人胰淀素(hIAPP)是由胰岛细胞合成分泌、37个氨基酸组成的多肽类激素,与胰岛素、胰高血糖素等协同调节糖稳态。hIAPP可表现为生理药理状态下的单体(monomer)以及病理状态下的寡聚体(oligomer,α-螺旋结构)与纤维体(fibril,β片层折叠)。hIAPP单体的生理药理功能如下:1) 影响胰岛素与胰高血糖素的分泌;2) 延缓胃排空,降低餐后血糖;3) 升高肾素与血管紧张素II,调节肾生长;4) 升高醛固酮,降低血钙;5) 调节骨密度;6) 舒张血管,调节血流动力学;7) 调节免疫效应。hIAPP单体可诱导调节T细胞分化,从而调节炎症反应和免疫因子的分泌。部分一过性hIAPP寡聚体可引发胰岛β细胞凋亡,造成β细胞功能失常。由hIAPP纤维体折叠形成的淀粉样沉积,可保护胰岛避免自身免疫攻击。hIAPP不足或者hIAPP纤维体缺乏,是自身免疫性糖尿病的特征。hIAPP在肥胖以及糖尿病、自身免疫、骨质疏松等疾病的防治过程中,具有潜在应用前景。 Human amylin/islet amyloid polypeptide (hIAPP) is a 37-amino acid polypeptide synthesized and secreted from islet β-cells. hIAPP orchestrates with insulin and glucagon to maintain glucose homeostasis. Conformation of the physiological-pharmacological hIAPP monomers can transform into an α-helical oligomer and eventually β-pleated sheet fibrils. The physiological-pharmacological effects of hIAPP monomers are as follows: 1) playing with insulin and glucagon to regulate blood glucose levels, 2) delaying gastric empty, 3) modulating renal growth by increased levels of renin, angiotensin II, and aldosterone, 4) lowering blood calcium level by calcitonin-like action, 5) regu-lating bone density and minimizing the risk of osteoporosis, 6) dilating blood vessels for homodynamic changes, and 7) modulating autoimmune response predominantly by the induction of regu-latory T cells and regulation of cytokines and inflammatory reactions. The autoimmune-modulating action of hIAPP is a rather novel finding. The transient hIAPP oliomers might be toxic and have implicated in the islet β-cell apoptosis and dysfunction. Islet amyloid deposits dominantly com-promising of hIAPP fibrils may be protective against self-destruction in autoimmune diabetes. Therefore, the neuroendocine hIAPP indeed has multiple potentials in the prevention and treatment of chronic diseases such as obesity, diabetes, autoimmune disorder, and osteoporosis.
吴伟洁,王彦超,凌 伟,赵海潞. 人胰淀素的研究进展An Updated Review of Human Amylin[J]. 生理学研究, 2018, 06(04): 27-33. https://doi.org/10.12677/JPS.2018.64005
参考文献References
牟学晶, 任欣欣, 赵海潞. 胰岛素治疗的系统风险[J]. 临床合理用药杂志, 2014(20): 12-14.
El, O. (1901) The Relation oe Diabetes Mellitus to Lesions of the Pancreas. Hyaline Degeneration of the Islands oe Langerhans. Journal of Experimental Medicine, 5, 527-540.
https://doi.org/10.1084/jem.5.5.527
Höppener, J.W.M., Ahrén, B. and Lips, C.J.M. (2000) Islet Amyloid and Type 2 Diabetes Mellitus. New England Journal of Medicine, 343, 411-419.
https://doi.org/10.1056/NEJM200008103430607
Westermark, P., Wernstedt, C., Wilander, E., et al. (1987) Amyloid Fi-brils in Human Insulinoma and Islets of Langerhans of the Diabetic Cat Are Derived from a Neuropeptide-Like Protein Also Present in Normal Islet Cells. Proceedings of National Academy of Sciences of USA, 84, 3881-3885.
https://doi.org/10.1073/pnas.84.11.3881
Leighton, B. and Cooper, G.J. (1988) Pancreatic Amylin and Calcitonin Gene-Related Peptide Cause Resistance to Insulin in Skeletal Muscle in Vitro. Nature, 335, 632-635.
