铜锌锡硫基(Cu2ZnSnS4-based)光伏材料因其优异的性能在太阳能电池中具有广泛的应用前景。然而由于CZTS体系中阳离子大小接近,Cu+和Zn2+化学失配较小,导致大量的点缺陷和缺陷簇存在,致使CZTS中有大的开路电压赤字限制了其效率的提升。过渡金属Cd、Fe、Mn、Co、Ni等元素的掺杂对于铜锌锡硫基(Cu2ZnSnS4-based)薄膜光电性能的改善具有重要意义,适当的阳离子取代能够克服CZTS材料中大的开路电压Voc赤字,同时改变阳离子取代浓度可以调节带隙结构。通过不同元素的掺杂,可实现光电性能更优的需求。本文通过分析不同掺杂元素及掺杂浓度对CZTS基薄膜光电性能的影响,综述了近年来利用过渡金属(Cd, Fe, Mn, Co, Ni)离子掺杂改性Cu2ZnSnS4基薄膜太阳电池的研究进展,并提出了CZTS基薄膜电池的应用前景、存在问题和发展方向。 Cu2ZnSnS4-based photovoltaic materials have a wide range of application prospects in solar cells due to its excellent properties. However, the close size of the cations in the CZTS system and the small chemical mismatch between Cu+ and Zn2+ result in a large number of point defects and defect clusters, leading to a large open-circuit voltage(Voc) deficit in the CZTS that limits its efficiency. The substitution of transition metals Cd, Fe, Mn, Co, Ni and other elements is of great significance for the improvement of the photoelectric properties of Cu2ZnSnS4-based thin film. Proper cation substitution can overcome the large open-circuit voltage (Voc) deficit in CZTS ma-terials, while changing the cation substitution concentration can adjust the bandgap structure. Through the substitution of different elements, better photoelectric properties can be achieved. By analyzing the influence of different substitution elements and substitution concentration on the photoelectric properties of CZTS-based thin film, the recent research progresses on transition metals (Cd, Fe, Mn, Co, Ni) substitution in Cu2ZnSnS4-based thin film solar cells are reviewed. Furthermore we put forward the application prospect, existing problems and development direction of CZTS-based thin film battery.
秦存鹏,孙淑红,胡永茂,朱艳. 过渡金属离子掺杂改性Cu2ZnSnS4基薄膜太阳电池的研究进展 Research Progress on Transition Metals Substitution in Cu2ZnSnS4-Based Thin Film Solar Cells[J]. 凝聚态物理学进展, 2018, 07(02): 49-57. https://doi.org/10.12677/CMP.2018.72007
参考文献References
Ito, K. and Nakazawa, T. (1988) Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films. Jap-anese Journal of Applied Physics, 27, 2094-2097.
https://doi.org/10.1143/JJAP.27.2094
Ennaoui, A., Lux-Steiner, M., Weber, A., Abou-Ras, D., Kötschau, I., Schock, H.W., Schurr, R., Hölzing, A., Jost, S. and Hock, R. (2009) Cu2ZnSnS4 Thin Film Solar Cells from Electroplated Precursors: Novel Low-Cost Perspective. Thin Solid Films, 517, 2511-2514.
https://doi.org/10.1016/j.tsf.2008.11.061
Major, J.D., Treharne, R.E., Phillips, L.J. and Durose, K. (2014) A Low-Cost Non-Toxic Post-Growth Activation Step for CdTe Solar Cells. Nature, 511, 334-337.
https://doi.org/10.1038/nature13435
Metzger, W.K., Repins, I.L. and Contreras, M.A. (2008) Long Lifetimes in High-Efficiency Cu(In,Ga)Se2 Solar Cells. Applied Physics Letters, 93, 209.
https://doi.org/10.1063/1.2957983
Guo, Q., Hillhouse, H.W. and Agrawal, R. (2009) Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for Solar Cells. Journal of the American Chemical Society, 131, 11672-11673.
https://doi.org/10.1021/ja904981r
自兴发, 杨培志. CZTS薄膜太阳电池的研究及发展[J]. 电源技术, 2014(38): 1390-1393.
