References
DeZern, A.E. and Churpek, J.E. (2021) Approach to the Diagnosis of Aplastic Anemia. Blood Advances, 5, 2660-2671. >https://doi.org/10.1182/bloodadvances.2021004345
Furlong, E. and Carter, T. (2020) Aplastic Anaemia: Current Concepts in Diagnosis and Management. Journal of Paediatrics and Child Health, 56, 1023-1028. >https://doi.org/10.1111/jpc.14996
Kordasti, S., Costantini, B., Seidl, T., Perez Abellan, P., Martinez Llordella, M., McLornan, D., et al. (2016) Deep Phenotyping of Tregs Identifies an Immune Signature for Idiopathic Aplastic Anemia and Predicts Response to Treatment. Blood, 128, 1193-1205. >https://doi.org/10.1182/blood-2016-03-703702
Liu, C., Sun, Y. and Shao, Z. (2019) Current Concepts of the Pathogenesis of Aplastic Anemia. Current Pharmaceutical Design, 25, 236-241. >https://doi.org/10.2174/1381612825666190313113601
Peslak, S.A., Olson, T. and Babushok, D.V. (2017) Diagnosis and Treatment of Aplastic Anemia. Current Treatment Options in Oncology, 18, 70-92. >https://doi.org/10.1007/s11864-017-0511-z
Bacigalupo, A. (2017) How I Treat Acquired Aplastic Anemia. Blood, 129, 1428-1436. >https://doi.org/10.1182/blood-2016-08-693481
Mancuso, C. and Santangelo, R. (2017) Panax ginseng and Panax quinquefolius: From Pharmacology to Toxicology. Food and Chemical Toxicology, 107, 362-372. >https://doi.org/10.1016/j.fct.2017.07.019
Luo, M., Yan, D., Sun, Q., Tao, J., Xu, L., Sun, H., et al. (2019) Ginsenoside Rg1 Attenuates Cardiomyocyte Apoptosis and Inflammation via the TLR4/NF-κB/NLRP3 Pathway. Journal of Cellular Biochemistry, 121, 2994-3004. >https://doi.org/10.1002/jcb.29556
Chen, J., Zhang, X., Liu, X., Zhang, C., Shang, W., Xue, J., et al. (2019) Ginsenoside Rg1 Promotes Cerebral Angiogenesis via the PI3K/Akt/mTOR Signaling Pathway in Ischemic Mice. European Journal of Pharmacology, 856, Article ID: 172418. >https://doi.org/10.1016/j.ejphar.2019.172418
Jiang, L., Yin, X., Chen, Y., Chen, Y., Jiang, W., Zheng, H., et al. (2021) Proteomic Analysis Reveals Ginsenoside Rb1 Attenuates Myocardial Ischemia/Reperfusion Injury through Inhibiting ROS Production from Mitochondrial Complex I. Theranostics, 11, 1703-1720. >https://doi.org/10.7150/thno.43895
Li, L., Wang, Y., Guo, R., Li, S., Ni, J., Gao, S., et al. (2020) Ginsenoside Rg3-Loaded, Reactive Oxygen Species-Responsive Polymeric Nanoparticles for Alleviating Myocardial Ischemia-Reperfusion Injury. Journal of Controlled Release, 317, 259-272. >https://doi.org/10.1016/j.jconrel.2019.11.032
Zhen, N., Jin, L., Ma, J., Zhu, J., Gu, S., Wang, J., et al. (2018) Ginsenoside Rg1 Impairs Homologous Recombination Repair by Targeting CTBP-Interacting Protein and Sensitizes Hepatoblastoma Cells to DNA Damage. Anti-Cancer Drugs, 29, 756-766. >https://doi.org/10.1097/cad.0000000000000646
Yang, H., Liu, M., Luo, P., Yao, X. and Zhou, H. (2022) Network Pharmacology Provides a Systematic Approach to Understanding the Treatment of Ischemic Heart Diseases with Traditional Chinese Medicine. Phytomedicine, 104, Article ID: 154268. >https://doi.org/10.1016/j.phymed.2022.154268
Raghavendran, H.R.B., Sathyanath, R., Shin, J., Kim, H.K., Han, J.M., Cho, J., et al. (2012) Panax ginseng Modulates Cytokines in Bone Marrow Toxicity and Myelopoiesis: Ginsenoside Rg1 Partially Supports Myelopoiesis. PLOS ONE, 7, e33733. >https://doi.org/10.1371/journal.pone.0033733
