References
Stone, P.H., Libby, P. and Boden, W.E. (2023) Fundamental Pathobiology of Coronary Atherosclerosis and Clinical Implications for Chronic Ischemic Heart Disease Management—The Plaque Hypothesis: A Narrative Review. JAMA Cardiology, 8, 192-201. >https://doi.org/10.1001/jamacardio.2022.3926
Duggan, J.P., Peters, A.S., Trachiotis, G.D. and Antevil, J.L. (2022) Epidemiology of Coronary Artery Disease. Surgical Clinics of North America, 102, 499-516. >https://doi.org/10.1016/j.suc.2022.01.007
Gao, J., Yang, T., Song, B., Ma, X., Ma, Y., Lin, X., et al. (2023) Abnormal Tryptophan Catabolism in Diabetes Mellitus and Its Complications: Opportunities and Challenges. Biomedicine & Pharmacotherapy, 166, Article ID: 115395. >https://doi.org/10.1016/j.biopha.2023.115395
Mearns, H., Otiku, P.K., Shelton, M., Kredo, T., Kagina, B.M. and Schmidt, B. (2020) Screening Strategies for Adults with Type 2 Diabetes Mellitus: A Systematic Review Protocol. Systematic Reviews, 9, Article No. 156. >https://doi.org/10.1186/s13643-020-01417-3
Ding, C., Bao, Y., Bai, B., Liu, X., Shi, B. and Tian, L. (2021) An Update on the Economic Burden of Type 2 Diabetes Mellitus in China. Expert Review of Pharmacoeconomics & Outcomes Research, 22, 617-625. >https://doi.org/10.1080/14737167.2022.2020106
Moreno, B., de Faria, A.P., Ritter, A.M.V., Yugar, L.B.T., Ferreira‐Melo, S.E., Amorim, R., et al. (2018) Glycated Hemoglobin Correlates with Arterial Stiffness and Endothelial Dysfunction in Patients with Resistant Hypertension and Uncontrolled Diabetes Mellitus. The Journal of Clinical Hypertension, 20, 910-917. >https://doi.org/10.1111/jch.13293
Çakır, M.O. and Gören, M.T. (2023) Comparison of Atherosclerotic Plaque Compositions in Diabetic and Non-Diabetic Patients. Cureus, 15, e45721. >https://doi.org/10.7759/cureus.45721
Neumann, F.J., Sousa-Uva, M., Ahlsson, A., et al. (2019) 2018 ESC/EACTS Guidelines on Myocardial Revascularization. European Heart Journal, 40, 87-165.
Sun, W., Du, J., Wang, J., Wang, Y. and Dong, E. (2024) Potential Preservative Mechanisms of Cardiac Rehabilitation Pathways on Endothelial Function in Coronary Heart Disease. Science China Life Sciences, 68, 158-175. >https://doi.org/10.1007/s11427-024-2656-6
Jia, X., Ding, Y., Hu, C., Lin, H., Lin, L., Wu, X., et al. (2024) The Association of Ideal Cardiovascular Health and Its Change with Subclinical Atherosclerosis According to Glucose Status: A Prospective Cohort Study. Journal of Diabetes, 16, e70007. >https://doi.org/10.1111/1753-0407.70007
Amiel, S.A., Aschner, P., Childs, B., Cryer, P.E., de Galan, B.E., Frier, B.M., et al. (2019) Hypoglycaemia, Cardiovascular Disease, and Mortality in Diabetes: Epidemiology, Pathogenesis, and Management. The Lancet Diabetes & Endocrinology, 7, 385-396. >https://doi.org/10.1016/s2213-8587(18)30315-2
Yang, J., Xu, G., Hong, Q., Liebich, H., Lutz, K., Schmulling, R., et al. (2004) Discrimination of Type 2 Diabetic Patients from Healthy Controls by Using Metabonomics Method Based on Their Serum Fatty Acid Profiles. Journal of Chromatography B, 813, 53-58. >https://doi.org/10.1016/j.jchromb.2004.09.023
de Luis, D.A., Izaola, O., Primo, D., Aller, R., Ortola, A., Gómez, E., et al. (2018) The Association of SNP276G > T at Adiponectin Gene with Insulin Resistance and Circulating Adiponectin in Response to Two Different Hypocaloric Diets. Diabetes Research and Clinical Practice, 137, 93-99. >https://doi.org/10.1016/j.diabres.2018.01.003
Bhat, N. and Mani, A. (2023) Dysregulation of Lipid and Glucose Metabolism in Nonalcoholic Fatty Liver Disease. Nutrients, 15, Article No. 2323. >https://doi.org/10.3390/nu15102323
Sadeghi, S., Hakemi, M.S., Pourrezagholie, F., Naeini, F., Imani, H. and Mohammadi, H. (2024) Effects of Melatonin Supplementation on Metabolic Parameters, Oxidative Stress, and Inflammatory Biomarkers in Diabetic Patients with Chronic Kidney Disease: Study Protocol for a Double-Blind, Randomized Controlled Trial. Trials, 25, Article No. 757. >https://doi.org/10.1186/s13063-024-08584-x
Asfandiyar, Hadi, N., Ali, Z.I., et al. (2024) Estimation of Serum Malondialdehyde (a Marker of Oxidative Stress) as a Predictive Biomarker for the Severity of Coronary Artery Disease (CAD) and Cardiovascular Outcomes. Cureus, 16, e69756.
