jcpm Journal of Clinical Personalized Medicine 2334-3354 2334-3443 beplay体育官网网页版等您来挑战! 10.12677/jcpm.2025.42244 jcpm-111245 Articles 医药卫生 生物材料力学特性调控巨噬细胞极化的 研究进展
Advances in Biomaterial Mechanical Properties to Regulate Macrophage Polarization
贾恒基 1 徐心欣 1 2 3 1 2 3 重庆医科大学口腔医学院,重庆 重庆市口腔疾病研究重点实验室,重庆 重庆市高校市级口腔生物医学工程重点实验室,重庆 03 03 2025 04 02 792 799 3 3 :2025 26 3 :2025 26 3 :2025 Copyright © 2024 beplay安卓登录 All rights reserved. 2024 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 生物材料植入后引发的炎症反应已成为组织再生领域面临的关键科学问题。巨噬细胞作为早期到达植入物–组织界面的核心免疫调控因子,其功能输出对材料的预后至关重要。值得注意的是,巨噬细胞具有高度的力学响应特性,能够精确响应微环境中力学信号并呈现出不同的表型和功能。本文系统综述了材料硬度、表面拓扑结构和粘弹性等可调控力学参数对巨噬细胞极化的调控作用及力学–生物学信号转导机制。为基于力学调控的免疫治疗策略及新一代医用植入器械开发提供了理论依据。
The inflammatory response induced by biomaterial implantation has emerged as a critical scientific challenge in the field of tissue regeneration. As the primary immune regulatory factors that first arrive at the implant-tissue interface, macrophages critically determine clinical outcomes through their dynamic functional polarization. Significantly, macrophages exhibit remarkable mechanoresponsive properties that allow them to decode microenvironmental mechanical signals, leading to distinct phenotypic adaptations and functional reprogramming. This article systematically reviews the regulatory effects of tunable mechanical parameters—including material stiffness, surface topography, and viscoelasticity—on macrophage polarization, along with their underlying mechano-biological signal transduction mechanisms. These findings provide a theoretical framework for developing mechanics-based immunotherapeutic strategies and designing next-generation medical implantable devices.
力学特性,巨噬细胞,极化
Mechanical Properties
Macrophage Polarization
1. 引言

每年有数以万计的生物材料被植入患者体内,以修复或替换受损组织,从而实现其生理功能的康复。然而,材料在植入后都会激活先天免疫系统,引发炎症反应——尽管适度的免疫反应有助于清除坏死组织和启动修复过程,但过度或持续的炎症反应反而会导致组织纤维化、异物排斥等并发症 [1] 。因此,精准调控植入生物材料的免疫应答效应仍然是未来再生生物材料在组织修复和再生应用中的主要挑战。

巨噬细胞作为植入生物材料周围的免疫哨兵,是早期到达材料–组织界面的先天免疫细胞 [2] 。在植入物手术后,血液或组织液中的蛋白质,如纤维蛋白原、纤维连接蛋白和补体,可以迅速吸附到植入物表面,形成生物层,激活凝血途径和补体系统,协调巨噬细胞募集到损伤部位 [3] 。受损伤部位中IFN-γ和LPS等促炎信号的激活,巨噬细胞向促炎M1信号极化,炎性因子的分泌量和活性氧的产生增加,发挥清除碎片、细菌、凋亡细胞,和外来物质的功能 [4] 。在植入后期,巨噬细胞向抗炎M2型极化,分泌多种抗炎因子与组织修复因子,开启组织的修复阶段 [5] - [7]

然而,当受到强烈外来刺激或材料生物相容性不足时,M1巨噬细胞数量会不受控地增加,导致过度炎症和严重的异物反应。异物反应可引起植入物的纤维包裹,将生物材料与周围环境隔离并防止直接相互作用,尤其不利于生物材料介导的组织修复、置换和再生,最终导致植入物失败 [8] 。这表明了M1巨噬细胞及时转换为M2巨噬细胞的必要性。目前,调节免疫细胞反应的策略包括材料表面化学修饰或掺入生物活性成分,但现有生化调控策略存在降解速率过快、生物相容性不佳和制作成本过高等问题 [9] - [11] 。近年来,随着机械免疫学的兴起,材料力学性能因具有稳定性好、力学参数精确可控等优点已成为研究热点。材料的力学特性被证实可直接调控巨噬细胞表型转换,在炎症发展和组织再生过程中发挥决定性作用 [12]