Suzuki, M., Shimizu, R. and Yamamoto, M. (2011) Transcriptional Regulation by GATA1 and GATA2 during Erythropoiesis. International Journal of Hematology, 93, 150-155. >https://doi.org/10.1007/s12185-011-0770-6
Yue, J. and López, J.M. (2020) Understanding MAPK Signaling Pathways in Apoptosis. International Journal of Molecular Sciences, 21, Article 2346. >https://doi.org/10.3390/ijms21072346
Falcicchia, C., Tozzi, F., Arancio, O., Watterson, D.M. and Origlia, N. (2020) Involvement of P38 MAPK in Synaptic Function and Dysfunction. International Journal of Molecular Sciences, 21, Article 5624. >https://doi.org/10.3390/ijms21165624
Zheng, Y., Han, Z., Zhao, H. and Luo, Y. (2020) MAPK: A Key Player in the Development and Progression of Stroke. CNS & Neurological Disorders-Drug Targets, 19, 248-256. >https://doi.org/10.2174/1871527319666200613223018
Xie, W., Zhou, P., Sun, Y., Meng, X., Dai, Z., Sun, G., et al. (2018) Protective Effects and Target Network Analysis of Ginsenoside Rg1 in Cerebral Ischemia and Reperfusion Injury: A Comprehensive Overview of Experimental Studies. Cells, 7, Article 270. >https://doi.org/10.3390/cells7120270
Zhang, J., Xiong, L., Tang, W., Tang, L. and Wang, B. (2018) Hypoxic Culture Enhances the Expansion of Rat Bone Marrow-Derived Mesenchymal Stem Cells via the Regulatory Pathways of Cell Division and Apoptosis. In Vitro Cellular & Developmental Biology—Animal, 54, 666-676. >https://doi.org/10.1007/s11626-018-0281-3
Young, N.S. (2018) Aplastic Anemia. New England Journal of Medicine, 379, 1643-1656. >https://doi.org/10.1056/nejmra1413485
Zhu, N., Wu, D. and Ye, B. (2018) The Progress of Traditional Chinese Medicine in the Treatment of Aplastic Anemia. Journal of Translational Internal Medicine, 6, 159-164. >https://doi.org/10.2478/jtim-2018-0031
Yang, H., Xu, X., Jiang, X. and Yao, Z. (2019) Treatment of Menorrhagia Due to Aplastic Anemia by Hysteroscopic Resection of Endometrial Functional Layer and Levonorgestrel-Releasing Intra-Uterine System. Medicine, 98, e15156. >https://doi.org/10.1097/md.0000000000015156
Dijiong, W., Yiping, S., Baodong, Y., Bingmu, F., Shengyun, L., Zhilu, C., et al. (2016) Efficacy and Advantages of Modified Traditional Chinese Medicine Treatments Based on “Kidney Reinforcing” for Chronic Aplastic Anemia: A Randomized Controlled Clinical Trial. Journal of Traditional Chinese Medicine, 36, 434-443. >https://doi.org/10.1016/s0254-6272(16)30059-0
Lu, Y., Du, Z., Li, Y., Wang, J., Zhao, M., Jiang, Y., et al. (2018) Effects of Baoyuan Decoction, a Traditional Chinese Medicine Formula, on the Activities and mRNA Expression of Seven CYP Isozymes in Rats. Journal of Ethnopharmacology, 225, 327-335. >https://doi.org/10.1016/j.jep.2018.07.023
Cai, S., Zhou, Y., Liu, J., Li, C., Jia, D., Zhang, M., et al. (2018) Alleviation of Ginsenoside Rg1 on Hematopoietic Homeostasis Defects Caused by Lead-Acetate. Biomedicine & Pharmacotherapy, 97, 1204-1211. >https://doi.org/10.1016/j.biopha.2017.10.148
Tang, Y.L., Zhou, Y., Wang, Y.P., Wang, J.W., Ding, J.C. (2015) SIRT6/NF-κB Signaling Axis in Ginsenoside Rg1-Delayed Hematopoietic Stem/Progenitor Cell Senescence. International Journal of Clinical and Experimental Pathology, 8, 5591-5596.