Adam, L.N., Al-Habib, O.A.M. and Shekha, M.S. (2023) Exploring the Role of Sirtuin 3 Gene Polymorphisms and Oxidative Stress Markers in the Susceptibility to Coronary Artery Disease. Molecular Biology Reports, 50, 9221-9228. >https://doi.org/10.1007/s11033-023-08825-3
Ménégaut, L., Laubriet, A., Crespy, V., Leleu, D., Pilot, T., Van Dongen, K., et al. (2023) Inflammation and Oxidative Stress Markers in Type 2 Diabetes Patients with Advanced Carotid Atherosclerosis. Cardiovascular Diabetology, 22, Article No. 248. >https://doi.org/10.1186/s12933-023-01979-1
Zhang, H., Jia, K., Sun, D. and Yang, M. (2018) Protective Effect of HSP27 in Atherosclerosis and Coronary Heart Disease by Inhibiting Reactive Oxygen Species. Journal of Cellular Biochemistry, 120, 2859-2868. >https://doi.org/10.1002/jcb.26575
Jin, Z., Pu, L., Sun, L., Chen, W., Nan, N., Li, H., et al. (2014) Identification of Susceptibility Variants in ADIPOR1 Gene Associated with Type 2 Diabetes, Coronary Artery Disease and the Comorbidity of Type 2 Diabetes and Coronary Artery Disease. PLoS ONE, 9, e100339. >https://doi.org/10.1371/journal.pone.0100339
Aghasizadeh, M., Zare-Feyzabadi, R., Kazemi, T., Avan, A., Ferns, G.A., Esmaily, H., et al. (2021) A Haplotype of the ANGPTL3 Gene Is Associated with CVD Risk, Diabetes Mellitus, Hypertension, Obesity, Metabolic Syndrome, and Dyslipidemia. Gene, 782, Article ID: 145525. >https://doi.org/10.1016/j.gene.2021.145525
Banks, L., Sparrow, L., Sandison, N., Oh, P. and Colella, T.J.F. (2021) The Effect of Insulin on Post-Exercise Hypoglycemia in Adults with Type 2 Diabetes Participating in Outpatient Exercise-Based Cardiac Rehabilitation. European Journal of Applied Physiology, 121, 3361-3367. >https://doi.org/10.1007/s00421-021-04781-7
González-Vidal, T., Rivas-Otero, D., Gutiérrez-Hurtado, A., Alonso Felgueroso, C., Martínez Tamés, G., Lambert, C., et al. (2023) Hypoglycemia in Patients with Type 2 Diabetes Mellitus during Hospitalization: Associated Factors and Prognostic Value. Diabetology & Metabolic Syndrome, 15, Article No. 249. >https://doi.org/10.1186/s13098-023-01212-9
Pieber, T.R., Marso, S.P., McGuire, D.K., Zinman, B., Poulter, N.R., Emerson, S.S., et al. (2017) DEVOTE 3: Temporal Relationships between Severe Hypoglycaemia, Cardiovascular Outcomes and Mortality. Diabetologia, 61, 58-65. >https://doi.org/10.1007/s00125-017-4422-0
Christou, M.A., Christou, P.A., Kyriakopoulos, C., Christou, G.A. and Tigas, S. (2023) Effects of Hypoglycemia on Cardiovascular Function in Patients with Diabetes. International Journal of Molecular Sciences, 24, Article No. 9357. >https://doi.org/10.3390/ijms24119357
Farrell, C.M., Cappon, G., West, D.J., Facchinetti, A. and McCrimmon, R.J. (2024) HIT4HYPOS Continuous Glucose Monitoring Data Analysis: The Effects of High-Intensity Interval Training on Hypoglycemia in People with Type 1 Diabetes and Impaired Awareness of Hypoglycemia. Journal of Diabetes Science and Technology. >https://doi.org/10.1177/19322968241273845
李竑, 郑叙锋. 2型糖尿病合并冠心病患者心率变异性与心功能的关系[J]. 川北医学院学报, 2022, 37(3): 374-377.