Olekseyuk, I.D., Dudchak, I.V. and Piskach, L.V. (2004) Phase Equilibria in the Cu2S-ZnS-SnS2 System. Journal of Alloys & Compounds, 368, 135-143.
https://doi.org/10.1016/j.jallcom.2003.08.084
甘国友, 邹屏翰, 沈韬, 孙淑红, 朱艳. 阳离子部分取代Cu2ZnSnS4的研究进展[J]. 材料导报, 2017, 31(15): 10-17.
Shibuya, T., Goto, Y., Kamihara, Y. and Matoba, M. (2014) From Kesterite to Stannite Photovoltaics: Stability and Band Gaps of the Cu2(Zn,Fe)SnS4 Alloy. Applied Physics Letters, 104, 021912.
https://doi.org/10.1063/1.4862030
Pinto, A.H., Shin, S.W., Sharma, A., Penn, R.L. and Aydil, E.S. (2017) Synthesis of Cu2(Zn1−xCox)SnS4 Nanocrystals and Formation of Polycrystalline Thin Films from Their Aqueous Dispersions. Journal of Ma-terials Chemistry A, 6, 999-1008.
Ibraheam, A.S., Al-Douri, Y., Al-Fhdawi, J.M.S., Al-Jumaili, H.S., Verma, K.D., Hashim, U., Ayub, R.M., Ruslinda, A.R., Arshad, M.K.M. and Reshak, A.H. (2016) Structural, Optical and Electrical Properties of Cu2Zn1−xCdxSnS4 Quinternary Alloys Nanostructures Deposited on Porous Silicon. Microsystem Technologies, 51, 1-8.
Azanza Ricardo, C.L., Su’ait, M.S., Müller, M. and Scardi, P. (2013) Production of Cu2(Zn,Fe)SnS4 Powders for Thin Film Solar Cell by High Energy Ball Milling. Journal of Power Sources, 230, 70-75.
https://doi.org/10.1016/j.jpowsour.2012.12.045
凌武定. 三元及五元I2-II-IV-VI4族Cu基化合物纳米晶的制备及其相关光电性能的研究[D]: [硕士学位论文]. 上海: 上海师范大学, 2015.
Yu, K. and Carter, E.A. (2015) A Strategy to Stabilize Kesterite CZTS for High-Performance Solar Cells. Chemistry of Materials, 27, 2920-2927.
https://doi.org/10.1021/acs.chemmater.5b00172
Persson, C. (2010) Electronic and Optical Properties of Cu2ZnSnS4 and Cu2ZnSnSe4. Journal of Applied Physics, 107, Article ID: 053710.
Yan, C., Sun, K., Huang, J., Johnston, S., Liu, F., Veettil, B.P., Sun, K., Pu, A., Zhou, F., Stride, J.A., Green, M.A. and Hao, X. (2017) Beyond 11% Efficient Sulfide Kesterite Cu2ZnxCd1–xSnS4 Solar Cell: Effects of Cadmium Alloying. ACS Energy Letters, 2, 930-936.
https://doi.org/10.1021/acsenergylett.7b00129
Xiao, Z.Y., Li, Y.F., Yao, B., Deng, R., Ding, Z.H., Wu, T., Yang, G., Li, C.R., Dong, Z.Y. and Liu, L. (2013) Bandgap Engineering of Cu2CdxZn1−xSnS4 Alloy for Photovoltaic Applications: A Com-plementary Experimental and First-Principles Study. Journal of Applied Physics, 114, e14.
https://doi.org/10.1063/1.4829457
肖振宇, 李永峰, 姚斌, 邓蕊, 丁战辉, 杨刚, 李春然, 董子源. Cu2CdxZn1−xSnS4合金能带工程在太阳能光电中的应用: 实验和第一性原理研究[C]//新型太阳能电池暨钙钛矿太阳能电池学术研讨会. 2014.