https://doi.org/10.1038/335632a0
Hull, R.L., Westermark, G.T., Westermark, P., et al. (2004) Islet Amyloid: A Critical Entity in the Pathogenesis of Type 2 Diabetes. Journal of Clinical Endocrinology & Metabolism, 89, 3629.
https://doi.org/10.1210/jc.2004-0405
Johnson, K.H., O’Brien, T.D., Betsholtz, C., et al. (1989) Islet Amyloid, Is-let-Amyloid Polypeptide, and Diabetes Mellitus. New England Journal of Medicine, 321, 513-518.
https://doi.org/10.1056/NEJM198908243210806
Johnson, K.H., O’Brien, T.D., Betsholtz, C., et al. (1992) Islet Amyloid Polypeptide: Mechanisms of Amyloidogenesis in the Pancreatic Islets and Potential Roles in Diabetes Mellitus. Laboratory Investi-gation: A Journal of Technical Methods and Pathology, 66, 522-535.
Booth, D.R., Sunde, M., Bellotti, V., et al. (1997) Insta-bility, Unfolding and Aggregation of Human Lysozyme Variants Underlying Amyloid Fibrillogenesis. Nature, 385, 787-793.
https://doi.org/10.1038/385787a0
Westermark, P., Andersson, A. and Westermark, G.T. (2011) Islet Amyloid Polypeptide, Islet Amyloid, and Diabetes Mellitus. Physiological Reviews, 91, 795.
https://doi.org/10.1152/physrev.00042.2009
Wimalawansa, S.J. (1996) Calcitonin Gene-Related Peptide and Its Receptors: Molecular Genetics, Physiology, Pathophysiology, and Therapeutic Potentials. Endocrine Reviews, 17, 533-585.
https://doi.org/10.1210/edrv-17-5-533
Zhang, X.X., Pan, Y.H., Huang, Y.M., et al. (2016) Neuroendocrine Hormone Amylin in Diabetes. World Journal of Diabetes, 7, 189-197.
https://doi.org/10.4239/wjd.v7.i9.189
Marzban, L., Tri-go-Gonzalez, G., Zhu, X., et al. (2004) Role of Beta-Cell Prohormone Convertase (PC)1/3 in Processing of Pro-Islet Amyloid Poly-peptide. Diabetes, 53, 141-148.
https://doi.org/10.2337/diabetes.53.1.141
Zhao, H.L., Lai, F.M., Tong, P.C., et al. (2003) Prevalence and Clinicopathological Characteristics of Islet Amyloid in Chinese Patients with Type 2 Diabetes. Diabetes, 52, 2759-2766.
https://doi.org/10.2337/diabetes.52.11.2759
Qiao, Y.C., Shen, J., Hong, X.Z., et al. (2016) Changes of Regu-latory T Cells, Transforming Growth Factor-Beta and Interleukin-10 in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Clinical Immunology, 170, 61-69.
https://doi.org/10.1016/j.clim.2016.08.004
Westermark, G.T., Gebre-Medhin, S. and Westermark, D.F.S. (2000) Islet Amyloid Development in a Mouse Strain Lacking Endogenous Islet Amyloid Polypeptide (IAPP) But Expressing Human IAPP. Molecular Medicine, 6, 998-1007.
https://doi.org/10.1007/BF03402051
Johnson, K.H., O’Brien, T.D., Hayden, D.W., et al. (1988) Immunolocalization of Islet Amyloid Polypeptide (IAPP) in Pancreatic Beta Cells by Means of Peroxidase-Antiperoxidase (PAP) and Protein A-Gold Tech-niques. American Journal of Pathology, 130, 1-8.
Schmitz, O., Brock, B. and Rungby, J. (2004) Amylin Agonists: A Novel Approach in the Treatment of Diabetes. Diabetes, 53, S233.