Lee, J., Lee, R., Hwang, M., Hamilton, M.T. and Park, Y. (2018) The Effects of Exercise on Vascular Endothelial Function in Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diabetology & Metabolic Syndrome, 10, Article No. 15. >https://doi.org/10.1186/s13098-018-0316-7
Ma, X., Lin, X., Zhou, L., Li, W., Yi, Q., Lei, F., et al. (2024) The Effect of Blood Flow-Restrictive Resistance Training on the Risk of Atherosclerotic Cardiovascular Disease in Middle-Aged Patients with Type 2 Diabetes: A Randomized Controlled Trial. Frontiers in Endocrinology, 15, Article ID: 1482985. >https://doi.org/10.3389/fendo.2024.1482985
Chen, S., Zhou, K., Shang, H., Du, M., Wu, L. and Chen, Y. (2023) Effects of Concurrent Aerobic and Resistance Training on Vascular Health in Type 2 Diabetes: A Systematic Review and Meta-analysis. Frontiers in Endocrinology, 14, Article ID: 1216962. >https://doi.org/10.3389/fendo.2023.1216962
Okada, S., Hiuge, A., Makino, H., Nagumo, A., Takaki, H., Konishi, H., et al. (2010) Effect of Exercise Intervention on Endothelial Function and Incidence of Cardiovascular Disease in Patients with Type 2 Diabetes. Journal of Atherosclerosis and Thrombosis, 17, 828-833. >https://doi.org/10.5551/jat.3798
Dong, M., Chen, M., Zhang, Y., He, X., Min, J., Tan, Y., et al. (2024) Oscillatory Shear Stress Promotes Endothelial Senescence and Atherosclerosis via STING Activation. Biochemical and Biophysical Research Communications, 715, Article ID: 149979. >https://doi.org/10.1016/j.bbrc.2024.149979
Pedralli, M.L., Marschner, R.A., Kollet, D.P., Neto, S.G., Eibel, B., Tanaka, H., et al. (2020) Different Exercise Training Modalities Produce Similar Endothelial Function Improvements in Individuals with Prehypertension or Hypertension: A Randomized Clinical Trial. Scientific Reports, 10, Article No. 10564. >https://doi.org/10.1038/s41598-020-64365-x
Sohn, Y.J., Lee, H.S., Bae, H., Kang, H.C., Chun, H., Ryou, I., et al. (2024) Association of Relative Handgrip Strength on the Development of Diabetes Mellitus in Elderly Koreans. PLOS ONE, 19, e0309558. >https://doi.org/10.1371/journal.pone.0309558
Zhao, X., He, Q., Zeng, Y. and Cheng, L. (2021) Effectiveness of Combined Exercise in People with Type 2 Diabetes and Concurrent Overweight/obesity: A Systematic Review and Meta-analysis. BMJ Open, 11, e046252. >https://doi.org/10.1136/bmjopen-2020-046252
Way, K.L., Hackett, D.A., Baker, M.K. and Johnson, N.A. (2016) The Effect of Regular Exercise on Insulin Sensitivity in Type 2 Diabetes Mellitus: A Systematic Review and Meta-analysis. Diabetes & Metabolism Journal, 40, 253-271. >https://doi.org/10.4093/dmj.2016.40.4.253
Chorell, E., Otten, J., Stomby, A., Ryberg, M., Waling, M., Hauksson, J., et al. (2021) Improved Peripheral and Hepatic Insulin Sensitivity after Lifestyle Interventions in Type 2 Diabetes Is Associated with Specific Metabolomic and Lipidomic Signatures in Skeletal Muscle and Plasma. Metabolites, 11, Article No. 834. >https://doi.org/10.3390/metabo11120834
Attiq, A., Afzal, S., Ahmad, W. and Kandeel, M. (2024) Hegemony of Inflammation in Atherosclerosis and Coronary Artery Disease. European Journal of Pharmacology, 966, Article ID: 176338. >https://doi.org/10.1016/j.ejphar.2024.176338
Sacks, D., Baxter, B., Campbell, B., et al. (2018) Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. International Journal of Stroke, 13, 612-632.
