肿瘤微环境是由肿瘤细胞、肿瘤支持细胞、细胞基质、细胞因子等构成。其中肿瘤相关成纤维细胞(Cancer-Associated Fibroblasts, CAFs)在肿瘤微环境中含量最为丰富,其在肿瘤的形成、肿瘤血管生成、增殖、侵袭和转移等事件过程中起着重要作用。这促使一些研究人员对CAFs的分子和细胞特征进行研究,探索其在预防和治疗癌症方面的潜在应用。目前有大量关于CAFs的定义、起源以及其对肿瘤细胞的作用的研究。在此,本文总结了目前CAFs定义的分歧,来源的多样性,以及其在乳腺癌治疗中的可能机制,并对该领域未来研究方向做出了分析。 Tumor microenvironment is composed of tumor cells, tumor supporting cells, cell matrix and cy-tokines. Among these, cancer-associated fibroblasts (CAFs) are the most abundant in tumor mi-croenvironment and play an important role in tumorigenesis, angiogenesis, proliferation, invasion and metastasis. This has prompted some researchers to study the molecular and cellular characteristics of CAFs and explore their potential applications in cancer prevention and treatment. There are a lot of studies on the definition, origin and effect of CAFs on cancer cells. In this paper, we summarize the differences in the definition of CAFs, the diversity of their sources, and the possible mechanisms in the treatment of breast cancer, and the future research directions in this field are also predicted.
乳腺癌,肿瘤相关成纤维细胞,肿瘤微环境, Breast Cancer
Cancer-Associated Fibroblasts
Tumor Microenvironment
乳腺癌相关成纤维细胞:乳腺癌治疗的新靶点<sup> </sup>
李俊杰,李 卉,龙启明,杨 业. 乳腺癌相关成纤维细胞:乳腺癌治疗的新靶点Breast Cancer-Associated Fibroblasts: A New Target for Breast Cancer Therapy[J]. 临床医学进展, 2019, 09(04): 606-612. https://doi.org/10.12677/ACM.2019.94092
参考文献References
Siegel, R.L., Miller, K.D. and Jemal, A. (2018) Cancer Statistics, 2018. CA: A Cancer Journal for Clinicians, 68, 7-30.
https://doi.org/10.3322/caac.21442
Anderson, B., Yip, C., Smith, R., Shyyan, R., Sener, S., Eniu, A., et al. (2008) Guideline Implementation for Breast Healthcare in Low-Income and Middle Income Countries: Overview of the Breast Health Global Initiative Global Summit 2007. Cancer, 113, 2221-2243.
https://doi.org/10.1002/cncr.23844
Han, S., Guo, Q. and Wang, T., et al. (2013) Prognostic Significance of Interactions between ER Alpha and ER Beta and Lymph Node Status in Breast Cancer Cases. Asian Pacific Journal of Cancer Prevention, 14, 6081-6084.
https://doi.org/10.7314/APJCP.2013.14.10.6081
Peng, J., Sengupta, S. and Jordan, V.C. (2009) Potential of Selective Estrogen Receptor Modulators as Treatments and Preventives of Breast Cancer. Anti-Cancer Agents in Me-dicinal Chemistry, 9, 481-99.
https://doi.org/10.2174/187152009788451833
Brenton, J.D., Carey, L.A., Ahmed, A.A. and Caldas, C. (2005) Molecular Classification and Molecular Forecasting of Breast Cancer: Ready for Clinical Application? Journal of Clinical Oncology, 23, 7350-7360.
https://doi.org/10.1200/JCO.2005.03.3845
Luo, H., Tu, G., Liu, Z. and Liu, M. (2015) Cancer-Associated Fibroblasts: A Multifaceted Driver of Breast Cancer Progression. Cancer Letters, 361, 155-163.
https://doi.org/10.1016/j.canlet.2015.02.018
Tchou, J., Kossenkov, A.V., Chang, L., Satija, C., Herlyn, M., Showe, L.C. and Pure, E. (2012) Human Breast Cancer-Associated Fibroblasts Exhibit Subtype Specific Gene Expres-sion Profiles. BMC Medical Genomics, 5, 39.