在这篇综述中,我们将描述巨噬细胞在不同力学特性(材料硬度、表面拓扑结构、粘弹性)生物材料上的激活和极化,并总结讨论其潜在的机械转导机制。本文提供了调控巨噬细胞命运的生物材料力学特性的概述,为免疫调节生物材料的构建提供了一定的思路。

2. 材料力学特性 2.1. 材料硬度

不同的细胞外基质(extracellular matrix, ECM)成分、细胞和组织具有不同的硬度。通过模拟体内组织的力学微环境硬度,可为调控巨噬细胞的极化和功能提供一种有效的途径。研究表明,在一定范围内,硬度对巨噬细胞极化具有显著影响:硬基质通常诱导促炎(M1)极化,而软基质则促进抗炎(M2)极化。Sridharan等使用聚丙烯酰胺凝胶作为培养底物,发现较硬的凝胶表面(323 kPa)诱导THP-1单核细胞来源的巨噬细胞向M1表型极化,分泌更高水平炎性因子TNF-α、IL-6和MIP-1α,在较软凝胶(11 kPa)和中等硬度凝胶(88 kPa)表面巨噬细胞向M2表型极化,分泌了更多的抗炎因子IL-10 [13] 。类似地,Liu等通过层组装技术制备了硬度(约100~500 kPa)可调的ECM仿生薄膜(聚赖氨酸和透明质酸),发现在300 kPa以上时,巨噬细胞M1极化显著增强,在100~500 kPa的范围内,巨噬细胞均未能有效极化为M2型。然而,Scott等以0.1、3.4和10.3 kPa聚乙二醇基水凝胶为底物,发现随着底物硬度的增加,巨噬细胞向M2方向极化 [14] 。这些结论表明,硬度大小与巨噬细胞极化并非简单的线性关系,后续需要进行硬度梯度的实验进行进一步探索。

值得注意的是,硬度对极化的调控可能受材料维度影响:Tang等通过3D打印制备低弹性模量的多孔Ti2448合金支架,发现其可促进巨噬细胞向M2型极化,增强BMP-2分泌,从而显著提升体内血管生成与骨再生 [15] ;Camarero等采用挤出式3D打印结合热致相分离技术制备双孔隙支架,发现高硬度(>40 kPa)与较大孔隙(20~29 μm)协同促进巨噬细胞向M2表型极化并分泌IL-10和TGF-β,而低硬度(<5 kPa)支架则诱导M1型极化并引发体内慢性炎症 [16]

这些矛盾的结论,也让我们认识到硬度对细胞调控的复杂性。首先是材料化学成分可能存在干扰不同研究使用的基质材料(如聚丙烯酰胺、聚乙二醇、钛合金)具有不同的化学性质,可能通过表面受体(如整合素)或旁分泌信号间接影响巨噬细胞行为。例如,材料本身的金属离子释放可能激活不同的信号通路,导致极化结果的矛盾。其次,不同维度下,细胞的机械感知可能也不同:2D培养中,细胞仅通过基底接触感知硬度,而3D环境中细胞被基质包围,可能激活更复杂的机械信号(如三维应力、孔隙压力)。

2.2. 表面拓扑结构

拓扑结构是指材料表面在微纳米尺度上呈现的有序性、各向异性及孔隙率等几何参数的三维空间排布特征。作为ECM的关键仿生参数,拓扑结构能够模拟天然组织的微观形貌,是调控巨噬细胞极化的重要物理因素。研究表明,拓扑结构的尺度与形态对极化具有显著影响。例如,Hotchkiss等人通过喷砂、酸蚀技术制备了微米和纳米级粗糙钛表面,发现巨噬细胞在微纳米和微米粗糙表面能够显著促进巨噬细胞从M1向M2型极化,表现为抗炎细胞因子(IL-4和IL-10)的分泌增加,促炎细胞因子(IL-1β、IL-6和TNF-α)的分泌减少 [17] 。类似的,Tang等通过电纺技术制备了具有不同直径(纳米级和微米级)的电纺聚乳酸膜,有序的纳米纤维(直径600 nm)显著促进了RAW264.7巨噬细胞向M2型极化,而微米纤维(直径1200 nm)对细胞极化影响并不显著 [18] 。此外,Ni等通过阳极氧化和浸涂法在不锈钢表面成功构建了高度有序的纳米凹坑(NCPit)和纳米凸点(NCDot)微阵列,NCDot诱导巨噬细胞向M2表型极化,显著上调IL-10和CD206的表达,相比之下,NCPit微阵列对巨噬细胞的极化影响较小 [19]