Su, Z., Tan, J.M.R., Li, X., Zeng, X., Batabyal, S.K. and Wong, L.H. (2015) Cation Substitution of Solution-Processed Cu2ZnSnS4 Thin Film Solar Cell with over 9% Efficiency. Advanced Energy Materials, 5, Article ID: 1500682.
https://doi.org/10.1002/aenm.201500682
Xu, N., Li, P., Hao, Y., Wang, X. and Meng, L. (2016) Effect of Sputtering Power on Cd/Zn Atomic Ratio and Optical Properties of Cu2ZnxCd1−xSnS4 Thin Films Deposited by Magnetron Sputtering: An Experimental and First-Principle Study. Chemical Physics Letters, 660, 132-135.
https://doi.org/10.1016/j.cplett.2016.08.014
Ibraheam, A.S., Al-Douri Y., Hashim, U., Ghezzar, M.R., Addou, A. and Ahmed, W.K. (2015) Cadmium Effect on Optical Properties of Cu2Zn1−xCdxSnS4 Quinternary Alloys Nanostructures. Solar Energy, 114, 39-50.
https://doi.org/10.1016/j.solener.2015.01.018
Zhang, Q., Deng, H., Chen, L., Yu, L., Tao, J., Sun, L., Yang, P. and Chu, J. (2017) Cation Substitution Induced Structural Transition, Band Gap Engineering and Grain Growth of Cu2CdxZn1−xSnS4 Thin Films. Journal of Alloys and Compounds, 695, 482-488.
https://doi.org/10.1016/j.jallcom.2016.11.121
Chen, L., Deng, H., Cui, J., Tao, J., Zhou, W., Cao, H., Sun, L., Yang, P. and Chu, J. (2015) Composition Dependence of the Structure and Optical Properties of Cu2MnxZn1−xSnS4 Thin Films. Journal of Alloys & Compounds, 627, 388-392.
https://doi.org/10.1016/j.jallcom.2014.12.047
樊彦艳, 索红莉, 冯叶, 周康, 吴迪, 程冠铭, 隋帆, 童君, 罗海林, 李文杰. Cd掺杂的Cu2ZnSnS4光伏材料的发光光谱及其太阳能电池器件特性[J]. 发光学报, 2017, 38: 1338-1345.
Shadrokh, Z., Yazdani, A. and Eshghi, H. (2016) Solvothermal Synthesis of Cu2Zn1−xFexSnS4 Nanoparticles and the Influence of Annealing Conditions on Drop-Casted Thin Films. Semiconductor Science & Technology, 31, Article ID: 045004.
https://doi.org/10.1088/0268-1242/31/4/045004
Huang, C., Chan, Y., Liu, F., Tang, D., Yang, J., Lai, Y., Li, J. and Liu, Y. (2013) Synthesis and Characterization of Multicomponent Cu2(FexZn1−x)SnS4 Nanocrystals with Tunable Band Gap and Structure. Journal of Materials Chemistry A, 1, 5402.
https://doi.org/10.1039/c3ta00191a
Wang, W., Shen, H., Chen, J., Chen, W. and He, X. (2015) Synthesis and Properties of Cu2(FexZn1−x)SnS4 Nanocrystals by Microwave Irradiation Assisted Solvothermal Method. Advanced Powder Technology, 26, 275-279.
https://doi.org/10.1016/j.apt.2014.10.009
Kevin, P., Malik, M.A., McAdams, S. and O’Brien, P. (2015) Synthesis of Nanoparticulate Alloys of the Composition Cu(2)Zn(1−x)Fe(x)SnS(4): Structural, Optical, and Magnetic Properties. Journal of the American Chemical Society, 137, 15086-15089.
https://doi.org/10.1021/jacs.5b10281
Orletskii, I.G., Mar’yanchuk, P.D., Solovan, M.N., Maistruk, E.V. and Kozyarskii, D.P. (2016) Peculiarities in Electrical and Optical Properties of Cu2Zn1–xMnxSnS4 Films Obtained by Spray Pyrolysis. Technical Physics Letters, 42, 291-294.
https://doi.org/10.1134/S1063785016030263
Huang, K.-L., Huang, C.-H., Lin, W.-T., Fu, Y.-S. and Guo, T.-F. (2015) Solvothermal Synthesis and Tunable Bandgap of Cu2(Zn1−xCox)SnS4 and Cu2(Fe1−xCox)SnS 4 Nanocrystals. Journal of Alloys and Compounds, 646, 1015-1022.
https://doi.org/10.1016/j.jallcom.2015.05.176
Babu, G.S.D., Shajan, X.S., George, A., Parameswaran, P., Murugesan, S., Divakar, R., Mohandas, E., Kumaresan, S. and Rao, G.M. (2017) Low-Cost Hydrothermal Synthesis and Characterization of Pentanary Cu2ZnxNi1−xSnS4 Nanoparticle Inks for Thin Film Solar Cell Applications. Materials Science in Semiconductor Pro-cessing, 63, 127-136.
https://doi.org/10.1016/j.mssp.2017.02.015
Chen, S., Gong, X.G., Walsh, A. and Wei, S.-H. (2009) Electronic Structure and Stability of Quaternary Chalcogenide Semiconductors Derived from Cation Cross-Substitution of II-VI and I-III-VI2 Com-pounds. Physical Review B, 79, Article ID: 165211.
