References
Witherel, C.E., Abebayehu, D., Barker, T.H. and Spiller, K.L. (2019) Macrophage and Fibroblast Interactions in Biomaterial‐Mediated Fibrosis. Advanced Healthcare Materials, 8, e1801451. >https://doi.org/10.1002/adhm.201801451
Abaricia, J.O., Shah, A.H., Chaubal, M., Hotchkiss, K.M. and Olivares-Navarrete, R. (2020) Wnt Signaling Modulates Macrophage Polarization and Is Regulated by Biomaterial Surface Properties. Biomaterials, 243, Article ID: 119920. >https://doi.org/10.1016/j.biomaterials.2020.119920
Amani, H., Alipour, M., Shahriari, E. and Taboas, J.M. (2024) Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Advanced Healthcare Materials, 13, e2401253. >https://doi.org/10.1002/adhm.202401253
Sica, A. and Mantovani, A. (2012) Macrophage Plasticity and Polarization: In Vivo Veritas. Journal of Clinical Investigation, 122, 787-795. >https://doi.org/10.1172/jci59643
Shapouri‐Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S., Mardani, F., et al. (2018) Macrophage Plasticity, Polarization, and Function in Health and Disease. Journal of Cellular Physiology, 233, 6425-6440. >https://doi.org/10.1002/jcp.26429
Li, J., Jiang, X., Li, H., Gelinsky, M. and Gu, Z. (2021) Tailoring Materials for Modulation of Macrophage Fate. Advanced Materials, 33, e2004172. >https://doi.org/10.1002/adma.202004172
Rayahin, J.E. and Gemeinhart, R.A. (2017) Activation of Macrophages in Response to Biomaterials. In: Kloc, M., Ed., Macrophages: Origin, Functions and Biointervention, Springer International Publishing, 317-351. >https://doi.org/10.1007/978-3-319-54090-0_13
Anderson, J.M., Rodriguez, A. and Chang, D.T. (2008) Foreign Body Reaction to Biomaterials. Seminars in Immunology, 20, 86-100. >https://doi.org/10.1016/j.smim.2007.11.004
Liu, K., Dong, X., Wang, Y., Wu, X. and Dai, H. (2022) Dopamine-Modified Chitosan Hydrogel for Spinal Cord Injury. Carbohydrate Polymers, 298, Article ID: 120047. >https://doi.org/10.1016/j.carbpol.2022.120047
Zhou, Z., Deng, T., Tao, M., Lin, L., Sun, L., Song, X., et al. (2023) Snail-Inspired AFG/GelMA Hydrogel Accelerates Diabetic Wound Healing via Inflammatory Cytokines Suppression and Macrophage Polarization. Biomaterials, 299, Article ID: 122141. >https://doi.org/10.1016/j.biomaterials.2023.122141
Liu, X., Wan, X., Sui, B., Hu, Q., Liu, Z., Ding, T., et al. (2024) Piezoelectric Hydrogel for Treatment of Periodontitis through Bioenergetic Activation. Bioactive Materials, 35, 346-361. >https://doi.org/10.1016/j.bioactmat.2024.02.011
Adams, S., Wuescher, L.M., Worth, R. and Yildirim-Ayan, E. (2019) Mechano-Immunomodulation: Mechanoresponsive Changes in Macrophage Activity and Polarization. Annals of Biomedical Engineering, 47, 2213-2231. >https://doi.org/10.1007/s10439-019-02302-4
Sridharan, R., Cavanagh, B., Cameron, A.R., Kelly, D.J. and O’Brien, F.J. (2019) Material Stiffness Influences the Polarization State, Function and Migration Mode of Macrophages. Acta Biomaterialia, 89, 47-59. >https://doi.org/10.1016/j.actbio.2019.02.048
Liu, X., Chen, X., Liu, Z., Gu, S., He, L., Wang, K., et al. (2020) Biomimetic Matrix Stiffness Modulates Hepatocellular Carcinoma Malignant Phenotypes and Macrophage Polarization through Multiple Modes of Mechanical Feedbacks. ACS Biomaterials Science & Engineering, 6, 3994-4004. >https://doi.org/10.1021/acsbiomaterials.0c00669
Tang, Z., Wei, X., Li, T., Wu, H., Xiao, X., Hao, Y., et al. (2021) Three-Dimensionally Printed Ti2448 with Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis. Frontiers in Cell and Developmental Biology, 9, Article ID: 750948. >https://doi.org/10.3389/fcell.2021.750948
Camarero‐Espinosa, S., Carlos‐Oliveira, M., Liu, H., Mano, J.F., Bouvy, N. and Moroni, L. (2021) 3D Printed Dual‐porosity Scaffolds: The Combined Effect of Stiffness and Porosity in the Modulation of Macrophage Polarization. Advanced Healthcare Materials, 11, e2101415. >https://doi.org/10.1002/adhm.202101415
