肝细胞癌(HCC)发生发展的分子机制尚未完全清楚,可能涉及病毒致癌作用、癌基因和抑癌基因失活、癌细胞凋亡等。外泌体能介导细胞间物质传递和信息交流,在多种癌症发生发展中起着重要作用。本文旨在总结外泌体生物学特性及其在肝癌发生发展、诊断和治疗中的作用。 The mechanism of hepatocellular carcinoma (HCC) development is not yet fully understood, which may be related to the carcinogenesis of the virus, the inactivation of oncogenes and tumor sup-pressor genes, cancer cell apoptosis. Exosomes, which can mediate the material transfer between cells and the exchange of information, play significant roles in the occurrence and development of a variety of cancers. This article aims to summarize the biological characteristics of exosomes and their roles in the development, diagnosis and treatment of HCC.
张腾飞,黄修燕. 外泌体生物学特性及其在肝癌中的作用研究Biological Characteristics of Exosomes and Their Role in Hepatocellular Carcinoma[J]. 世界肿瘤研究, 2018, 08(01): 12-17. http://dx.doi.org/10.12677/WJCR.2018.81003
参考文献 (References)References
Wu, Z., Zeng, Q., Cao, K., et al. (2016) Exosomes: Small Vesicles with Big Roles in Hepatocellular Carcinoma. Oncotarget, 37, 687-697.
https://doi.org/10.18632/oncotarget.10807
Ibrahim, S.H., Hirsova, P., Tomita, K., et al. (2016) Mixed Lineage Kinase 3 Mediates Release of C-X-C Motif Ligand 10-Bearing Chemotactic Extracellular Vesicles from Lipotoxic Hepatocytes. Hepatology, 63, 731-744.
https://doi.org/10.1002/hep.28252
Faure, J., Lachenal, G., Court, M., et al. (2006) Exosomes Are Released by Cultured Cortical Neurones. Molecular and Cellular Neuroscience, 31, 642-648.
https://doi.org/10.1016/j.mcn.2005.12.003
Han, C., Sun, X., Liu, L., et al. (2016) Exosomes and Their Therapeutic Potentials of Stem Cells. Stem Cells International, 2016, 7653489.
https://doi.org/10.1155/2016/7653489
Zhou, H., Cheruvanky, A., Hu, X., et al. (2008) Urinary Exosomal Transcription Factors, a New Class of Biomarkers for Renal Disease. Kidney International, 74, 613-621.
https://doi.org/10.1038/ki.2008.206
Skog, J., Wurdinger, T., van Rijn, S., et al. (2008) Glioblastoma Microvesicles Trans-port RNA and Proteins That Promote Tumour Growth and Provide Diagnostic Biomarkers. Nature Cell Biology, 10, 1470-1476.
https://doi.org/10.1038/ncb1800
Li, J.C., Sherman-Baust, A., Tsai-Turton, M., et al. (2009) Claudin-Containing Exosomes in the Peripheral Circulation of Women with Ovarian Cancer. BMC Cancer, 9, 244.
https://doi.org/10.1186/1471-2407-9-244
Trajkovic, K., Hsu, C., Chiantia, S., et al. (2008) Ceramide Triggers Budding of Exosome Vesicles into Multivesicular Endosomes. Science, 319, 1244-1247.
https://doi.org/10.1126/science.1153124
Theos, A.C., Truschel, S.T., Tenza, D., et al. (2006) A Lumenal Domain-Dependent Pathway for Sorting to Intralumenal Vesicles of Multivesicular Endosomes Involved in Organelle Morphogenesis. Developmental Cell, 10, 343-354.
https://doi.org/10.1016/j.devcel.2006.01.012
李维特, 杨硕, 乔蕊, 等. 外泌体的生物学特性及其在分子标记中的作用[J]. 实用医学杂志, 2017(12): 2062-2064.
Hyenne, V., Labouesse, M. and Goetz, J.G. (2016) The Small GTPase Ral Orches-trates MVB Biogenesis and Exosome Secretion. Small GTPases, 1-7.
https://doi.org/10.1080/21541248.2016.1251378
Morelli, A.E., Larregina, A.T., Shufesky, W.J., et al. (2004) Endocytosis, Intracellular Sorting, and Processing of Exosomes by Dendritic Cells. Blood, 104, 3257-3266.
https://doi.org/10.1182/blood-2004-03-0824
Salimu, J., Webber, J., Gurney, M., et al. (2017) Dominant Immunosuppres-sion of Dendritic Cell Function by Prostate-Cancer-Derived Exosomes. Journal of Extracellular Vesicles, 6, 1368823.