Zhang, Y., Sun, X., Zhang, P., Yuan, X., Huang, F. and Zhang, W. (2012) Structural Properties and Quasiparticle Band Structures of Cu-Based Quaternary Semiconductors for Photovoltaic Applications. Journal of Applied Physics, 111, Article ID: 063709.
https://doi.org/10.1063/1.3696964
Khadka, D.B. and Kim, J.H. (2014) Structural Transition and Band Gap Tuning of Cu2(Zn,Fe)SnS4 Chalcogenide for Photovoltaic Application. Journal of Physical Chemistry C, 118, 14227-14237.
https://doi.org/10.1021/jp503678h
Xiao, C., Li, K., Zhang, J., Tong, W., Liu, Y., Li, Z., Huang, P., Pan, B., Su, H. and Xie, Y. (2014) Magnetic Ions in Wide Band Gap Semiconductor Nanocrystals for Op-timized Thermoelectric Properties. Materials Horizons, 1, 81-86.
https://doi.org/10.1039/C3MH00091E
Chen, S., Walsh, A., Gong, X.G. and Wei, S.H. (2013) Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers. Advanced Materials, 25, 1522-1539.
https://doi.org/10.1002/adma.201203146
Siebentritt, S. (2013) Why Are Kesterite Solar Cells Not 20% Efficient? Thin Solid Films, 535, 1-4.
https://doi.org/10.1016/j.tsf.2012.12.089
Chen, S., Wang, L.W., Walsh, A., Gong, X.G. and Wei, S.H. (2012) Abun-dance of CuZn+SnZn and 2CuZn+SnZn Defect Clusters in Kesterite Solar Cells. Applied Physics Letters, 101, E156-M104.
https://doi.org/10.1063/1.4768215
Chen, S., Gong, X.G., Walsh, A. and Wei, S.H. (2010) Defect Physics of the Kes-terite Thin-Film Solar Cell Absorber Cu2 ZnSnS4. Applied Physics Letters, 96, Article ID: 021902.
Lany, S. and Zunger, A. (2005) Anion Vacancies as a Source of Persistent Photoconductivity in II-VI and Chalcopyrite Semiconductors. Physical Review B, 72, Article ID: 035215.
Chen, S., Yang, J.H., Gong, X.G., Walsh, A. and Wei, S.H. (2010) Intrinsic Point Defects and Complexes in the Quaternary Kesterite Semiconductor Cu2ZnSnS4. Physical Review B, 81, 1842-1851.
https://doi.org/10.1103/PhysRevB.81.245204
Nagoya, A., Asahi, R., Wahl, R. and Kresse, G. (2010) Defect Formation and Phase Stability of Cu2ZnSnS4 Photovoltaic Material. Physical Review B, 81, 760-762.
https://doi.org/10.1103/PhysRevB.81.113202
张军, 廖峻, 薛书文. CZTS基单晶颗粒薄膜太阳能电池研究进展[J]. 湛江师范学院学报, 2017(6): 35-43.
Wang, W., Winkler, M.T., Gunawan, O., Gokmen, T., Todorov, T.K., Zhu, Y. and Mitzi, D.B. (2014) Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Advanced Energy Materials, 4, Article ID: 1301465.
https://doi.org/10.1002/aenm.201301465
Redinger, A., Hönes, K., Fontané, X., Izquierdo-Roca, V., Saucedo, E., Valle, N., Pérez-Rodríguez, A. and Siebentritt, S. (2011) Detection of a ZnSe Secondary Phase in Coevaporated Cu2ZnSnSe4 Thin Films. Applied Physics Letters, 98, Article ID: 101907.
https://doi.org/10.1063/1.3558706