Hotchkiss, K.M., Reddy, G.B., Hyzy, S.L., Schwartz, Z., Boyan, B.D. and Olivares-Navarrete, R. (2016) Titanium Surface Characteristics, Including Topography and Wettability, Alter Macrophage Activation. Acta Biomaterialia, 31, 425-434. >https://doi.org/10.1016/j.actbio.2015.12.003
Tang, D., Han, B., He, C., Xu, Y., Liu, Z., Wang, W., et al. (2024) Electrospun Poly‐L‐Lactic Acid Membranes Promote M2 Macrophage Polarization by Regulating the PCK2/AMPK/mTOR Signaling Pathway. Advanced Healthcare Materials, 13, e2400481. >https://doi.org/10.1002/adhm.202400481
Ni, S., Zhai, D., Huan, Z., Zhang, T., Chang, J. and Wu, C. (2020) Nanosized Concave Pit/Convex Dot Microarray for Immunomodulatory Osteogenesis and Angiogenesis. Nanoscale, 12, 16474-16488. >https://doi.org/10.1039/d0nr03886e
Jia, Y., Yang, W., Zhang, K., Qiu, S., Xu, J., Wang, C., et al. (2019) Nanofiber Arrangement Regulates Peripheral Nerve Regeneration through Differential Modulation of Macrophage Phenotypes. Acta Biomaterialia, 83, 291-301. >https://doi.org/10.1016/j.actbio.2018.10.040
Yang, X., Gao, J., Yang, S., Wu, Y., Liu, H., Su, D., et al. (2023) Pore Size-Mediated Macrophage M1 to M2 Transition Affects Osseointegration of 3D-Printed PEEK Scaffolds. International Journal of Bioprinting, 9, Article No. 755. >https://doi.org/10.18063/ijb.755
Chaudhuri, O., Cooper-White, J., Janmey, P.A., Mooney, D.J. and Shenoy, V.B. (2020) Effects of Extracellular Matrix Viscoelasticity on Cellular Behaviour. Nature, 584, 535-546. >https://doi.org/10.1038/s41586-020-2612-2
Kalashnikov, N. and Moraes, C. (2023) Substrate Viscoelasticity Affects Human Macrophage Morphology and Phagocytosis. Soft Matter, 19, 2438-2445. >https://doi.org/10.1039/d2sm01683d
Fang, J.Y., Yang, Z., Hu, W., Hoang, B.X. and Han, B. (2024) Viscoelastic Hydrogel Modulates Phenotype of Macrophage‐Derived Multinucleated Cells and Macrophage Differentiation in Foreign Body Reactions. Journal of Biomedical Materials Research Part A, 113, e37814. >https://doi.org/10.1002/jbm.a.37814
Liu, L., Huang, T., Xie, Z., Ye, Z., Zhang, J., Liao, H., et al. (2023) Liquid Crystalline Matrix-Induced Viscoelastic Mechanical Stimulation Modulates Activation and Phenotypes of Macrophage. Journal of Biomaterials Applications, 37, 1568-1581. >https://doi.org/10.1177/08853282221136580
Zhou, Y. and Wu, Y. (2021) Substrate Viscoelasticity Amplifies Distinctions between Transient and Persistent LPS‐induced Signals. Advanced Healthcare Materials, 11, e2102271. >https://doi.org/10.1002/adhm.202102271
Atcha, H., Jairaman, A., Evans, E.L., Pathak, M.M., Cahalan, M.D. and Liu, W.F. (2021) Ion Channel Mediated Mechanotransduction in Immune Cells. Current Opinion in Solid State and Materials Science, 25, Article ID: 100951. >https://doi.org/10.1016/j.cossms.2021.100951
Atcha, H., Jairaman, A., Holt, J.R., Meli, V.S., Nagalla, R.R., Veerasubramanian, P.K., et al. (2021) Mechanically Activated Ion Channel Piezo1 Modulates Macrophage Polarization and Stiffness Sensing. Nature Communications, 12, Article No. 3256. >https://doi.org/10.1038/s41467-021-23482-5
Yang, Z., Zhao, Y., Zhang, X., Huang, L., Wang, K., Sun, J., et al. (2024) Nano-Mechanical Immunoengineering: Nanoparticle Elasticity Reprograms Tumor-Associated Macrophages via Piezo1. ACS Nano, 18, 21221-21235. >https://doi.org/10.1021/acsnano.4c04614
Song, J., Liu, K., Mei, J., Wang, L., Lin, J., Du, P., et al. (2023) Defined Surface Physicochemical Cues Inhibit M1 Polarization of Human Macrophages Using Colloidal Self-Assembled Patterns. ACS Applied Materials & Interfaces, 15, 35832-35846. >https://doi.org/10.1021/acsami.3c04692
Liu, Y., An, Y., Li, G. and Wang, S. (2023) Regulatory Mechanism of Macrophage Polarization Based on Hippo Pathway. Frontiers in Immunology, 14, Article ID: 1279591. >https://doi.org/10.3389/fimmu.2023.1279591