Tang, Y., Zhou, Y., Wang, Y., He, Y., Ding, J., Li, Y., et al. (2020) Ginsenoside Rg1 Protects against Sca-1+ HSC/HPC Cell Aging by Regulating the SIRT1-FOXO3 and SIRT3-SOD2 Signaling Pathways in a γ-Ray Irradiation-Induced Aging Mice Model. Experimental and Therapeutic Medicine, 20, 1245-1252. >https://doi.org/10.3892/etm.2020.8810
Zeng, Y., Hu, W., Jing, P., Chen, X., Wang, Z., Wang, L., et al. (2018) The Regulation of Ginsenoside Rg1 Upon Aging of Bone Marrow Stromal Cell Contribute to Delaying Senescence of Bone Marrow Mononuclear Cells (BMNCs). Life Sciences, 209, 63-68. >https://doi.org/10.1016/j.lfs.2018.07.025
Yang, L., Duan, F., Su, D., Li, Y., Ma, L., Shi, B., et al. (2020) The Effects of CTX Damage or Inhibition of Bone Marrow Hematopoiesis and GM-CSF Stimulation of Bone Marrow Hematopoiesis on the Peripheral Blood TCRβ CDR3 Repertoire of BALB/C Mice. Immunopharmacology and Immunotoxicology, 42, 110-118. >https://doi.org/10.1080/08923973.2020.1728309
Laurenti, E. and Göttgens, B. (2018) From Haematopoietic Stem Cells to Complex Differentiation Landscapes. Nature, 553, 418-426. >https://doi.org/10.1038/nature25022
Seita, J. and Weissman, I.L. (2010) Hematopoietic Stem Cell: Self‐Renewal versus Differentiation. WIREs Systems Biology and Medicine, 2, 640-653. >https://doi.org/10.1002/wsbm.86
Baron, M.H., Isern, J. and Fraser, S.T. (2012) The Embryonic Origins of Erythropoiesis in Mammals. Blood, 119, 4828-4837. >https://doi.org/10.1182/blood-2012-01-153486
Sugimura, R., Jha, D.K., Han, A., Soria-Valles, C., da Rocha, E.L., Lu, Y., et al. (2017) Haematopoietic Stem and Progenitor Cells from Human Pluripotent Stem Cells. Nature, 545, 432-438. >https://doi.org/10.1038/nature22370
Hung, C., Wang, K., Liou, Y., Wang, J., Huang, A.Y., Lee, T., et al. (2020) Negative Regulation of the Differentiation of Flk2
− CD34
− LSK Hematopoietic Stem Cells by EKLF/KLF1. International Journal of Molecular Sciences, 21, Article 8448. >https://doi.org/10.3390/ijms21228448
Kondo, M. (2010) Lymphoid and Myeloid Lineage Commitment in Multipotent Hematopoietic Progenitors. Immunological Reviews, 238, 37-46. >https://doi.org/10.1111/j.1600-065x.2010.00963.x
Kondo, M., Wagers, A.J., Manz, M.G., Prohaska, S.S., Scherer, D.C., Beilhack, G.F., et al. (2003) Biology of Hematopoietic Stem Cells and Progenitors: Implications for Clinical Application. Annual Review of Immunology, 21, 759-806. >https://doi.org/10.1146/annurev.immunol.21.120601.141007
Mold, J.E., Venkatasubrahmanyam, S., Burt, T.D., Michaëlsson, J., Rivera, J.M., Galkina, S.A., et al. (2010) Fetal and Adult Hematopoietic Stem Cells Give Rise to Distinct T Cell Lineages in Humans. Science, 330, 1695-1699. >https://doi.org/10.1126/science.1196509