拓扑结构的各向异性特征可通过细胞形态调控极化方向。Jia等人通过静电纺丝技术制备随机排列和有序排列的纳米纤维(直径600 nm),巨噬细胞沿纤维长轴排列时显著诱导M2表型(ARG1+细胞占比65%),而随机铺展时细胞呈圆形并向M1极化(iNOS+细胞占比40%) [20] 。这种“接触引导效应”在三维多孔结构中更为复杂:与普通2D纳米纤维膜相比,电纺无规则的大孔隙率纳米纤维支架可在大鼠皮下模型中具有较高M2/M1比率的巨噬细胞浸润 [6] 。类似地,Yang等人通过熔融沉积建模3D打印技术制备聚醚醚酮支架(孔径0~400 μm),发现大孔径(400 μm)增强细胞伸展并显著上调M2标志物CD206、TGF-β、IL-10 (较无孔径支架提高约2~3倍) [21]

2.3. 粘弹性

材料在受力后不仅会发生形变,还会随着时间的推移慢慢恢复,同时在这个过程中会消耗一部分使其变形的能量,这种特性被称为粘弹性。粘弹性材料在受到机械扰动时表现出瞬时的弹性响应和随后的时间依赖性机械响应及能量耗散。组织和ECM并非纯弹性的物体,粘弹性已被发现是活组织和ECM的一个普遍的特性 [22]

近年来,研究表明ECM的粘弹性对巨噬细胞的行为和极化具有显著影响。例如,Kalashnikov等利用粘弹性可调的聚丙烯酰胺水凝胶发现,高粘弹性基质显著抑制THP-1来源巨噬细胞的铺展面积和吞噬活性,并诱导细胞呈现圆形形态(类M2表型),减少M1标志物(CD86)表达 [23] 。然而,在三维环境中,粘弹性对巨噬细胞极化的影响产生了不一样的结果。Fang等使用转谷氨酰胺酶交联的胶原(Col-Tgel)构建了3D基质,发现低粘弹性凝胶(38.61 Pa)促进抗炎M2型多核细胞分化,而中高粘弹性基质(230.89~1006.48 Pa)诱导促炎M1型细胞分化 [24]

此外,粘弹性微环境对巨噬细胞极化的动态调控具有时间依赖性。Liu等通过酯化反应制备了具有不同粘弹性的液晶羟丙基纤维素酯(HpCEs),他们发现低粘弹性基质促进RAW264.7细胞向促炎M1表型极化(高iNOS、TNF-α表达),而高粘弹性基质诱导细胞伸长并上调M2标志物(ARG1、TGF-β)。值得注意的是,高粘弹性基质在培养中后期(3-7天)驱动巨噬细胞从M1向M2表型转换 [25] 。类似的,Zhou等通过对比弹性与粘弹性聚丙烯酰胺凝胶,也发现了短暂LPS刺激(1小时)下,弹性基质支持更强的促炎反应(如TNF-α分泌),而粘弹性基质在持续刺激(≥4小时)中显著增强IL-6、IL-1β等晚期炎症因子的表达 [26]

3. 机械转导机制

材料的力学特性通过机械感受器介导的初级响应(离子通道、整合素等)、细胞骨架重塑与力学信号传递最终转化为生化信号(表观遗传修饰、活性氧的生成等),调控巨噬细胞的极化。机械转导网络的复杂性与可代偿性对细胞命运决定及组织稳态维持至关重要。

3.1. Piezo1

Piezo1是一种非选择性阳离子通道,对Ca2+具有渗透性,引起许多下游效应。近年来,Piezo1已被认为是人体的关键机械传感器,它被广泛表达并能够对多种机械刺激做出反应 [27] 。研究表明,Piezo1在巨噬细胞对基质硬度的感知中发挥重要作用。在硬度较高的基质表面,LPS/IFN-γ刺激下巨噬细胞中机械响应的Piezo1介导Ca2+内流增加,上调了炎症因子表达。缺乏Piezo1的巨噬细胞M1极化受到抑制(iNOS的表达减少),M2极化得到增强(ARG1的表达增加)。Piezo1条件性敲除小鼠在植入硬材料后,炎症细胞浸润和纤维囊厚度减少 [28] 。然而,Yang等在使用不同硬度(81到837 MPa)的硅纳米颗粒(SNs)发现,软SNs能够激活Piezo1,导致钙离子内流,激活NF-κB信号通路,从而促进M1型极化 [29] 。矛盾的结论可能是由于所用材料或硬度的不同导致,但Piezo1的激活可以促进巨噬细胞M1极化已成为共识。此外,表面拓扑结构也可通过Piezo1介导巨噬细胞极化。Song等发现,较为粗糙的表面下调机械敏感基因(如PIEZO1、CDH2)及LPS受体TLR4,使巨噬细胞对机械刺激和LPS的敏感性降低,导致THP-1的M1细胞比例减少了50%,但对M2极化无显著影响 [30]