Halvorsen, B., Espeland, M.Z., Andersen, G.Ø., Yndestad, A., Sagen, E.L., Rashidi, A., et al. (2015) Increased Expression of NAMPT in PBMC from Patients with Acute Coronary Syndrome and in Inflammatory M1 Macrophages. Atherosclerosis, 243, 204-210. >https://doi.org/10.1016/j.atherosclerosis.2015.09.010
Mustafic, S., Ibralic, A. and Loncar, D. (2022) Association of Inflammatory and Hemostatic Parameters with Values of High Sensitive Troponin in Patients with Acute Coronary Syndrome. Medical Archives, 76, 84-89. >https://doi.org/10.5455/medarh.2022.76.84-89
Marino, F., Scalise, M., Cianflone, E., Salerno, L., Cappetta, D., Salerno, N., et al. (2021) Physical Exercise and Cardiac Repair: The Potential Role of Nitric Oxide in Boosting Stem Cell Regenerative Biology. Antioxidants, 10, Article No. 1002. >https://doi.org/10.3390/antiox10071002
Prasad, K. (2024) Role of C-Reactive Protein, an Inflammatory Biomarker in the Development of Atherosclerosis and Its Treatment. International Journal of Angiology, 33, 271-281. >https://doi.org/10.1055/s-0044-1788296
Supajaree, P., Chanprasertyothin, S., Chattranukulchai Shantavasinkul, P., Sritara, P. and Sirivarasai, J. (2022) Association between Apoa1 Gene, Plasma Lipid Profile, hsCRP Level, and Risk of Arterial Stiffness in Thai Elderly. Advances in Preventive Medicine, 2022, Article ID: 4930033. >https://doi.org/10.1155/2022/4930033
Kim, H., Lim, W., Seo, J., Kim, S., Zo, J. and Kim, M. (2021) Improved Prognostic Value in Predicting Long-Term Cardiovascular Events by a Combination of High-Sensitivity C-Reactive Protein and Brachial-Ankle Pulse Wave Velocity. Journal of Clinical Medicine, 10, Article No. 3291. >https://doi.org/10.3390/jcm10153291
Saarinen, H.J., Lahtela, J., Mähönen, P., Palomäki, A., Pohjantähti-Maaroos, H., Husgafvel, S., et al. (2024) The Association between Inflammation, Arterial Stiffness, Oxidized LDL and Cardiovascular Disease in Finnish Men with Metabolic Syndrome—A 15-Year Follow-Up Study. BMC Cardiovascular Disorders, 24, Article No. 162. >https://doi.org/10.1186/s12872-024-03818-x
Cicek, G., Ozcan, O., Akyol, P., Isik, O., Novak, D. and Küçük, H. (2024) The Effect of Aerobic and High-Intensity Interval Training on Plasma Pentraxin 3 and Lipid Parameters in Overweight and Obese Women. PeerJ, 12, e18123. >https://doi.org/10.7717/peerj.18123
Tang, L., Wang, B. and Wu, Z. (2018) Aerobic Exercise Training Alleviates Renal Injury by Interfering with Mitochondrial Function in Type-1 Diabetic Mice. Medical Science Monitor, 24, 9081-9089. >https://doi.org/10.12659/msm.912877
Bo, W., Ma, Y., Xi, Y., Liang, Q., Cai, M. and Tian, Z. (2021) The Roles of FGF21 and ALCAT1 in Aerobic Exercise‐induced Cardioprotection of Postmyocardial Infarction Mice. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 8996482. >https://doi.org/10.1155/2021/8996482
方杨颖. 心率变异性在急性冠脉综合征中的应用研究进展[J]. 现代医药卫生, 2023, 39(6): 1011-1014.
