machine Learning Screening and Validation of PANoptosis-Related Gene Signatures in Sepsis. Journal of Inflammation Research, 17, 4765-4780. >https://doi.org/10.2147/jir.s461809
Yang, Z., Kao, X., Huang, N., Yuan, K., Chen, J. and He, M. (2024) Identification and Analysis of PANoptosis-Related Genes in Sepsis-Induced Lung Injury by Bioinformatics and Experimental Verification. Journal of Inflammation Research, 17, 1941-1956. >https://doi.org/10.2147/jir.s452608
Liu, X., Li, Y., Zhang, W., Gao, N., Chen, J., Xiao, C., et al. (2024) Inhibition of cIAP1/2 Reduces RIPK1 Phosphorylation in Pulmonary Endothelial Cells and Alleviate Sepsis-Induced Lung Injury and Inflammatory Response. Immunologic Research, 72, 841-850. >https://doi.org/10.1007/s12026-024-09491-8
Zhou, R., Ying, J., Qiu, X., Yu, L., Yue, Y., Liu, Q., et al. (2022) A New Cell Death Program Regulated by Toll-Like Receptor 9 through P38 Mitogen-Activated Protein Kinase Signaling Pathway in a Neonatal Rat Model with Sepsis Associated Encephalopathy. Chinese Medical Journal, 135, 1474-1485. >https://doi.org/10.1097/cm9.0000000000002010
Schwabe, R.F. and Luedde, T. (2018) Apoptosis and Necroptosis in the Liver: A Matter of Life and Death. Nature Reviews Gastroenterology&Hepatology, 15, 738-752. >https://doi.org/10.1038/s41575-018-0065-y
Malireddi, R.K.S., Gurung, P., Kesavardhana, S., Samir, P., Burton, A., Mummareddy, H., et al. (2019) Innate Immune Priming in the Absence of TAK1 Drives RIPK1 Kinase Activity-Independent Pyroptosis, Apoptosis, Necroptosis, and Inflammatory Disease. Journal of Experimental Medicine, 217, e20191644. >https://doi.org/10.1084/jem.20191644
Zhou, X., Yu, X., Wan, C., Li, F., Wang, Y., Zhang, K., et al. (2023) NINJ1 Regulates Platelet Activation and PANoptosis in Septic Disseminated Intravascular Coagulation. International Journal of Molecular Sciences, 24, Article No. 4168. >https://doi.org/10.3390/ijms24044168
Wang, Y., Fu, X., Shang, Z., Qiao, Y., Liu, Y., Zhou, L., et al. (2025) In Vivo and in Vitro Study on the Regulatory Mechanism of XiaoChaiHu Decoction on PANoptosis in Sepsis-Induced Cardiomyopathy. Journal of Ethnopharmacology, 336, Article ID: 118740. >https://doi.org/10.1016/j.jep.2024.118740
Zhou, X., Xin, G., Wan, C., Li, F., Wang, Y., Zhang, K., et al. (2024) Myricetin Reduces Platelet PANoptosis in Sepsis to Delay Disseminated Intravascular Coagulation. Biochemical and Biophysical Research Communications, 724, Article ID: 150140. >https://doi.org/10.1016/j.bbrc.2024.150140
Maiorino, L., Daßler-Plenker, J., Sun, L. and Egeblad, M. (2022) Innate Immunity and Cancer Pathophysiology. Annual Review of Pathology: Mechanisms of Disease, 17, 425-457. >https://doi.org/10.1146/annurev-pathmechdis-032221-115501
Chen, S., Saeed, A.F.U.H., Liu, Q., Jiang, Q., Xu, H., Xiao, G.G., et al. (2023) Macrophages in Immunoregulation and Therapeutics. Signal Transduction and Targeted Therapy, 8, Article No. 207. >https://doi.org/10.1038/s41392-023-01452-1
Vivier, E., Rebuffet, L., Narni-Mancinelli, E., Cornen, S., Igarashi, R.Y. and Fantin, V.R. (2024) Natural Killer Cell Therapies. Nature, 626, 727-736. >https://doi.org/10.1038/s41586-023-06945-1