3.2. YAP信号通路

Yes相关蛋白(YAP)是Hippo信号通路的核心转录共激活因子,当Hippo途径被激活时,经过激酶级联,导致YAP磷酸化,磷酸化的YAP被限制在细胞质中,从而影响了靶基因表达 [31] 。近来发现,YAP积极响应ECM的物理线索,调控细胞命运,已被认为是细胞的重要机械传感器 [32] 。Meli等的研究发现,相对于软基质而言,硬基质上培养的巨噬细胞YAP表达和核定位增加,从而上调了M1极化标志物 [33] 。Mei等的研究不仅发现了同样的结论,而且还发现Piezo1作为机械转导的上游,激活了机械敏感因子YAP,从而促进M1型极化并抑制M2型极化。此外,他们通过使用YAP抑制剂,成功地在植入部位诱导了巨噬细胞M2极化,从而促进了植入物的骨整合 [34] 。这些研究表明,YAP的表达可以促进巨噬细胞M1极化,抑制M2极化。

3.3. 整合素–细胞骨架

整合素是细胞表面的一类跨膜异二聚体受体,由α和β亚基组成,主要介导细胞与ECM或相邻细胞间的黏附。细胞骨架由微丝(肌动蛋白)、微管(微管蛋白)和中间纤维组成,负责维持细胞形态、机械稳定性及动态行为(如迁移、吞噬)。整合素通过其胞内段与多种细胞骨架蛋白相互作用,形成细胞与ECM之间的机械连接。通过这种连接,整合素能够感知和传导机械应力信号,将细胞外的物理机械信号转化为细胞内的生物化学信号,调控细胞生命活动 [35]

近年来,整合素及细胞骨架在巨噬细胞极化中的动态调控机制成为免疫学与生物材料领域的研究热点。Liu等人探讨了整合素αvβ3在双相磷酸钙陶瓷(BCP)介导的巨噬细胞极化中的作用。他们发现,BCP材料表面通过激活整合素αvβ3-FAK信号通路,诱导巨噬细胞向M2型极化,进而促进骨组织再生 [36] 。Ronzier等人的研究发现,M1型(促炎)巨噬细胞在脂多糖(LPS)刺激下通过快速肌动蛋白聚合形成致密皮层结构,增强迁移和促炎因子分泌,而M2型(抗炎)巨噬细胞在IL-4刺激下依赖肌动球蛋白收缩维持稳定形态以支持组织修复 [37] 。Liu等人则从分子机制层面揭示了Kindlin-3蛋白的关键作用:该蛋白通过偶联整合素β2与肌动蛋白骨架,调控巨噬细胞的黏着斑形成、趋化迁移和吞噬功能 [38] 。尽管该研究未直接关联极化表型,但细胞骨架的机械信号感知已被认为是极化调控的重要条件。Fu等人的研究发现二氧化钛纳米结构植入体表面可通过诱导巨噬细胞骨架重组(尤其是微丝和黏着斑重构)驱动其向M2型极化 [39] 。这些研究不仅验证整合素-细胞骨架作为极化调控枢纽的理论,还揭示了外部物理信号通过骨架重编程影响巨噬细胞极化的新机制,为免疫调控型生物材料开发提供了理论依据。