https://doi.org/10.1186/1755-8794-5-39
Bergamaschi, A., Tagliabue, E., Sorlie, T., Naume, B., Triulzi, T., Orlandi, R., Russnes, H.G., Nesland, J.M., Tammi, R., Auvinen, P., et al. (2008) Extracellular Matrix Signature Identi-fies Breast Cancer Subgroups with Different Clinical Outcome. The Journal of Pathology, 214, 357-367.
https://doi.org/10.1002/path.2278
Quail, D.F. and Joyce, J.A. (2013) Microenvironmental Regulation of Tumor Progression and Metastasis. Nature Medicine, 19, 1423-1437.
https://doi.org/10.1038/nm.3394
Campbell, I., Qiu, W. and Haviv, I. (2011) Genetic Changes in Tumour Microenvironments. The Journal of Pathology, 223, 450-458.
https://doi.org/10.1002/path.2842
Moinfar, F., Man, Y.G., Arnould, L., Bratthauer, G.L., Ratschek, M. and Tavassoli, F.A. (2000) Concurrent and Independent Genetic Alterations in the Stromal and Epithelial Cells of Mammary Carcinoma: Implications for Tumorigenesis. Cancer Research, 60, 2562-2566.
Gabbiani, G., Ryan, G.B. and Majne, G. (1971) Presence of Modified Fibroblasts in Granulation Tissue and Their Possible Role in Wound Contraction. Experientia, 27, 549-550.
https://doi.org/10.1007/BF02147594
Hasebe, T., Tamura, N., Okada, N., Hojo, T., Akashi-tanaka, S., Shimizu, C., Tsuda, H., Shibata, T., Sasajima, Y., Iwasaki, M., et al. (2010) p53 Expression in Tumor-Stromal Fibroblasts Is Closely Associated with the Nodal Metastasis and Outcome of Patients with Invasive Ductal Carcinoma Who Received Neoadjuvant Therapy. Human Pathology, 41, 262-270.
https://doi.org/10.1016/j.humpath.2009.07.021
Dvorak, H.F. (1986) Tumors: Wounds that Do Not Heal. Similarities between Tumor Stroma Generation and Wound Healing. The New England Journal of Medicine, 315, 1650-1659.
https://doi.org/10.1056/NEJM198612253152606
Bhowmick, N.A., Neilson, E.G. and Moses, H.L. (2004) Stromal Fibroblasts in Cancer Initiation and Progression. Nature, 432, 332-337.
https://doi.org/10.1038/nature03096
Bauer, M., SU, G., Casper, C., HE, R., Rehrauer, W. and Friedl, A. (2010) Heterogeneity of Gene Expression in Stromal Fibroblasts of Human Breast Carcinomas and Normal Breast. Oncogene, 29, 1732-1740.
https://doi.org/10.1038/onc.2009.463
Hawsawi, N.M., Ghebeh, H., Hendrayani, S.F., Tulbah, A., Al-Eid, M., Al-Tweigeri, T., Ajarim, D., Alaiya, A., Dermime, S. and Aboussekhra, A. (2008) Breast Carcinoma—Associated Fi-broblasts and Their Counterparts Display Neoplastic-Specific Changes. Cancer Research, 68, 2717-2725.
https://doi.org/10.1158/0008-5472.CAN-08-0192
Mao, Y., Keller, E.T., Garfield, D.H., Shen, K. and Wang, J. (2013) Stromal Cells in Tumor Microenvironment and Breast Cancer. Cancer and Metastasis Reviews, 32, 303-315.
https://doi.org/10.1007/s10555-012-9415-3
Pula, B., Jethon, A., Piotrowska, A., Gomulkiewicz, A., Owcza-rek, T., Calik, J., Wojnar, A., Witkiewicz,W., Rys, J., Ugorski, M., et al. (2011) Podoplanin Expression by Can-cer-Associated Fibroblasts Predicts Poor Outcome in Invasive Ductal Breast Carcinoma. Histopathology, 59, 1249-1260.
https://doi.org/10.1111/j.1365-2559.2011.04060.x
Ronnov-Jessen, L., Petersen, O.W., Koteliansky, V.E. and Bissell, M.J. (1995) The Origin of the Myofibroblasts in Breast Cancer. Recapitulation of Tumor Environment in Culture Unravels Diversity and Implicates Converted Fibroblasts and Recruited Smooth Muscle Cells. Journal of Clinical Investigation, 95, 859-873.