Azoulay, E., Zuber, J., Bousfiha, A.A., Long, Y., Tan, Y., Luo, S., et al. (2024) Complement System Activation: Bridging Physiology, Pathophysiology, and Therapy. Intensive Care Medicine, 50, 1791-1803. >https://doi.org/10.1007/s00134-024-07611-4
Oh, S., Lee, J., Oh, J., Yu, G., Ryu, H., Kim, D., et al. (2023) Integrated NLRP3, AIM2, NLRC4, Pyrin Inflammasome Activation and Assembly Drive PANoptosis. Cellular&Molecular Immunology, 20, 1513-1526. >https://doi.org/10.1038/s41423-023-01107-9
Zheng, M., Karki, R., Vogel, P. and Kanneganti, T. (2020) Caspase-6 Is a Key Regulator of Innate Immunity, Inflammasome Activation, and Host Defense. Cell, 181, 674-687.e13. >https://doi.org/10.1016/j.cell.2020.03.040
Yang, D., Wang, X., Sun, Y., Shao, Y. and Shi, X. (2024) Identification and Experimental Validation of Genes Associated with Programmed Cell Death in Dendritic Cells of the Thyroid Tissue in Hashimoto’s Thyroiditis. International Immunopharmacology, 142, Article ID: 113083. >https://doi.org/10.1016/j.intimp.2024.113083
Karki, R., Lee, S., Mall, R., Pandian, N., Wang, Y., Sharma, B.R., et al. (2022) ZBP1-Dependent Inflammatory Cell Death, PANoptosis, and Cytokine Storm Disrupt IFN Therapeutic Efficacy during Coronavirus Infection. Science Immunology, 7, eabo6294. >https://doi.org/10.1126/sciimmunol.abo6294
Fukuda, K., Okamura, K., Riding, R.L., Fan, X., Afshari, K., Haddadi, N., et al. (2021) AIM2 Regulates Anti-Tumor Immunity and Is a Viable Therapeutic Target for Melanoma. Journal of Experimental Medicine, 218, e20200962. >https://doi.org/10.1084/jem.20200962
Varga, Z., Rácz, E., Mázló, A., Korodi, M., Szabó, A., Molnár, T., et al. (2021) Cytotoxic Activity of Human Dendritic Cells Induces RIPK1-Dependent Cell Death. Immunobiology, 226, Article ID: 152032. >https://doi.org/10.1016/j.imbio.2020.152032
Clement, C.C., D’Alessandro, A., Thangaswamy, S., Chalmers, S., Furtado, R., Spada, S., et al. (2021) 3-Hydroxy-L-Kynurenamine Is an Immunomodulatory Biogenic Amine. Nature Communications, 12, Article No. 4447. >https://doi.org/10.1038/s41467-021-24785-3
Xiao, H., Zhao, Q., Yuan, J., Liang, W., Wu, R., Wen, Y., et al. (2023) IFN-γ Promotes PANoptosis in Pasteurella Multocida Toxin-Induced Pneumonia in Mice. Veterinary Microbiology, 285, Article ID: 109848. >https://doi.org/10.1016/j.vetmic.2023.109848
Yang, M., Long, D., Hu, L., Zhao, Z., Li, Q., Guo, Y., et al. (2021) AIM2 Deficiency in B Cells Ameliorates Systemic Lupus Erythematosus by Regulating Blimp-1-Bcl-6 Axis-Mediated B-Cell Differentiation. Signal Transduction and Targeted Therapy, 6, Article No. 341. >https://doi.org/10.1038/s41392-021-00725-x
Zheng, Z., Li, K., Yang, Z., Wang, X., Shen, C., Zhang, Y., et al. (2024) Transcriptomic Analysis Reveals Molecular Characterization and Immune Landscape of PANoptosis-Related Genes in Atherosclerosis. Inflammation Research, 73, 961-978. >https://doi.org/10.1007/s00011-024-01877-6