3.4. 表观遗传

表观遗传是指在不改变DNA序列的情况下,通过其他机制调控基因表达,从而影响基因表达和细胞分化,最终调控发育、疾病等生命活动。表观遗传主要包括DNA甲基化、组蛋白修饰、非编码RNA以及染色质重塑等 [40] 。作为最近的研究热点,组蛋白修饰已被认为是机械信号通路的中介分子,来影响细胞命运和疾病进展 [41] 。Jain等使用了二维粘附岛和微孔基底来控制巨噬细胞的大小和形状,发现空间限制的巨噬细胞中,组蛋白去乙酰化酶3 (HDAC3)的水平显著降低,从而抑制了M1极化 [42] 。类似地,Chu等使用微坑和微柱图案的聚二甲基硅氧烷(PDMS)表面,微图案表面增加了组蛋白H3第36位赖氨酸二甲基化(H3K36me2)的水平,从而抑制了M1炎症基因的表达 [43] 。此外,Wang等发现巨噬细胞在正畸牙移动过程中受到压缩力的影响,这种压缩力促进了巨噬细胞的H3组蛋白的高乙酰化以及M2极化(Arg1表达增加),从而促进了正畸过程中的骨形成 [44] 。虽然这些研究初步探讨了组蛋白修饰对巨噬细胞极化的调控,但是对于力学信号如何调控组蛋白修饰仍需要探究。

4. 力学免疫临床应用

生物材料的力学特性可以主动调节巨噬细胞行为和免疫反应,从而有助于各种疾病的免疫工程治疗,并为揭示疾病的力学靶点提供了基础。例如,通过在微结构钛植入物上覆盖明胶–壳聚糖多层,调整后的表面粗糙度和润湿性能够促进M2巨噬细胞的抗炎反应,并减轻M1促炎反应。巨噬细胞–植入物相互作用创造的有利免疫微环境进一步促进了大鼠间充质干细胞的体外成骨分化和植入6周后的体内骨整合 [45] 。此外,Tharp等发现,在乳腺癌中,肿瘤的硬度增加(纤维化)会促进肿瘤相关巨噬细胞(TAMs)自分泌TGFβ信号,促进其对精氨酸的摄取,进而用于胶原纤维的合成,进一步加剧肿瘤纤维化程度,这在物理上隔绝了CD8+ T细胞对肿瘤的清除作用 [46] 。这些研究将巨噬细胞的力学免疫调节整合更为广泛的临床领域,强调了巨噬细胞在疾病调节中的关键作用,并突出了它们作为治疗靶点的潜力。

5. 总结

本文综述了生物材料力学特性调控巨噬细胞极化的研究现状。如前所述,生物材料的力学特性可以调节巨噬细胞的行为和免疫反应,从而有助于组织再生。利用生物材料力学参数在巨噬细胞激活和极化中的作用,包括但不限于材料硬度、表面拓扑结构和粘弹性,将极大地提高我们对材料–巨噬细胞相互作用的理解,为设计力学适配型生物材料提供了新思路。另外,ECM仿生力学调控免疫应答的研究,在组织修复再生领域展现出重要应用潜力,为衰老、炎症及肿瘤等疾病提供了力学靶点,但体内复杂力学环境的动态模拟与深入机制仍需探索。