Johansson, J.K., Niiranen, T.J., Puukka, P.J. and Jula, A.M. (2012) Prognostic Value of the Variability in Home-Measured Blood Pressure and Heart Rate: The Finn-Home Study. Hypertension, 59, 212-218. >https://doi.org/10.1161/hypertensionaha.111.178657
Pearson, M.J. and Smart, N.A. (2017) Exercise Therapy and Autonomic Function in Heart Failure Patients: A Systematic Review and Meta-Analysis. Heart Failure Reviews, 23, 91-108. >https://doi.org/10.1007/s10741-017-9662-z
Gourine, A.V. and Ackland, G.L. (2019) Cardiac Vagus and Exercise. Physiology, 34, 71-80. >https://doi.org/10.1152/physiol.00041.2018
Lee, H.Y., Kim, J.H., Kim, B.O., Byun, Y., Cho, S., Goh, C.W., et al. (2013) Regular Exercise Training Reduces Coronary Restenosis after Percutaneous Coronary Intervention in Patients with Acute Myocardial Infarction. International Journal of Cardiology, 167, 2617-2622. >https://doi.org/10.1016/j.ijcard.2012.06.122
Taraldsen, M.D., Videm, V., Hegbom, K., Wiseth, R. and Madssen, E. (2020) Stent Edge Vascular Response and In-Stent Geometry after Aerobic Exercise. Cardiovascular Intervention and Therapeutics, 36, 111-120. >https://doi.org/10.1007/s12928-020-00655-5
Kato, T., Miura, T., Yamamoto, S., Miyashita, Y., Hashizume, N., Shoin, K., et al. (2022) Intensive Exercise Therapy for Restenosis after Superficial Femoral Artery Stenting: The REASON Randomized Clinical Trial. Heart and Vessels, 37, 1596-1603. >https://doi.org/10.1007/s00380-022-02060-9
van Dijk, M.R., Utens, E.M., Dulfer, K., Al-Qezweny, M.N., van Geuns, R., Daemen, J., et al. (2015) Depression and Anxiety Symptoms as Predictors of Mortality in PCI Patients at 10 Years of Follow-up. European Journal of Preventive Cardiology, 23, 552-558. >https://doi.org/10.1177/2047487315571889
Anderson, L., Thompson, D.R., Oldridge, N., Zwisler, A., Rees, K., Martin, N., et al. (2016) Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease. Cochrane Database of Systematic Reviews, 11, CD001800. >https://doi.org/10.1002/14651858.cd001800.pub3
Zheng, X. and Zhao, J. (2024) The Combined Effects of Cardiac Rehabilitation Exercise Training and Mindfulness Care on Post-PCI Rehabilitation in Coronary Heart Disease Patients. Alternative Therapies in Health and Medicine.
Aditi Devi, N., Phillip, M., Varambally, S., Christopher, R. and Gangadhar, B.N. (2023) Yoga as a Monotherapy Alters Probdnf—Mature BDNF Ratio in Patients with Major Depressive Disorder. Asian Journal of Psychiatry, 81, Article ID: 103429. >https://doi.org/10.1016/j.ajp.2022.103429
Chen, Y., Tsai, J., Liou, Y. and Chan, P. (2016) Effectiveness of Endurance Exercise Training in Patients with Coronary Artery Disease: A Meta-Analysis of Randomised Controlled Trials. European Journal of Cardiovascular Nursing, 16, 397-408. >https://doi.org/10.1177/1474515116684407
Kraal, J.J., Vromen, T., Spee, R., Kemps, H.M.C. and Peek, N. (2017) The Influence of Training Characteristics on the Effect of Exercise Training in Patients with Coronary Artery Disease: Systematic Review and Meta-Regression Analysis. International Journal of Cardiology, 245, 52-58. >https://doi.org/10.1016/j.ijcard.2017.07.051
李晓霞, 李梅, 邢军, 等. 有氧运动调控神经生长因子表达改善心力衰竭大鼠心脏交感神经功能[J]. 中国运动医学杂志, 2019, 38(9): 777-783.