Sun, W., Li, P., Wang, M., Xu, Y., Shen, D., Zhang, X., et al. (2023) Molecular Characterization of PANoptosis-Related Genes with Features of Immune Dysregulation in Systemic Lupus Erythematosus. Clinical Immunology, 253, Article ID: 109660. >https://doi.org/10.1016/j.clim.2023.109660
Wu, L., Jiao, X., Jing, M., Zhang, S., Wang, Y., Li, C., et al. (2024) Discovery of PANoptosis-Related Signatures Correlates with Immune Cell Infiltration in Psoriasis. PLOS ONE, 19, e0310362. >https://doi.org/10.1371/journal.pone.0310362
Chen, H., Xia, Z., Qing, B., Gu, L., Chen, Y., Wang, J., et al. (2024) Molecular Characterization of PANoptosis-Related Genes Associated with Immune Infiltration and Prognosis in Idiopathic Pulmonary Fibrosis. International Immunopharmacology, 143, Article ID: 113572. >https://doi.org/10.1016/j.intimp.2024.113572
Zhuang, L., Sun, Q., Huang, S., Hu, L. and Chen, Q. (2023) A Comprehensive Analysis of PANoptosome to Prognosis and Immunotherapy Response in Pan-Cancer. Scientific Reports, 13, Article No. 3877. >https://doi.org/10.1038/s41598-023-30934-z
Shi, X., Gao, X., Liu, W., Tang, X., Liu, J., Pan, D., et al. (2023) Construction of the PANoptosis-Related Gene Model and Characterization of Tumor Microenvironment Infiltration in Hepatocellular Carcinoma. Oncology Research, 31, 569-590. >https://doi.org/10.32604/or.2023.028964
Zhang, Y.Y., Zhao, H.S., Sun, Y.F., et al. (2023) Development and Validation of Biomarkers Related to PANoptosis in Osteoarthritis. European Review for Medical and Pharmacological Sciences, 27, 7444-7458. >http://10.26355/eurrev_202308_33396
Messaoud-Nacer, Y., Culerier, E., Rose, S., Maillet, I., Rouxel, N., Briault, S., et al. (2022) STING Agonist diABZI-Induces PANoptosis and DNA Mediated Acute Respiratory Distress Syndrome (ARDS). Cell Death&Disease, 13, Article No. 269. >https://doi.org/10.1038/s41419-022-04664-5
Wang, Y., Shi, Y., Shao, Y., Lu, X., Zhang, H. and Miao, C. (2024) S100A8/A9
hi Neutrophils Induce Mitochondrial Dysfunction and PANoptosis in Endothelial Cells via Mitochondrial Complex I Deficiency during Sepsis. Cell Death&Disease, 15, Article No. 462. >https://doi.org/10.1038/s41419-024-06849-6
Samir, P., Malireddi, R.K.S. and Kanneganti, T. (2020) The PANoptosome: A Deadly Protein Complex Driving Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 10, Article No. 238. >https://doi.org/10.3389/fcimb.2020.00238
Zhu, P., Ke, Z., Chen, J., Li, S., Ma, T. and Fan, X. (2023) Advances in Mechanism and Regulation of PANoptosis: Prospects in Disease Treatment. Frontiers in Immunology, 14, Article ID: 1120034. >https://doi.org/10.3389/fimmu.2023.1120034
Chen, X., Li, W., Ren, J., Huang, D., He, W., Song, Y., et al. (2013) Translocation of Mixed Lineage Kinase Domain-Like Protein to Plasma Membrane Leads to Necrotic Cell Death. Cell Research, 24, 105-121. >https://doi.org/10.1038/cr.2013.171
Chen, W., Gullett, J.M., Tweedell, R.E. and Kanneganti, T. (2023) Innate Immune Inflammatory Cell Death: PANoptosis and PANoptosomes in Host Defense and Disease. European Journal of Immunology, 53, e2250235. >https://doi.org/10.1002/eji.202250235