NOTES

*通讯作者。

References Witherel, C.E., Abebayehu, D., Barker, T.H. and Spiller, K.L. (2019) Macrophage and Fibroblast Interactions in Biomaterial‐Mediated Fibrosis. Advanced Healthcare Materials, 8, e1801451. >https://doi.org/10.1002/adhm.201801451 Abaricia, J.O., Shah, A.H., Chaubal, M., Hotchkiss, K.M. and Olivares-Navarrete, R. (2020) Wnt Signaling Modulates Macrophage Polarization and Is Regulated by Biomaterial Surface Properties. Biomaterials, 243, Article ID: 119920. >https://doi.org/10.1016/j.biomaterials.2020.119920 Amani, H., Alipour, M., Shahriari, E. and Taboas, J.M. (2024) Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Advanced Healthcare Materials, 13, e2401253. >https://doi.org/10.1002/adhm.202401253 Sica, A. and Mantovani, A. (2012) Macrophage Plasticity and Polarization: In Vivo Veritas. Journal of Clinical Investigation, 122, 787-795. >https://doi.org/10.1172/jci59643 Shapouri‐Moghaddam, A., Mohammadian, S., Vazini, H., Taghadosi, M., Esmaeili, S., Mardani, F., et al. (2018) Macrophage Plasticity, Polarization, and Function in Health and Disease. Journal of Cellular Physiology, 233, 6425-6440. >https://doi.org/10.1002/jcp.26429 Li, J., Jiang, X., Li, H., Gelinsky, M. and Gu, Z. (2021) Tailoring Materials for Modulation of Macrophage Fate. Advanced Materials, 33, e2004172. >https://doi.org/10.1002/adma.202004172 Rayahin, J.E. and Gemeinhart, R.A. (2017) Activation of Macrophages in Response to Biomaterials. In: Kloc, M., Ed., Macrophages: Origin, Functions and Biointervention, Springer International Publishing, 317-351. >https://doi.org/10.1007/978-3-319-54090-0_13 Anderson, J.M., Rodriguez, A. and Chang, D.T. (2008) Foreign Body Reaction to Biomaterials. Seminars in Immunology, 20, 86-100. >https://doi.org/10.1016/j.smim.2007.11.004 Liu, K., Dong, X., Wang, Y., Wu, X. and Dai, H. (2022) Dopamine-Modified Chitosan Hydrogel for Spinal Cord Injury. Carbohydrate Polymers, 298, Article ID: 120047. >https://doi.org/10.1016/j.carbpol.2022.120047 Zhou, Z., Deng, T., Tao, M., Lin, L., Sun, L., Song, X., et al. (2023) Snail-Inspired AFG/GelMA Hydrogel Accelerates Diabetic Wound Healing via Inflammatory Cytokines Suppression and Macrophage Polarization. Biomaterials, 299, Article ID: 122141. >https://doi.org/10.1016/j.biomaterials.2023.122141 Liu, X., Wan, X., Sui, B., Hu, Q., Liu, Z., Ding, T., et al. (2024) Piezoelectric Hydrogel for Treatment of Periodontitis through Bioenergetic Activation. Bioactive Materials, 35, 346-361. >https://doi.org/10.1016/j.bioactmat.2024.02.011 Adams, S., Wuescher, L.M., Worth, R. and Yildirim-Ayan, E. (2019) Mechano-Immunomodulation: Mechanoresponsive Changes in Macrophage Activity and Polarization. Annals of Biomedical Engineering, 47, 2213-2231. >https://doi.org/10.1007/s10439-019-02302-4 Sridharan, R., Cavanagh, B., Cameron, A.R., Kelly, D.J. and O’Brien, F.J. (2019) Material Stiffness Influences the Polarization State, Function and Migration Mode of Macrophages. Acta Biomaterialia, 89, 47-59. >https://doi.org/10.1016/j.actbio.2019.02.048 Liu, X., Chen, X., Liu, Z., Gu, S., He, L., Wang, K., et al. (2020) Biomimetic Matrix Stiffness Modulates Hepatocellular Carcinoma Malignant Phenotypes and Macrophage Polarization through Multiple Modes of Mechanical Feedbacks. ACS Biomaterials Science & Engineering, 6, 3994-4004. >https://doi.org/10.1021/acsbiomaterials.0c00669 Tang, Z., Wei, X., Li, T., Wu, H., Xiao, X., Hao, Y., et al. (2021) Three-Dimensionally Printed Ti2448 with Low Stiffness Enhanced Angiogenesis and Osteogenesis by Regulating Macrophage Polarization via Piezo1/YAP Signaling Axis. Frontiers in Cell and Developmental Biology, 9, Article ID: 750948. >https://doi.org/10.3389/fcell.2021.750948 Camarero‐Espinosa, S., Carlos‐Oliveira, M., Liu, H., Mano, J.F., Bouvy, N. and Moroni, L. (2021) 3D Printed Dual‐porosity Scaffolds: The Combined Effect of Stiffness and Porosity in the Modulation of Macrophage Polarization. Advanced