Horii, N., Sato, K., Mesaki, N. and Iemitsu, M. (2016) Increased Muscular 5α-Dihydrotestosterone in Response to Resistance Training Relates to Skeletal Muscle Mass and Glucose Metabolism in Type 2 Diabetic Rats. PLOS ONE, 11, e0165689. >https://doi.org/10.1371/journal.pone.0165689
Kim, J., Choi, M.J., So, B., Kim, H., Seong, J.K. and Song, W. (2015) The Preventive Effects of 8 Weeks of Resistance Training on Glucose Tolerance and Muscle Fiber Type Composition in Zucker Rats. Diabetes & Metabolism Journal, 39, 424-433. >https://doi.org/10.4093/dmj.2015.39.5.424
魏昊, 张成楠, 孙海鹏, 等. 抗阻运动改善胰岛素抵抗的支链氨基酸代谢机制[J]. 中国慢性病预防与控制, 2024, 32(6): 460-465.
Banks, N.F., Rogers, E.M., Stanhewicz, A.E., Whitaker, K.M. and Jenkins, N.D.M. (2024) Resistance Exercise Lowers Blood Pressure and Improves Vascular Endothelial Function in Individuals with Elevated Blood Pressure or Stage-1 Hypertension. American Journal of Physiology-Heart and Circulatory Physiology, 326, H256-H269. >https://doi.org/10.1152/ajpheart.00386.2023
Qiu, X., Qin, Y., Zheng, Z., Li, L., Zhang, Y., Wu, J., et al. (2021) A Systematic Review and Meta-Analysis of the Effect of Resistance Exercise Therapy on the Prognosis of Patients after Percutaneous Coronary Intervention. Annals of Palliative Medicine, 10, 11970-11979. >https://doi.org/10.21037/apm-21-3048
Nery, C., Moraes, S.R.A.D., Novaes, K.A., Bezerra, M.A., Silveira, P.V.D.C. and Lemos, A. (2017) Effectiveness of Resistance Exercise Compared to Aerobic Exercise without Insulin Therapy in Patients with Type 2 Diabetes Mellitus: A Meta-analysis. Brazilian Journal of Physical Therapy, 21, 400-415. >https://doi.org/10.1016/j.bjpt.2017.06.004
Damasceno de Lima, R., Fudoli Lins Vieira, R., Rosetto Muñoz, V., Chaix, A., Azevedo Macedo, A.P., Calheiros Antunes, G., et al. (2023) Time-Restricted Feeding Combined with Resistance Exercise Prevents Obesity and Improves Lipid Metabolism in the Liver of Mice Fed a High-Fat Diet. American Journal of Physiology-Endocrinology and Metabolism, 325, E513-E528. >https://doi.org/10.1152/ajpendo.00129.2023
Xi, Y., Hao, M., Liang, Q., Li, Y., Gong, D. and Tian, Z. (2021) Dynamic Resistance Exercise Increases Skeletal Muscle-Derived FSTL1 Inducing Cardiac Angiogenesis via Dip2a-Smad2/3 in Rats Following Myocardial Infarction. Journal of Sport and Health Science, 10, 594-603. >https://doi.org/10.1016/j.jshs.2020.11.010
Li, H., Qin, S., Tang, J., Wang, T., Ren, W., Di, L., et al. (2024) Resistance Exercise Upregulates irisin Expression and Suppresses Myocardial Fibrosis Following Myocardial Infarction via Activating AMPK-Sirt1 and Inactivating TGFβ1-Smad2/3. Acta Physiologica, 240, e14163. >https://doi.org/10.1111/apha.14163
Jiang, L., Liu, P., Wang, M., Deng, Q., Wang, J., Jiang, Y., et al. (2024) Effect of High-Intensity Intermittent Rehabilitation Training on Physical Function, Gut Microbiome and Metabolite after Percutaneous Coronary Intervention in Patients with Coronary Heart Disease. Frontiers in Cardiovascular Medicine, 11, Article ID: 1508456. >https://doi.org/10.3389/fcvm.2024.1508456
Wormgoor, S.G., Dalleck, L.C., Zinn, C., Borotkanics, R. and Harris, N.K. (2018) High-Intensity Interval Training Is Equivalent to Moderate-Intensity Continuous Training for Short-and Medium-Term Outcomes of Glucose Control, Cardiometabolic Risk, and Microvascular Complication Markers in Men with Type 2 Diabetes. Frontiers in Endocrinology, 9, Article No. 475. >https://doi.org/10.3389/fendo.2018.00475
