利用Melnikov函数方法,我们研究从一类不连续广义Lienard微分系统的非线性中心的周期环域分支出极限环的最大个数问题。通过对该系统的非线性中心进行分段光滑的多项式扰动,得到了该系统从非线性中心的周期环域分支出极限环最大个数的估计。 By using the Melnikov function theory, we study the maximum number of limit cycles which bi-furcate from the periodic annulus of the nonlinear center for a class of generalized Lienard diffe-rential systems. By piecewise smooth polynomial perturbating, the estimation of the maximum number of limit cycles which bifurcate from the periodic annulus of this nonlinear center is ob-tained.
极限环,Melnikov函数,不连续系统,非线性中心, Limit Cycles
Melnikov Functions
Piecewise Systems
Nonlinear Center
一类不连续广义Lienard微分系统的极限环<sup> </sup>
余翠连. 一类不连续广义Lienard微分系统的极限环Limit Cycles for a Class of Discontinuous Generalized Lienard Differential Systems[J]. 应用数学进展, 2017, 06(01): 20-28. http://dx.doi.org/10.12677/AAM.2017.61003
参考文献 (References)References
Maesschalck, P.D. and Dumortier, F. (2011) Classical Lienard Equations of Degree n ≥ 6 Can Have [(n − 1) = 2] + 2 Limit Cycles. Journal of Differential Equations, 250, 2162-2176.
Caubergh, M. and Dumortier, F. (2008) Hilbert’s 16th Problem for Classical Lienard Equations of Even Degree. Journal of Differential Equations, 244, 1359-1394.
Li, C. and Llibre, J. (2012) Uniqueness of Limit cycles for Lienard Differential Equations of Degree Four. Journal of Differential Equations, 252, 3142-3162.
Llibre, J. and Makhlouf, A. (2015) Limit Cycles of a Class of Generalized Lienard Polynomial Equations. Journal of Dynamical and Control Systems, 12, 189-192.
https://doi.org/10.1007/s10883-014-9253-4
李时敏. 一类不连续广义Lienard微分系统的极限环分支[J]. 中山大学学报(自然科学版), 2015, 54(5): 16-18.
di Bernardo, M., Budd, C.J., Champneys, A.R. and Kowalczyk, P. (2008) Piecewise-Smooth Dynamical Systems Theory and Applications. Springer-Verlag, London.
Li, S.M. and Liu, C.J. (2015) A Linear Estimate of the Number of Limit Cycles for Some Planar Piecewise Smooth Quadratic Differential System. Journal of Mathematical Analysis and Applications, 428, 1354-1367.
Liu, X. and Han, M. (2010) Bifurcation of Limit Cycles by Perturbing Piecewise Hamiltonian Systems. International Journal of Bifurcation and Chaos, 20, 1379-1390.
Sheng, L.J. (2016) Limit Cycles of a Class of Piecewise Smooth Lienard Systems. International Journal of Bifurcation and Chaos, 26, 1650009.
Liang, F. and Han, M. (2012) Limit Cycles Near Generalized Homoclinic and Double Homoclinic Loops in Piece-wise Smooth Systems. Chaos Solitons Fractals, 45, 454-464.
Xiong, Y. (2015) Limit Cycle Bifurcations by Perturbing Piecewise Smooth Hamitonian Systems with Multiple Parameters. Journal of Mathematical Analysis and Applications, 421, 260-275.
Llibre, J. and Swirszca, G. (2011) On the Limit Cycles of Polynomial Vector Fields. Dynamics of Continuous Dis-crete & Impulsive Systems, 18, 203-214.
Liapunov, A.M. (1966) Stability of Motion. With a Contribution by V. A. Pliss Andan Introduction by V. P. Basov. Mathematics in Science and Engineering. Academic Press, New York.