Healthcare Materials, 11, e2101415. >https://doi.org/10.1002/adhm.202101415 Hotchkiss, K.M., Reddy, G.B., Hyzy, S.L., Schwartz, Z., Boyan, B.D. and Olivares-Navarrete, R. (2016) Titanium Surface Characteristics, Including Topography and Wettability, Alter Macrophage Activation. Acta Biomaterialia, 31, 425-434. >https://doi.org/10.1016/j.actbio.2015.12.003 Tang, D., Han, B., He, C., Xu, Y., Liu, Z., Wang, W., et al. (2024) Electrospun Poly‐L‐Lactic Acid Membranes Promote M2 Macrophage Polarization by Regulating the PCK2/AMPK/mTOR Signaling Pathway. Advanced Healthcare Materials, 13, e2400481. >https://doi.org/10.1002/adhm.202400481 Ni, S., Zhai, D., Huan, Z., Zhang, T., Chang, J. and Wu, C. (2020) Nanosized Concave Pit/Convex Dot Microarray for Immunomodulatory Osteogenesis and Angiogenesis. Nanoscale, 12, 16474-16488. >https://doi.org/10.1039/d0nr03886e Jia, Y., Yang, W., Zhang, K., Qiu, S., Xu, J., Wang, C., et al. (2019) Nanofiber Arrangement Regulates Peripheral Nerve Regeneration through Differential Modulation of Macrophage Phenotypes. Acta Biomaterialia, 83, 291-301. >https://doi.org/10.1016/j.actbio.2018.10.040 Yang, X., Gao, J., Yang, S., Wu, Y., Liu, H., Su, D., et al. (2023) Pore Size-Mediated Macrophage M1 to M2 Transition Affects Osseointegration of 3D-Printed PEEK Scaffolds. International Journal of Bioprinting, 9, Article No. 755. >https://doi.org/10.18063/ijb.755 Chaudhuri, O., Cooper-White, J., Janmey, P.A., Mooney, D.J. and Shenoy, V.B. (2020) Effects of Extracellular Matrix Viscoelasticity on Cellular Behaviour. Nature, 584, 535-546. >https://doi.org/10.1038/s41586-020-2612-2 Kalashnikov, N. and Moraes, C. (2023) Substrate Viscoelasticity Affects Human Macrophage Morphology and Phagocytosis. Soft Matter, 19, 2438-2445. >https://doi.org/10.1039/d2sm01683d Fang, J.Y., Yang, Z., Hu, W., Hoang, B.X. and Han, B. (2024) Viscoelastic Hydrogel Modulates Phenotype of Macrophage‐Derived Multinucleated Cells and Macrophage Differentiation in Foreign Body Reactions. Journal of Biomedical Materials Research Part A, 113, e37814. >https://doi.org/10.1002/jbm.a.37814 Liu, L., Huang, T., Xie, Z., Ye, Z., Zhang, J., Liao, H., et al. (2023) Liquid Crystalline Matrix-Induced Viscoelastic Mechanical Stimulation Modulates Activation and Phenotypes of Macrophage. Journal of Biomaterials Applications, 37, 1568-1581. >https://doi.org/10.1177/08853282221136580 Zhou, Y. and Wu, Y. (2021) Substrate Viscoelasticity Amplifies Distinctions between Transient and Persistent LPS‐induced Signals. Advanced Healthcare Materials, 11, e2102271. >https://doi.org/10.1002/adhm.202102271 Atcha, H., Jairaman, A., Evans, E.L., Pathak, M.M., Cahalan, M.D. and Liu, W.F. (2021) Ion Channel Mediated Mechanotransduction in Immune Cells. Current Opinion in Solid State and Materials Science, 25, Article ID: 100951. >https://doi.org/10.1016/j.cossms.2021.100951 Atcha, H., Jairaman, A., Holt, J.R., Meli, V.S., Nagalla, R.R., Veerasubramanian, P.K., et al. (2021) Mechanically Activated Ion Channel Piezo1 Modulates Macrophage Polarization and Stiffness Sensing. Nature Communications, 12, Article No. 3256. >https://doi.org/10.1038/s41467-021-23482-5 Yang, Z., Zhao, Y., Zhang, X., Huang, L., Wang, K., Sun, J., et al. (2024) Nano-Mechanical Immunoengineering: Nanoparticle Elasticity Reprograms Tumor-Associated Macrophages via Piezo1. ACS Nano, 18, 21221-21235. >https://doi.org/10.1021/acsnano.4c04614 Song, J., Liu, K., Mei, J., Wang, L., Lin, J., Du, P., et al. (2023) Defined Surface Physicochemical Cues Inhibit M1 Polarization of Human Macrophages Using Colloidal Self-Assembled Patterns. ACS Applied Materials & Interfaces, 15, 35832-35846. >https://doi.org/10.1021/acsami.3c04692 Liu, Y., An, Y., Li, G. and Wang, S. (2023) Regulatory Mechanism of Macrophage Polarization Based on Hippo Pathway. Frontiers in Immunology, 14, Article ID: 1279591. >https://doi.org/10.3389/fimmu.2023.1279591 