Cornish, J., Callon, K.E., Cooper, G.J., et al. (1995) Amylin Sti-mulates Osteoblast Proliferation and Increases Mineralized Bone Volume in Adult Mice. Biochemical and Biophysical Research Communications, 207, 133-139.
https://doi.org/10.1006/bbrc.1995.1163
Wimalawansa, S.J. (1997) Amylin, Calcitonin Gene-Related Peptide, Calcitonin, and Adrenomedullin: A Peptide Superfamily. Critical Reviews in Neurobiology, 11, 167-239.
https://doi.org/10.1615/CritRevNeurobiol.v11.i2-3.40
Cornish, J., Callon, K.E., Gasser, J.A., et al. (2000) Systemic Ad-ministration of a Novel Octapeptide, Amylin-(1-8), Increases Bone Volume in Male Mice. American Journal of Physiology Endo-crinology and Metabolism, 279, E730-E735.
https://doi.org/10.1152/ajpendo.2000.279.4.E730
Horcajada-Molteni, M.N., Davicco, M.J., Lebecque, P., et al. (2000) Amylin Inhibits Ovariectomy-Induced Bone Loss in Rats. The Journal of Endocrinology, 165, 663-668.
https://doi.org/10.1677/joe.0.1650663
Bronsky, J. and Prusa, R. (2004) Amylin Fasting Plasma Levels Are Decreased in Patients with Osteoporosis. Osteoporosis International: A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 15, 243-247.
https://doi.org/10.1007/s00198-003-1538-5
Bronsky, J., Prusa, R. and Nevoral, J. (2006) The Role of Amylin and Related Peptides in Osteoporosis. International Journal of Clinical Chemistry, 373, 9-16.
Zhao, H.L., Tong, P.C., Lai, F.M., et al. (2004) Association of Glomerulopathy with the 5’-End Polymorphism of the Aldose Reductase Gene and Renal Insufficiency in Type 2 Diabetic Patients. Diabetes, 53, 2984.
https://doi.org/10.2337/diabetes.53.11.2984
Höppener, J.W., Ahrén, B. and Lips, C.J. (2000) Islet Amyloid and Type 2 Diabetes Mellitus. The New England Journal of Medicine, 343, 411-419.
https://doi.org/10.1056/NEJM200008103430607
Cooper, G.J.S., Aitken, J.F. and Zhang, S. (2010) Is Type 2 Diabetes an Amyloidosis and Does It Really Matter (to Patients)? Diabetologia, 53, 1011-1016.
https://doi.org/10.1007/s00125-010-1715-y
Hay, D.L., Chen, S., Lutz, T.A., et al. (2015) Amylin: Pharmacology, Physi-ology, and Clinical Potential. Pharmacological Reviews, 67, 564-600.
https://doi.org/10.1124/pr.115.010629
Zhao, H.L., Sui, Y., Guan, J., et al. (2008) Higher Islet Amyloid Load in Men than in Women with Type 2 Diabetes Mellitus. Pancreas, 37, e68-e73.
https://doi.org/10.1097/MPA.0b013e3181788e18
Zhao, H., Guan, J., Lee, H.M., et al. (2010) Up-Regulated Pan-creatic Tissue microRNA-375 Associates with Human Type 2 Diabetes through Beta-Cell Deficit and Islet Amyloid Deposition. Pancreas, 39, 843-846.
https://doi.org/10.1097/MPA.0b013e3181d12613
Zheng, T., Qin, L., Chen, B., et al. (2016) Association of Plasma DPP4 Activity with Mild Cognitive Impairment in Elderly Patients with Type 2 Diabetes: Results from the GDMD Study in China. Di-abetes Care, 39, 1594-1601.
https://doi.org/10.2337/dc16-0316
Qiao, Y.C., Ling, W., Pan, Y.H., et al. (2017) Efficacy and Safety of Pramlintide Injec-tion Adjunct to Insulin Therapy in Patients with Type 1 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Oncotarget, 8, 66504-66515.
https://doi.org/10.18632/oncotarget.16008
Wr, F. (1982) The Discovery of Insulin. McClelland and Stewart, Toron-to.
Kurtzhals, P., Schäffer, L., Sørensen, A., et al. (2000) Correlations of Receptor Binding and Metabolic and Mitogenic Po-tencies of Insulin Analogs Designed for Clinical Use. Diabetes, 49, 999-1005.
https://doi.org/10.2337/diabetes.49.6.999