https://doi.org/10.1080/20013078.2017.1368823
Vlassov, A.V., Magdaleno, S., Setterquist, R., et al. (2012) Exosomes: Current Knowledge of Their Composition, Biological Functions, and Diagnostic and Therapeutic Potentials. Biochimica et Biophysica Acta, 1820, 940-948.
https://doi.org/10.1016/j.bbagen.2012.03.017
Yu, S., Cao, H., Shen, B., et al. (2015) Tumor-Derived Exosomes in Cancer Progression and Treatment Failure. Oncotarget, 6, 37151-37168.
https://doi.org/10.18632/oncotarget.6022
Tang, X.J., Sun, X.Y., Huang, K.M., et al. (2015) Therapeutic Potential of CAR-T Cell-Derived Exosomes: A Cell-Free Modality for Targeted Cancer Therapy. Oncotarget, 6, 44179-44190.
https://doi.org/10.18632/oncotarget.6175
郭静, 徐桂英, 黄昊, 等. 外泌体在肿瘤诊疗中的研究进展[J]. 中国比较医学杂志, 2017(2): 86-92.
Kogure, T., Lin, W.L., Yan, I.K., et al. (2011) Intercellular Nanovesicle-Mediated microRNA Transfer: A Mechanism of Environmental Modulation of Hepatocellular Cancer Cell Growth. Hepatology, 54, 1237-1248.
https://doi.org/10.1002/hep.24504
Tu, T., Budzinska, M.A., Maczurek, A.E., et al. (2014) Novel Aspects of the Liver Mi-croenvironment in Hepatocellular Carcinoma Pathogenesis and Development. International Journal of Molecular Sciences, 15, 9422-9458.
https://doi.org/10.3390/ijms15069422
Van Zijl, F., Krupitza, G. and Mikulits, W. (2011) Initial Steps of Metastasis: Cell Invasion and Endothelial Transmigration. Mutation Research, 728, 23-34.
https://doi.org/10.1016/j.mrrev.2011.05.002
Kahlert, C. and Kalluri, R. (2013) Exosomes in Tumor Microenvironment Influence Cancer Progression and Metastasis. Journal of Molecular Medicine, 91, 431-437.
https://doi.org/10.1007/s00109-013-1020-6
Balamurugan, K. (2016) HIF-1 at the Crossroads of Hypoxia, Inflammation, and Cancer. International Journal of Cancer, 138, 1058-1066.
https://doi.org/10.1002/ijc.29519
Yao, H., Liu, N., Lin, M.C., et al. (2016) Positive Feedback Loop between Cancer Stem Cells and Angiogenesis in Hepatocellular Carcinoma. Cancer Letters, 379, 213-219.
https://doi.org/10.1016/j.canlet.2016.03.014
Zhang, N., Duan, W.D., Leng, J.J., et al. (2015) STAT3 Regulates the Migration and Invasion of a Stemlike Subpopulation through microRNA21 and Multiple Targets in Hepatocellular Carcinoma. Oncology Reports, 33, 1493-1498.
https://doi.org/10.3892/or.2015.3710
Wei, J.X., Lv, L.H., Wan, Y.L., et al. (2015) Vps4A Functions as a Tumor Suppressor by Regulating the Secretion and Uptake of Exosomal microRNAs in Human Hepatoma Cells. Hepatology, 61, 1284-1294.
https://doi.org/10.1002/hep.27660
He, M., Qin, H., Poon, T.C., et al. (2015) Hepatocellular Carcinoma-Derived Exosomes Promote Motility of Immortalized Hepatocyte through Transfer of Oncogenic Proteins and RNAs. Carcinogenesis, 36, 1008-1018.
https://doi.org/10.1093/carcin/bgv081
Huang, A., Dong, J., Li, S., et al. (2015) Exosomal Transfer of Vasorin Expressed in Hepatocellular Carcinoma Cells Promotes Migration of Human Umbilical Vein Endothelial Cells. International Journal of Biological Sciences, 11, 961-969.
https://doi.org/10.7150/ijbs.11943
Pegtel, D.M., Cosmopoulos, K., Thorley-Lawson, D.A., et al. (2010) Functional Delivery of Viral miRNAs via Exosomes. Proceedings of the National Academy of Sciences, 107, 6328-6233.
https://doi.org/10.1073/pnas.0914843107
Lenassi, M., Cagney, G., Liao, M., et al. (2010) HIV Nef Is Secreted in Exosomes and Triggers Apoptosis in Bystander CD4+ T Cells. Traffic, 11, 110-122.