Nishizawa, M., Chonabayashi, K., Nomura, M., Tanaka, A., Nakamura, M., Inagaki, A., et al. (2016) Epigenetic Variation between Human Induced Pluripotent Stem Cell Lines Is an Indicator of Differentiation Capacity. Cell Stem Cell, 19, 341-354. >https://doi.org/10.1016/j.stem.2016.06.019
Will, B. and Steidl, U. (2010) Multi-Parameter Fluorescence-Activated Cell Sorting and Analysis of Stem and Progenitor Cells in Myeloid Malignancies. Best Practice & Research Clinical Haematology, 23, 391-401. >https://doi.org/10.1016/j.beha.2010.06.006
Agger, K., Nishimura, K., Miyagi, S., Messling, J., Rasmussen, K.D. and Helin, K. (2019) The KDM4/JMJD2 Histone Demethylases Are Required for Hematopoietic Stem Cell Maintenance. Blood, 134, 1154-1158. >https://doi.org/10.1182/blood.2019000855
Ueda, T., Yokota, T., Okuzaki, D., Uno, Y., Mashimo, T., Kubota, Y., et al. (2019) Endothelial Cell-Selective Adhesion Molecule Contributes to the Development of Definitive Hematopoiesis in the Fetal Liver. Stem Cell Reports, 13, 992-1005. >https://doi.org/10.1016/j.stemcr.2019.11.002
Peng, H., Yu, Y., Gu, H., Qi, B. and Yu, A. (2022) MicroRNA-483-5p Inhibits Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells by Targeting the RPL31-Mediated RAS/MEK/ERK Signaling Pathway. Cellular Signalling, 93, Article ID: 110298. >https://doi.org/10.1016/j.cellsig.2022.110298
Tsubaki, M., Satou, T., Itoh, T., Imano, M., Yanae, M., Kato, C., et al. (2012) Bisphosphonate-and Statin-Induced Enhancement of OPG Expression and Inhibition of CD9, M-CSF, and RANKL Expressions via Inhibition of the Ras/MEK/ERK Pathway and Activation of P38mapk in Mouse Bone Marrow Stromal Cell Line ST2. Molecular and Cellular Endocrinology, 361, 219-231. >https://doi.org/10.1016/j.mce.2012.05.002
Yip, R.K.H., Rimes, J.S., Capaldo, B.D., Vaillant, F., Mouchemore, K.A., Pal, B., et al. (2021) Mammary Tumour Cells Remodel the Bone Marrow Vascular Microenvironment to Support Metastasis. Nature Communications, 12, Article No. 6920. >https://doi.org/10.1038/s41467-021-26556-6
Chang, S., Li, H., Huang, Y., Tasi, W., Chou, Y. and Lu, S. (2016) SB203580 Increases G-CSF Production via a Stem-Loop Destabilizing Element in the 3’ Untranslated Region in Macrophages Independently of Its Effect on P38 MAPK Activity. Journal of Biomedical Science, 23, Article No. 3. >https://doi.org/10.1186/s12929-016-0221-z
Decean, H.P., Brie, I.C., Tatomir, C.B., Perde-Schrepler, M., Fischer-Fodor, E. and Virag, P. (2018) Targeting MAPK (p38, ERK, JNK) and Inflammatory CK (GDF-15, GM-CSF) in UVB-Activated Human Skin Cells with Vitis Vinifera Seed Extract. Journal of Environmental Pathology, Toxicology and Oncology, 37, 261-272. >https://doi.org/10.1615/jenvironpatholtoxicoloncol.2018027009
Koga, Y., Hisada, T., Ishizuka, T., Utsugi, M., Ono, A., Yatomi, M., et al. (2016) CREB Regulates TNF-α-Induced GM-CSF Secretion via P38 MAPK in Human Lung Fibroblasts. Allergology International, 65, 406-413. >https://doi.org/10.1016/j.alit.2016.03.006