近年来的研究显示苯巴比妥类等针对性作用于GABA A受体的药物在新生儿癫癎治疗中的临床疗效不佳,且可能导致进一步的远期脑损害,原因在于新生脑中GABA A受体表现为兴奋性效应,随着神经系统发育而逐渐转化为成熟脑中的重要抑制性受体。位于神经元细胞膜上的转运蛋白NKCC1、KCC2及L型Ca 2+通道共同参与了新生期GABA A受体激活后兴奋性效应的形成。 The drug phenobarbital which acts as GABA A receptor modulator is recently found to have a poor clinical outcome and even a long-term injury to brain. The reason may lie on the excitatory effect of GABA A receptor in developing brain rather than the inhibitory effect in developed brain. Trans-porter NKCC1 and KCC2 along with L-type Ca 2+ channel take part in the generation of the excitatory effect, which indicates a new way of target therapy of neonatal epilepsy.
肖 潇,王曼丽,汤继宏. GABAA受体效应与新生儿癫癎治疗The Effect of GABAA Receptor and Its Treatment of Neonatal Epilepsy[J]. 临床医学进展, 2019, 09(08): 926-930. https://doi.org/10.12677/ACM.2019.98142
参考文献References
Staley, K. (2015) Molecular Mechanisms of Epilepsy. Nature Neuroscience, 18, 367.
https://doi.org/10.1038/nn.3947
Dang, L.T. and Silverstein, F.S. (2017) Drug Treatment of Seizures and Ep-ilepsy in Newborns and Children. Pediatric Clinics of North America, 64, 1291-1308.
https://doi.org/10.1016/j.pcl.2017.08.007
Bell, G.S., Neligan, A. and Sander, J.W. (2014) An Unknown Quantity—The Worldwide Prevalence of Epilepsy. Epilepsia, 55, 958-962.
https://doi.org/10.1111/epi.12605
Vento, M., de Vries, L.S., Alberola, A., et al. (2009) Approach to Seizures in the Neonatal Period: A European Perspective. Acta Paediatrica, 99, 497-501.
https://doi.org/10.1111/j.1651-2227.2009.01659.x
Vezzani, A., Aronica, E., Mazarati, A. and Pittman, Q.J. (2013) Epilepsy and Brain Inflammation. Experimental Neurology, 244, 11-21.
https://doi.org/10.1016/j.expneurol.2011.09.033
Nardou, R., Ferrari, D.C. and Ben-Ari, Y. (2013) Mecha-nisms and Effects of Seizures in the Immature Brain. Seminars in Fetal & Neonatal Medicine, 18, 175-184.
https://doi.org/10.1016/j.siny.2013.02.003
Miller, S.M., Goasdoue, K. and Björkman, S.T. (2017) Neonatal Seizures and Disruption to Neurotransmitter Systems. Neural Regeneration Research, 12, 216-217.
https://doi.org/10.4103/1673-5374.200803
Dupuis, N. and Auvin, S. (2015) Inflammation and Epilepsy in the Developing Brain: Clinical and Experimental Evidence. CNS Neuroscience & Therapeutics, 21, 141-151.
https://doi.org/10.1111/cns.12371
Whitehead, E., Dodds, L., Joseph, K.S., et al. (2006) Relation of Pregnancy and Neonatal Factors to Subsequent Development of Childhood Epilepsy: A Population-Based Cohort Study. Pediatrics, 117, 1298-1306.
https://doi.org/10.1542/peds.2005-1660
Jembrek, M.J. and Vlainic, J. (2015) GABA Receptors: Pharmaco-logical Potential and Pitfalls. Current Pharmaceutical Design, 21, 4943-4959.
https://doi.org/10.2174/1381612821666150914121624
Chuang, S.H. and Reddy, D.S. (2018) Genetic and Molecular Regulation of Extrasynaptic GABA-A Receptors in the Brain: Therapeutic Insights for Epilepsy. Journal of Pharmacology and Experimental Therapeutics, 364, 180-197.
https://doi.org/10.1124/jpet.117.244673
World Health Organization (2013) Standard Antiepileptic Drugs (Phenobarbital, Pheny-Toin, Carbamazepine, Valproic Acid) for Management of Convulsive Epilepsy in Adults and Children in WHO Mental Health Gap Action Programme mhGAP, mhGAP Evidence Resource Center, Epilepsy and Seizures. WHO, Geneva.