https://doi.org/10.1172/JCI117736
Kojima, Y., Acar, A., Eaton, E.N., Mellody, K.T., Scheel, C., Ben-Porath, I., Onder, T.T., Wang, Z.C., Richardson, A.L., Weinberg, R.A., et al. (2010) Autocrine TGF-Beta and Stromal Cell-Derived Factor-1 (SDF-1) Signaling Drives the Evolution of Tumor-Promoting Mammary Stromal Myofibroblasts. PNAS, 107, 20009-20014.
https://doi.org/10.1073/pnas.1013805107
Omary, M.B., Lugea, A., Lowe, A.W. and Pandol, S.J. (2007) The Pancreatic Stellate Cell: A Star on the Rise in Pancreatic Diseases. Journal of Clinical Investigation, 117, 50-59.
https://doi.org/10.1172/JCI30082
Yin, C., Evason, K.J., Asahina, K. and Stainier, D.Y. (2013) Hepatic Stellate Cells in Liver Development, Regeneration, and Cancer. Journal of Clinical Investigation, 123, 1902-1910.
https://doi.org/10.1172/JCI66369
Barth, P.J., Ebrahimsade, S., Ramaswamy, A. and Moll, R. (2002) CD34+ Fibrocytes in Invasive Ductal Carcinoma, Ductal Carcinoma in Situ, and Benign Breast Lesions. Virchows Archiv, 440, 298-303.
https://doi.org/10.1007/s004280100530
Jung, Y., et al. (2013) Recruitment of Mesenchymal Stem Cells into Prostate Tumours Promotes Metastasis. Nature Communications, 4, Article No. 1795.
https://doi.org/10.1038/ncomms2766
Mishra, P.J., et al. (2008) Carcinoma-Associated Fibroblast—Like Differentiation of Human Mesenchymal Stem Cells. Cancer Research, 68, 4331-4339.
https://doi.org/10.1158/0008-5472.CAN-08-0943
Zhu, Q., et al. (2014) The IL-6-STAT3 Axis Mediates a Reciprocal Crosstalk between Cancer-Derived Mesenchymal Stem Cells and Neutrophils to Synergistically Prompt Gastric Cancer Progression. Cell Death & Disease, 5, e1295.
https://doi.org/10.1038/cddis.2014.263
Weber, C.E., et al. (2015) Osteopontin Mediates an MZF1-TGF-β1-Dependent Transformation of Mesenchymal Stem Cells into Cancer-Associated Fibroblasts in Breast Cancer. Oncogene, 34, 4821-4833.
https://doi.org/10.1038/onc.2014.410
Shi, Y., Du, L., Lin, L. and Wang, Y. (2017) Tumour-Associated Mesenchymal Stem/Stromal Cells: Emerging Therapeutic Targets. Nature Reviews Drug Discovery, 16, 35-52.
https://doi.org/10.1038/nrd.2016.193
Zeisberg, E.M., Potenta, S., Xie, L., Zeisberg, M. and Kalluri, R. (2007) Discovery of Endothelial to Mesenchymal Transition as a Source for Carcinoma-Associated Fibroblasts. Cancer Re-search, 67, 10123-10128.
https://doi.org/10.1158/0008-5472.CAN-07-3127
Kalluri, R. and Weinberg, R.A. (2009) The Basics of Epi-thelial-Mesenchymal Transition. Journal of Clinical Investigation, 119, 1420-1428.
https://doi.org/10.1172/JCI39104
Massague, J. (2008) TGF-β in Cancer. Cell, 134, 215-230.
https://doi.org/10.1016/j.cell.2008.07.001
Trimmer, C., Sotgia, F., Whitaker-Menezes, D., Balliet, R.M., Eaton, G., Martinez-Outschoorn, U.E., Pavlides, S., Howell, A., Iozzo, R.V., Pestell, R.G., et al. (2011) Caveolin-1 and Mitochondrial SOD2 (MnSOD) Function as Tumor Suppressors in the Stromal Microenvironment: A New Genetically Tractable Model for Human Cancer-Associated Fibroblasts. Cancer Biology & Therapy, 11, 383-394.