Liu, X., Yuan, Y., Wu, Y., Zhu, C., Liu, Y. and Ke, B. (2025) Extracellular Matrix Stiffness Modulates Myopia Scleral Remodeling through Integrin/F-Actin/YAP Axis. Investigative Ophthalmology & Visual Science, 66, Article No. 22. >https://doi.org/10.1167/iovs.66.2.22
Meli, V.S., Atcha, H., Veerasubramanian, P.K., Nagalla, R.R., Luu, T.U., Chen, E.Y., et al. (2020) YAP-Mediated Mechanotransduction Tunes the Macrophage Inflammatory Response. Science Advances, 6, eabb8471. >https://doi.org/10.1126/sciadv.abb8471
Mei, F., Guo, Y., Wang, Y., Zhou, Y., Heng, B.C., Xie, M., et al. (2024) Matrix Stiffness Regulates Macrophage Polarisation via the Piezo1‐YAP Signalling Axis. Cell Proliferation, 57, e13640. >https://doi.org/10.1111/cpr.13640
Kanchanawong, P. and Calderwood, D.A. (2022) Organization, Dynamics and Mechanoregulation of Integrin-Mediated Cell-ECM Adhesions. Nature Reviews Molecular Cell Biology, 24, 142-161. >https://doi.org/10.1038/s41580-022-00531-5
Liu, H., Wu, Q., Liu, S., Liu, L., He, Z., Liu, Y., et al. (2024) The Role of Integrin αvβ3 in Biphasic Calcium Phosphate Ceramics Mediated M2 Macrophage Polarization and the Resultant Osteoinduction. Biomaterials, 304, Article ID: 122406. >https://doi.org/10.1016/j.biomaterials.2023.122406
Ronzier, E., Laurenson, A.J., Manickam, R., Liu, S., Saintilma, I.M., Schrock, D.C., et al. (2022) The Actin Cytoskeleton Responds to Inflammatory Cues and Alters Macrophage Activation. Cells, 11, Article No. 1806. >https://doi.org/10.3390/cells11111806
Liu, H., Zhu, L., Dudiki, T., Gabanic, B., Good, L., Podrez, E.A., et al. (2020) Macrophage Migration and Phagocytosis Are Controlled by Kindlin-3’s Link to the Cytoskeleton. The Journal of Immunology, 204, 1954-1967. >https://doi.org/10.4049/jimmunol.1901134
Fu, Z., Hou, Y., Haugen, H.J., Chen, X., Tang, K., Fang, L., et al. (2023) TiO
2 Nanostructured Implant Surface-Mediated M2c Polarization of Inflammatory Monocyte Requiring Intact Cytoskeleton Rearrangement. Journal of Nanobiotechnology, 21, Article No. 1. >https://doi.org/10.1186/s12951-022-01751-9
Balamurli, G., Liew, A.Q.X., Tee, W.W. and Pervaiz, S. (2024) Interplay between Epigenetics, Senescence and Cellular Redox Metabolism in Cancer and Its Therapeutic Implications. Redox Biology, 78, Article ID: 103441. >https://doi.org/10.1016/j.redox.2024.103441
Sun, H., Gao, Y., Ma, X., Deng, Y., Bi, L. and Li, L. (2024) Mechanism and Application of Feedback Loops Formed by Mechanotransduction and Histone Modifications. Genes & Diseases, 11, Article ID: 101061. >https://doi.org/10.1016/j.gendis.2023.06.030
Jain, N. and Vogel, V. (2018) Spatial Confinement Downsizes the Inflammatory Response of Macrophages. Nature Materials, 17, 1134-1144. >https://doi.org/10.1038/s41563-018-0190-6
Chu, Q., Han, W., He, Z., Hao, L. and Fu, X. (2023) Suppression of LPS‐Activated Inflammatory Responses and Chromosomal Histone Modifications in Macrophages by Micropattern‐Induced Nuclear Deformation. Journal of Biomedical Materials Research Part A, 112, 250-259. >https://doi.org/10.1002/jbm.a.37617
Wang, Y., Groeger, S., Yong, J. and Ruf, S. (2023) Orthodontic Compression Enhances Macrophage M2 Polarization via Histone H3 Hyperacetylation. International Journal of Molecular Sciences, 24, Article No. 3117. >https://doi.org/10.3390/ijms24043117
He, Y., Xu, K., Li, K., Yuan, Z., Ding, Y., Chen, M., et al. (2020) Improved Osteointegration by SEW2871-Encapsulated Multilayers on Micro-Structured Titanium via Macrophages Recruitment and Immunomodulation. Applied Materials Today, 20, Article ID: 100673. >https://doi.org/10.1016/j.apmt.2020.100673
Tharp, K.M., Kersten, K., Maller, O., Timblin, G.A., Stashko, C., Canale, F.P., et al. (2024) Tumor-Associated Macrophages Restrict CD8+ T Cell Function through Collagen Deposition and Metabolic Reprogramming of the Breast Cancer Microenvironment. Nature Cancer, 5, 1045-1062. >https://doi.org/10.1038/s43018-024-00775-4