Gong, T., Fu, Y., Wang, Q., Loughran, P.A., Li, Y., Billiar, T.R., et al. (2024) Decoding the Multiple Functions of ZBP1 in the Mechanism of Sepsis-Induced Acute Lung Injury. Communications Biology, 7, Article No. 1361. >https://doi.org/10.1038/s42003-024-07072-x
Fritsch, M., Günther, S.D., Schwarzer, R., Albert, M., Schorn, F., Werthenbach, J.P., et al. (2019) Caspase-8 Is the Molecular Switch for Apoptosis, Necroptosis and Pyroptosis. Nature, 575, 683-687. >https://doi.org/10.1038/s41586-019-1770-6
Jiang, M., Qi, L., Li, L., Wu, Y., Song, D. and Li, Y. (2021) Caspase‐8: A Key Protein of Cross‐talk Signal Way in “PANoptosis” in Cancer. International Journal of Cancer, 149, 1408-1420. >https://doi.org/10.1002/ijc.33698
Lorente, L., Martín, M.M., Ortiz-López, R., González-Rivero, A.F., Pérez-Cejas, A., Martín, M., et al. (2022) Blood Caspase-8 Concentrations and Mortality among Septic Patients. Medicina Intensiva, 46, 8-13. >https://doi.org/10.1016/j.medin.2020.06.016
Jiang, J., Li, W., Zhou, L., Liu, D., Wang, Y., An, J., et al. (2023) Platelet ITGA2B Inhibits Caspase-8 and Rip3/Mlkl-Dependent Platelet Death Though PTPN6 during Sepsis. iScience, 26, Article ID: 107414. >https://doi.org/10.1016/j.isci.2023.107414
Zhou, H., Gong, H., Liu, H., Jing, G., Xia, Y., Wang, Y., et al. (2024) Erbin Alleviates Sepsis-Induced Cardiomyopathy by Inhibiting RIPK1-Dependent Necroptosis through Activating PKA/CREB Pathway. Cellular Signalling, 123, Article ID: 111374. >https://doi.org/10.1016/j.cellsig.2024.111374
Ling, Z., Lv, Q., Li, J., Lu, R., Chen, L., Xu, W., et al. (2023) Protective Effect of a Novel RIPK1 Inhibitor, Compound 4-155, in Systemic Inflammatory Response Syndrome and Sepsis. Inflammation, 46, 1796-1809. >https://doi.org/10.1007/s10753-023-01842-1
Chen, H., Li, Y., Wu, J., Li, G., Tao, X., Lai, K., et al. (2020) RIPK3 Collaborates with GSDMD to Drive Tissue Injury in Lethal Polymicrobial Sepsis. Cell Death&Differentiation, 27, 2568-2585. >https://doi.org/10.1038/s41418-020-0524-1
Zheng, M. and Kanneganti, T. D. (2020) Newly Identified Function of Caspase-6 in ZBP1-Mediated Innate Immune Responses, NLRP3 Inflammasome Activation, PANoptosis, and Host Defense. Journal of Cellular Immunology, 2, 341-347. >http://10.33696/immunology.2.064
Bynigeri, R.R., Malireddi, R.K.S., Mall, R., Connelly, J.P., Pruett-Miller, S.M. and Kanneganti, T. (2024) The Protein Phosphatase PP6 Promotes RIPK1-Dependent PANoptosis. BMC Biology, 22, Article No. 122. >https://doi.org/10.1186/s12915-024-01901-5
Liu, L., Heng, J., Deng, D., Zhao, H., Zheng, Z., Liao, L., et al. (2023) Sulconazole Induces PANoptosis by Triggering Oxidative Stress and Inhibiting Glycolysis to Increase Radiosensitivity in Esophageal Cancer. Molecular&Cellular Proteomics, 22, Article ID: 100551. >https://doi.org/10.1016/j.mcpro.2023.100551
Wang, J., Chen, S., Chen, L. and Zhou, D. (2024) Data-Driven Analysis That Integrates Bioinformatics and Machine Learning Uncovers PANoptosis-Related Diagnostic Genes in Early Pediatric Septic Shock. Heliyon, 10, e37853. >https://doi.org/10.1016/j.heliyon.2024.e37853