https://doi.org/10.4161/cbt.11.4.14101
Witkiewicz, A.K., Dasgupta, A., Sammons, S., Er, O., Potoczek, M.B., Guiles, F., Sotgia, F., Brody, J.R., Mitchell, E.P. and Lisanti, M.P. (2010) Loss of Stromal Caveolin-1 Expression Predicts Poor Clinical Outcome in Triple Negative and Basal-Like Breast Cancers. Cancer Biology & Therapy, 10, 135-143.
https://doi.org/10.4161/cbt.10.2.11983
Witkiewicz, A.K., Dasgupta, A., Sotgia, F., Mercier, I., Pestell, R.G., Sabel, M., Kleer, C.G., Brody, J.R. and Lisanti, M.P. (2009) An Absence of Stromal Caveolin-1 Expres-sion Predicts Early Tumor Recurrence and Poor Clinical Outcome in Human Breast Cancers. The American Journal of Pathology, 174, 2023-2034.
https://doi.org/10.2353/ajpath.2009.080873
Pula, B., Wojnar, A., Werynska, B., Ambicka, A., Kruczak, A., Witkiewicz, W., Ugorski, M., Podhorska-Okolow, M. and Dziegiel, P. (2013) Impact of Different Tumour Stroma As-sessment Methods Regarding Podoplanin Expression on Clinical Outcome in Patients with Invasive Ductal Breast Car-cinoma. Anticancer Research, 33, 1447-1455.
Schoppmann, S.F., Berghoff, A., Dinhof, C., Jakesz, R., Gnant, M., Dubsky, P., Jesch, B., Heinzl, H. and Birner, P. (2012) Podoplanin-Expressing Cancer-Associated Fibroblasts Are As-sociated with Poor Prognosis in Invasive Breast Cancer. Breast Cancer Research and Treatment, 134, 237-244.
https://doi.org/10.1007/s10549-012-1984-x
Martinez-Outschoorn, U.E., Pavlides, S., Whitaker-Menezes, D., et al. (2010) Tumor Cells Induce the Cancer Associated Fibroblast Phenotype via Caveolin-1 Degradation: Implications for Breast Cancer and DCIS Therapy with Autophagy Inhibitors. Cell Cycle, 9, 2423-2433.
https://doi.org/10.4161/cc.9.12.12048
Orimo, A. and Weinberg, R.A. (2007) Heterogeneity of Stromal Fi-broblasts in Tumors. Cancer Biology & Therapy, 6, 618-619.
https://doi.org/10.4161/cbt.6.4.4255
Qiao, A., Gu, F., Guo, X., et al. (2016) Breast Cancer-Associated Fibroblasts: Their Roles in Tumor Initiation, Progression and Clinical Applications. Frontiers of Medicine, 10, 33-40.
https://doi.org/10.1007/s11684-016-0431-5
Paulsson, J., Sjoblom, T., Micke, P., Ponten, F., Landberg, G., Heldin, C.H., Bergh, J., Brennan, D.J., Jirstrom, K. and Ostman, A. (2009) Prognostic Significance of Stromal Platelet-Derived Growth Factor Beta-Receptor Expression in Human Breast Cancer. The American Journal of Pathology, 175, 334-341.
https://doi.org/10.2353/ajpath.2009.081030
Pontiggia, O., Sampayo, R., Raffo, D., Motter, A., Xu, R., Bissell, M.J., Joffe, E.B. and Simian, M. (2012) The Tumor Microenvironment Modulates Tamoxifen Resistance in Breast Cancer: A Role for Soluble Stromal Factors and Fibronectin through β1 Integrin. Breast Cancer Research and Treatment, 133, 459-471.
https://doi.org/10.1007/s10549-011-1766-x
Pavlides, S., Tsirigos, A., Vera, I., Flomenberg, N., Frank, P.G., Casimiro, M.C., Wang, C., Fortina, P., Addya, S., Pestell, R.G., et al. (2010) Loss of Stromal Caveolin-1 Leads to Ox-idative Stress, Mimics Hypoxia and Drives Inflammation in the Tumor Microenvironment, Conferring the “Reverse Warburg Effect”: A Transcriptional Informatics Analysis with Validation. Cell Cycle, 9, 2201-2219.
https://doi.org/10.4161/cc.9.11.11848