Poon, E.T., Siu, P.M., Wongpipit, W., Gibala, M. and Wong, S.H. (2022) Alternating High-Intensity Interval Training and Continuous Training Is Efficacious in Improving Cardiometabolic Health in Obese Middle-Aged Men. Journal of Exercise Science & Fitness, 20, 40-47. >https://doi.org/10.1016/j.jesf.2021.11.003
Ryan, B.J., Schleh, M.W., Ahn, C., Ludzki, A.C., Gillen, J.B., Varshney, P., et al. (2020) Moderate-Intensity Exercise and High-Intensity Interval Training Affect Insulin Sensitivity Similarly in Obese Adults. The Journal of Clinical Endocrinology & Metabolism, 105, e2941-e2959. >https://doi.org/10.1210/clinem/dgaa345
Atakan, M.M., Li, Y., Koşar, Ş.N., Turnagöl, H.H. and Yan, X. (2021) Evidence-Based Effects of High-Intensity Interval Training on Exercise Capacity and Health: A Review with Historical Perspective. International Journal of Environmental Research and Public Health, 18, Article No. 7201. >https://doi.org/10.3390/ijerph18137201
Reed, J.L., Terada, T., Cotie, L.M., Tulloch, H.E., Leenen, F.H., Mistura, M., et al. (2022) The Effects of High-Intensity Interval Training, Nordic Walking and Moderate-to-Vigorous Intensity Continuous Training on Functional Capacity, Depression and Quality of Life in Patients with Coronary Artery Disease Enrolled in Cardiac Rehabilitation: A Randomized Controlled Trial (CRX Study). Progress in Cardiovascular Diseases, 70, 73-83. >https://doi.org/10.1016/j.pcad.2021.07.002
Ben-Zeev, T. and Okun, E. (2021) High-Intensity Functional Training: Molecular Mechanisms and Benefits. NeuroMolecular Medicine, 23, 335-338. >https://doi.org/10.1007/s12017-020-08638-8
Zhang, X., Xu, D., Sun, G., Jiang, Z., Tian, J. and Shan, Q. (2021) Effects of High‐Intensity Interval Training in Patients with Coronary Artery Disease after Percutaneous Coronary Intervention: A Systematic Review and Meta‐Analysis. Nursing Open, 8, 1424-1435. >https://doi.org/10.1002/nop2.759
Mitchell, A., Fujisawa, T., Mills, N.L., Brittan, M., Newby, D.E. and Cruden, N.L.M. (2017) Endothelial Progenitor Cell Biology and Vascular Recovery Following Transradial Cardiac Catheterization. Journal of the American Heart Association, 6, e006610. >https://doi.org/10.1161/jaha.117.006610
Dawson, E.A., Rathore, S., Cable, N.T., Wright, D.J., Morris, J.L. and Green, D.J. (2010) Impact of Catheter Insertion Using the Radial Approach on Vasodilatation in Humans. Clinical Science, 118, 633-640. >https://doi.org/10.1042/cs20090548
Tryfonos, A., Green, D.J. and Dawson, E.A. (2019) Effects of Catheterization on Artery Function and Health: When Should Patients Start Exercising Following Their Coronary Intervention? Sports Medicine, 49, 397-416. >https://doi.org/10.1007/s40279-019-01055-3
Choi, H., Kim, C., Lee, D., Joo, J. and Kim, H. (2023) Participation and Prognostic Impact of Cardiac Rehabilitation after Acute Coronary Syndrome: Big-Data Study of the Korean National Health Insurance Service. Journal of Korean Medical Science, 38, e119. >https://doi.org/10.3346/jkms.2023.38.e119
Zhu, L., Li, M., Li, K., Yang, X., Yang, Y., Zhao, X., et al. (2022) Effect of Exercise Prescription Implementation Rate on Cardiovascular Events. Frontiers in Cardiovascular Medicine, 8, Article ID: 753672. >https://doi.org/10.3389/fcvm.2021.753672