Glykys, J. and Staley, K.J. (2015) Diazepam Effect during Early Neonatal Development Correlates with Neuronal Cl-. Annals of Clinical and Translational Neurology, 2, 1055-1070.
https://doi.org/10.1002/acn3.259
Vesoulis, Z.A. and Mathur, A.M. (2014) Advances in Management of Ne-onatal Seizures. Indian Journal of Pediatrics, 81, 592-598.
https://doi.org/10.1007/s12098-014-1457-9
Sands, T.T. and Mcdonough, T.L. (2016) Recent Advances in Neonatal Seizures. Current Neurology and Neuroscience Reports, 16, 92.
https://doi.org/10.1007/s11910-016-0694-x
Ikonomidou, C. (2009) Triggers of Apoptosis in the Immature Brain. Brain & Development, 31, 488-492.
https://doi.org/10.1016/j.braindev.2009.02.006
Kirmse, K., Witte, O.W. and Holthoff, K. (2011) GABAergic Depolarization during Early Cortical Development and Implications for Anticonvulsive Therapy in Neonates. Epilepsia, 52, 1532-1543.
https://doi.org/10.1111/j.1528-1167.2011.03128.x
Wang, D.D. and Kriegstein, A.R. (2011) Blocking Early GABA Depolarization with Bumetanide Results in Permanent Alterations in Cortical Circuits and Sensorimotor Gating Deficits. Cerebral Cortex, 21, 574-587.
https://doi.org/10.1093/cercor/bhq124
Chamma, I., Chevy, Q., Poncer, J.C., et al. (2012) Role of the Neuronal K-Cl Co-Transporter KCC2 in Inhibitory and Excitatory Neurotransmission. Frontiers in Cellular Neuroscience, 6, 5.
https://doi.org/10.3389/fncel.2012.00005
Kirmse, K., Witte, O.W. and Holthoff, K. (2010) GABA Depolarizes Immature Neocortical Neurons in the Presence of the Ketone Body β-Hydroxybutyrate. Journal of Neuroscience, 30, 16002-16007.
https://doi.org/10.1523/JNEUROSCI.2534-10.2010
Holmes, G.L. (2009) The Long-Term Effects of Neonatal Seizures. Clinics in Perinatology, 36, 901-904.
https://doi.org/10.1016/j.clp.2009.07.012
Kalkman, H.O. (2011) Alterations in the Expression of Neuronal Chloride Transporters May Contribute to Schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psy-chiatry, 35, 410-414.
https://doi.org/10.1016/j.pnpbp.2011.01.004
Hernan, A.E. and Holmes, G.L. (2016) Antiepileptic Drug Treatment Strategies in Neonatal Epilepsy. Progress in Brain Research, 226, 179-193.
https://doi.org/10.1016/bs.pbr.2016.03.011
Yamada, J., Okabe, A., Toyoda, H., Kilb, W., Luhmann, H.J. and Fukuda, A. (2004) Cl− Uptake Promoting Depolarizing GABA Actions in Immature Rat Neocortical Neurones Is Me-diated by NKCC1. The Journal of Physiology, 557, 829-841.
https://doi.org/10.1113/jphysiol.2004.062471
Succol, F., Fiumelli, H., Benfenati, F., et al. (2012) Intracellular Chloride Concentration Influences the GABAA Receptor Subunit Composition. Nature Communications, 3, 738.