https://doi.org/10.1111/j.1600-0854.2009.01006.x
Feng, Z., Hensley, L., McKnight, K.L., et al. (2013) A Pathogenic Pi-cornavirus Acquires an Envelope by Hijacking Cellular Membranes. Nature, 496, 367-371.
https://doi.org/10.1038/nature12029
Lv, L.H., Wan, Y.L., Lin, Y., et al. (2012) Anticancer Drugs Cause Release of Ex-osomes with Heat Shock Proteins from Human Hepatocellular Carcinoma Cells That Elicit Effective Natural Killer Cell Antitumor Responses in Vitro. The Journal of Biological Chemistry, 287, 15874-15885.
https://doi.org/10.1074/jbc.M112.340588
Ko, S.F., Yip, H.K., Zhen, Y.Y., et al. (2015) Adipose-Derived Mesenchymal Stem Cell Exosomes Suppress Hepatocellular Carcinoma Growth in a Rat Model: Apparent Diffusion Coefficient, Natural Killer T-Cell Responses, and Histopathological Features. Stem Cells International, 2015, Article ID: 853506.
https://doi.org/10.1155/2015/853506
Wang, H., Hou, L., Li, A., et al. (2014) Ex-pression of Serum Exosomal microRNA-21 in Human Hepatocellular Carcinoma. BioMed Research International, 2014, Article ID: 864894.
Sohn, W., Kim, J., Kang, S.H., et al. (2015) Serum Exosomal microRNAs as Novel Biomarkers for Hepatocellular Carcinoma. Experimental & Molecular Medicine, 47, e184.
https://doi.org/10.1038/emm.2015.68
Liu, W., Hu, J., Zhou, K., et al. (2017) Serum Exosomal miR-125b Is a Novel Prognostic Marker for Hepatocellular Carcinoma. OncoTargets and Therapy, 10, 3843-3851.
https://doi.org/10.2147/OTT.S140062
Sugimachi, K., Matsumura, T., Hirata, H., et al. (2015) Identification of a Bona Fide microRNA Biomarker in Serum Exosomes That Predicts Hepatocellular Carcinoma Recurrence after Liver Transplantation. British Journal of Cancer, 112, 532-538.
https://doi.org/10.1038/bjc.2014.621
Lener, T., Gimona, M., Aigner, L., et al. (2015) Applying Extracellular Vesicles Based Therapeutics in Clinical Trials—An ISEV Position Paper. Journal of Extracellular Vesicles, 4, 30087.
https://doi.org/10.3402/jev.v4.30087
Tian, Y., Li, S., Song, J., et al. (2014) A Doxorubicin Delivery Platform using Engineered Natural Membrane Vesicle Exosomes for Targeted Tumor Therapy. Biomaterials, 35, 2383-2390.
https://doi.org/10.1016/j.biomaterials.2013.11.083
Kooijmans, S.A., Aleza, C.G., Roffler, S.R., et al. (2016) Display of GPI-Anchored anti-EGFR Nanobodies on Extracellular Vesicles Promotes Tumour Cell Targeting. Journal of Extracellular Vesicles, 5, 31053.
https://doi.org/10.3402/jev.v5.31053
Villarroya-Beltri, C., Gutierrez-Vazquez, C., Sanchez-Cabo, F., et al. (2013) Sumoy-lated hnRNPA2B1 Controls the Sorting of miRNAs into Exosomes through Binding to Specific Motifs. Nature Communications, 4, 2980.
https://doi.org/10.1038/ncomms3980
Santangelo, L., Giurato, G., Cicchini, C., et al. (2016) The RNA-Binding Protein SYNCRIP Is a Component of the Hepatocyte Exosomal Machinery Controlling MicroRNA Sorting. Cell Reports, 17, 799-808.
https://doi.org/10.1016/j.celrep.2016.09.031
Takahashi, K., Yan, I.K., Kogure, T., et al. (2014) Extracellular Ve-sicle-Mediated Transfer of Long Non-Coding RNA ROR Modulates Chemosensitivity in Human Hepatocellular Cancer. FEBS Open Bio, 4, 458-467.
https://doi.org/10.1016/j.fob.2014.04.007
Qu, Z., Wu, J., Wu, J., et al. (2016) Exosomes Derived from HCC Cells Induce Sorafenib Resistance in Hepatocellular Carcinoma both in Vivo and in Vitro. Journal of Experimental & Clinical Cancer Research, 35, 159.
https://doi.org/10.1186/s13046-016-0430-z