Liu, X., Yuan, Y., Wu, Y., Zhu, C., Liu, Y. and Ke, B. (2025) Extracellular Matrix Stiffness Modulates Myopia Scleral Remodeling through Integrin/F-Actin/YAP Axis. Investigative Ophthalmology & Visual Science, 66, Article No. 22. >https://doi.org/10.1167/iovs.66.2.22 Meli, V.S., Atcha, H., Veerasubramanian, P.K., Nagalla, R.R., Luu, T.U., Chen, E.Y., et al. (2020) YAP-Mediated Mechanotransduction Tunes the Macrophage Inflammatory Response. Science Advances, 6, eabb8471. >https://doi.org/10.1126/sciadv.abb8471 Mei, F., Guo, Y., Wang, Y., Zhou, Y., Heng, B.C., Xie, M., et al. (2024) Matrix Stiffness Regulates Macrophage Polarisation via the Piezo1‐YAP Signalling Axis. Cell Proliferation, 57, e13640. >https://doi.org/10.1111/cpr.13640 Kanchanawong, P. and Calderwood, D.A. (2022) Organization, Dynamics and Mechanoregulation of Integrin-Mediated Cell-ECM Adhesions. Nature Reviews Molecular Cell Biology, 24, 142-161. >https://doi.org/10.1038/s41580-022-00531-5 Liu, H., Wu, Q., Liu, S., Liu, L., He, Z., Liu, Y., et al. (2024) The Role of Integrin αvβ3 in Biphasic Calcium Phosphate Ceramics Mediated M2 Macrophage Polarization and the Resultant Osteoinduction. Biomaterials, 304, Article ID: 122406. >https://doi.org/10.1016/j.biomaterials.2023.122406 Ronzier, E., Laurenson, A.J., Manickam, R., Liu, S., Saintilma, I.M., Schrock, D.C., et al. (2022) The Actin Cytoskeleton Responds to Inflammatory Cues and Alters Macrophage Activation. Cells, 11, Article No. 1806. >https://doi.org/10.3390/cells11111806 Liu, H., Zhu, L., Dudiki, T., Gabanic, B., Good, L., Podrez, E.A., et al. (2020) Macrophage Migration and Phagocytosis Are Controlled by Kindlin-3’s Link to the Cytoskeleton. The Journal of Immunology, 204, 1954-1967. >https://doi.org/10.4049/jimmunol.1901134 Fu, Z., Hou, Y., Haugen, H.J., Chen, X., Tang, K., Fang, L., et al. (2023) TiO 2 Nanostructured Implant Surface-Mediated M2c Polarization of Inflammatory Monocyte Requiring Intact Cytoskeleton Rearrangement. Journal of Nanobiotechnology, 21, Article No. 1. >https://doi.org/10.1186/s12951-022-01751-9 Balamurli, G., Liew, A.Q.X., Tee, W.W. and Pervaiz, S. (2024) Interplay between Epigenetics, Senescence and Cellular Redox Metabolism in Cancer and Its Therapeutic Implications. Redox Biology, 78, Article ID: 103441. >https://doi.org/10.1016/j.redox.2024.103441 Sun, H., Gao, Y., Ma, X., Deng, Y., Bi, L. and Li, L. (2024) Mechanism and Application of Feedback Loops Formed by Mechanotransduction and Histone Modifications. Genes & Diseases, 11, Article ID: 101061. >https://doi.org/10.1016/j.gendis.2023.06.030 Jain, N. and Vogel, V. (2018) Spatial Confinement Downsizes the Inflammatory Response of Macrophages. Nature Materials, 17, 1134-1144. >https://doi.org/10.1038/s41563-018-0190-6 Chu, Q., Han, W., He, Z., Hao, L. and Fu, X. (2023) Suppression of LPS‐Activated Inflammatory Responses and Chromosomal Histone Modifications in Macrophages by Micropattern‐Induced Nuclear Deformation. Journal of Biomedical Materials Research Part A, 112, 250-259. >https://doi.org/10.1002/jbm.a.37617 Wang, Y., Groeger, S., Yong, J. and Ruf, S. (2023) Orthodontic Compression Enhances Macrophage M2 Polarization via Histone H3 Hyperacetylation. International Journal of Molecular Sciences, 24, Article No. 3117. >https://doi.org/10.3390/ijms24043117 He, Y., Xu, K., Li, K., Yuan, Z., Ding, Y., Chen, M., et al. (2020) Improved Osteointegration by SEW2871-Encapsulated Multilayers on Micro-Structured Titanium via Macrophages Recruitment and Immunomodulation. Applied Materials Today, 20, Article ID: 100673. >https://doi.org/10.1016/j.apmt.2020.100673 Tharp, K.M., Kersten, K., Maller, O., Timblin, G.A., Stashko, C., Canale, F.P., et al. (2024) Tumor-Associated Macrophages Restrict CD8+ T Cell Function through Collagen Deposition and Metabolic Reprogramming of the Breast Cancer Microenvironment. Nature Cancer, 5, 1045-1062. >https://doi.org/10.1038/s43018-024-00775-4
Baidu
map