https://doi.org/10.1038/ncomms1744
Tyzio, R., Nardou, R., Ferrari, D.C., et al. (2014) Oxytocin-Mediated GABA Inhibition during Delivery Attenuates Autism Pathogenesis in Rodent Offspring. Science, 343, 675-679.
https://doi.org/10.1126/science.1247190
Sipila, S.T., Huttu, K., Yamada, J., et al. (2009) Compensatory En-hancement of Intrinsic Spiking upon NKCC1 Disruption in Neonatal Hippocampus. Journal of Neuroscience, 29, 6982-6988.
https://doi.org/10.1523/JNEUROSCI.0443-09.2009
Wang, D.D. and Kriegstein, A.R. (2008) GABA Regu-lates Excitatory Synapse Formation in the Neocortex via NMDA Receptor Activation. Journal of Neuroscience, 28, 5547-5558.
https://doi.org/10.1523/JNEUROSCI.5599-07.2008
Kahle, K.T., Barnett, S.M., Sassower, K.C., et al. (2009) Decreased Seizure Activity in a Human Neonate Treated with Bumetanide, an Inhibitor of the NAt-Kt-2Cle Cotransporter NKCC1. Journal of Child Neurology, 24, 572e6.
https://doi.org/10.1177/0883073809333526
Cleary, R.T., Sun, H., Huynh, T., et al. (2013) Bumetanide En-hances Phenobarbital Efficacy in a Rat Model of Hypoxic Neonatal Seizures., PLoS ONE, 8, e57148.
https://doi.org/10.1371/journal.pone.0057148
Löscher, W., Puskarjov, M. and Kaila, K. (2013) Cation-Chloride Cotransporters NKCC1 and KCC2 as Potential Targets for Novel Antiepileptic and Antiepileptogenic Treatments. Neuropharmacology, 69, 62-74.
https://doi.org/10.1016/j.neuropharm.2012.05.045
Pressler, R.M., Boylan, G.B., Marlow, N., et al. (2015) Bumetanide for the Treatment of Seizures in Newborn Babies with Hypoxic Ischaemic Encephalopathy (NEMO, an Open-Label, Dose Finding, and Feasibility Phase 1/2 Trial. The Lancet Neurology, 14, 469-477.
https://doi.org/10.1016/S1474-4422(14)70303-5
Thoresen, M. and Sabir, H. (2015) Epilepsy: Neonatal Seizures Still Lack Safe and Effective Treatment. Nature Reviews Neurology, 11, 311-312.
https://doi.org/10.1038/nrneurol.2015.74
Friedel, P., Kahle, K.T., Zhang, J.W., et al. (2015) WNK1-Regulated Inhibitory Phosphorylation of the KCC2 Cotransporter Maintains the Depolarizing Action of GABA in Immature Neurons. Science Signaling, 8, ra65.
https://doi.org/10.1126/scisignal.aaa0354
Furukawa, M., Tsukahara, T., Tomita, K., et al. (2017) Neonatal Maternal Separation Delays the GABA Excitatory-to-Inhibitory Functional Switch by Inhibiting KCC2 Expression. Biochemical and Biophysical Research Communications, 493, 1243-1249.
https://doi.org/10.1016/j.bbrc.2017.09.143
Puskarjov, M., Kahle, K.T., Ruusuvuori, E., et al. (2014) Pharmacotherapeutic Targeting of Cation-Chloride Cotransporters in Neonatal Seizures. Epilepsia, 55, 806-818.
https://doi.org/10.1111/epi.12620
Kim, D.Y., Fenoglio, K.A., Simeone, T.A., et al. (2008) GABAA Receptor-Mediated Activation of L-Type Calcium Channels Induces Neuronal Excitation in Surgically Resected Human Hypothalamic Hamartomas. Epilepsia, 49, 861-871.
https://doi.org/10.1111/j.1528-1167.2007.01455.x