Figure 1. Weight changes curve in both groups of mice (*P < 0.05)--图1. 两组小鼠体重变化曲线(*P < 0.05)--
<xref></xref>Table 1. Comparison of body weight, liver weight and liver index of the two groups of mice (
<math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow>
<mover accent="true">
<mi>
x
</mi>
<mo>
¯
</mo>
</mover>
<mo>
±
</mo>
<mi>
s
</mi>
</mrow>
</math>, n = 6) (<sup>*</sup>P < 0.05)Table 1. Comparison of body weight, liver weight and liver index of the two groups of mice ( x ¯ ±s , n = 6) (*P < 0.05) 表1. 两组小鼠体重、肝脏重量与肝指数比较( x ¯ ±s ,n = 6) (*P < 0.05)
Figure 5. Relative expression level of GSDMD mRNA in liver cancer tissues of two groups of mice (*P < 0.05)--图5. 两组小鼠肝癌组织中GSDMD mRNA相对表达水平(*P < 0.05)--4. 讨论
References
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. >https://doi.org/10.3322/caac.21660
Llovet, J.M., Kelley, R.K., Villanueva, A., Singal, A.G., Pikarsky, E., Roayaie, S., et al. (2021) Hepatocellular Carcinoma. Nature Reviews Disease Primers, 7, Article No. 6. >https://doi.org/10.1038/s41572-020-00240-3
Cai, X., Chen, J., Xu, H., Liu, S., Jiang, Q., Halfmann, R., et al. (2014) Prion-like Polymerization Underlies Signal Transduction in Antiviral Immune Defense and Inflammasome Activation. Cell, 156, 1207-1222. >https://doi.org/10.1016/j.cell.2014.01.063
Li, Z., Ji, S., Jiang, M., Xu, Y. and Zhang, C. (2022) The Regulation and Modification of GSDMD Signaling in Diseases. Frontiers in Immunology, 13, Article 893912. >https://doi.org/10.3389/fimmu.2022.893912
Dai, B., Cao, H., Hu, Y., Gong, Z., Huang, X., Chen, Y., et al. (2023) Role of NLRP3 Inflammasome Activation in HCC Cell Progression. Heliyon, 9, e19542. >https://doi.org/10.1016/j.heliyon.2023.e19542
Liu, Z., Tan, X., Li, Q., Liao, G., Fang, A., Zhang, D., et al. (2018) Trimethylamine N-Oxide, a Gut Microbiota-Dependent Metabolite of Choline, Is Positively Associated with the Risk of Primary Liver Cancer: A Case-Control Study. Nutrition&Metabolism, 15, Article No. 81. >https://doi.org/10.1186/s12986-018-0319-2
Fang, Q., Zheng, B., Liu, N., Liu, J., Liu, W., Huang, X., et al. (2021) Trimethylamine N-Oxide Exacerbates Renal Inflammation and Fibrosis in Rats with Diabetic Kidney Disease. Frontiers in Physiology, 12, Article 682482. >https://doi.org/10.3389/fphys.2021.682482
Yang, G. and Zhang, X. (2022) Trimethylamine N-Oxide Promotes Hyperlipidemia Acute Pancreatitis via Inflammatory Response. Canadian Journal of Physiology and Pharmacology, 100, 61-67. >https://doi.org/10.1139/cjpp-2021-0421
Xie, Y. and Liu, F. (2024) The Role of the Gut Microbiota in Tumor, Immunity, and Immunotherapy. Frontiers in Immunology, 15, Article 1410928. >https://doi.org/10.3389/fimmu.2024.1410928
Wang, H., Rong, X., Zhao, G., Zhou, Y., Xiao, Y., Ma, D., et al. (2022) The Microbial Metabolite Trimethylamine N-Oxide Promotes Antitumor Immunity in Triple-Negative Breast Cancer. Cell Metabolism, 34, 581-594.e8. >https://doi.org/10.1016/j.cmet.2022.02.010
Mirji, G., Worth, A., Bhat, S.A., El Sayed, M., Kannan, T., Goldman, A.R., et al. (2022) The Microbiome-Derived Metabolite TMAO Drives Immune Activation and Boosts Responses to Immune Checkpoint Blockade in Pancreatic Cancer. Science Immunology, 7, eabn0704. >https://doi.org/10.1126/sciimmunol.abn0704
Banerjee, R., Wehrle, C.J., Wang, Z., Wilcox, J.D., Uppin, V., Varadharajan, V., et al. (2024) Circulating Gut Microbe-Derived Metabolites Are Associated with Hepatocellular Carcinoma. Biomedicines, 12, Article 1946. >https://doi.org/10.3390/biomedicines12091946
Marrero, J.A., Kulik, L.M., Sirlin, C.B., Zhu, A.X., Finn, R.S., Abecassis, M.M., et al. (2018) Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology, 68, 723-750. >https://doi.org/10.1002/hep.29913
Tang, Y., Tao, Y., Zhu, L., Shen, J. and Cheng, H. (2023) Role of NLRP3 Inflammasome in Hepatocellular Carcinoma: A Double-Edged Sword. International Immunopharmacology, 118, Article 110107. >https://doi.org/10.1016/j.intimp.2023.110107
Liu, B., Zhou, Z., Jin, Y., Lu, J., Feng, D., Peng, R., et al. (2022) Hepatic Stellate Cell Activation and Senescence Induced by Intrahepatic Microbiota Disturbances Drive Progression of Liver Cirrhosis toward Hepatocellular Carcinoma. Journal for ImmunoTherapy of Cancer, 10, e003069. >https://doi.org/10.1136/jitc-2021-003069
Xiao, C., Gong, J., Jie, Y., Liang, W., Tai, Y., Qin, W., et al. (2023) E2F1-Mediated Up-Regulation of NCAPG Promotes Hepatocellular Carcinoma Development by Inhibiting Pyroptosis. Journal of Clinical and Translational Hepatology, 12, 25-35. >https://doi.org/10.14218/jcth.2022.00292
Liu, C., Wu, J., Li, Z., Huang, X., Xie, X. and Huang, Y. (2024) Cinobufotalin Inhibits Proliferation, Migration and Invasion in Hepatocellular Carcinoma by Triggering NOX4/NLRP3/GSDMD-Dependent Pyroptosis. Frontiers in Oncology, 14, Article 1438306. >https://doi.org/10.3389/fonc.2024.1438306