MS Material Sciences 2160-7613 Scientific Research Publishing 10.12677/MS.2021.119111 MS-44992 MS20210900000_71163511.pdf 化学与材料 X-切向Yb:YLuGdCOB晶体的声光调Q脉冲激光性质 Properties of Acousto-Optic Q-Switched Pulsed Laser of X-Cut Yb:YLuGdCOB Crystal 芬芬 1 * 存海 1 2 海军航空大学,山东 烟台 null 03 09 2021 11 09 959 966 © Copyright 2014 by authors and Scientific Research Publishing Inc. 2014 This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

声光调Q是固体激光器实现脉冲运转、获得mJ量级脉冲能量的最常用方法,声光调Q能够严格控制脉冲激光的重复率。掺Yb稀土钙氧硼酸盐晶体为低增益激光介质,受激发射截面很小,晶体的能量储存能力强,适合声光调Q脉冲激光的运转。我们在937 nm半导体激光器纵向泵浦条件下,利用平凹谐振腔,对掺Yb稀土钙氧硼酸盐X-切向Yb:YLuGdCOB晶体的声光调Q脉冲激光特性做了深入的研究。在最佳谐振腔输出透过率为T = 50%条件下,实现了重复率1~20 kHz范围内稳定的声光调Q脉冲运转。PRF = 1 kHz的重复率时,声光调Q产生的最大脉冲能量可达1 mJ,所产生的最大峰值功率超过166.00 kW,激光斜率效率为26.6%,最短脉冲宽度为6.0 ns。 Acousto-optic Q-switching is the most common method for solid-state lasers to realize pulse operation and obtain mJ pulse energy. Acousto-optic Q-switching can strictly control the repetition rate of pulsed laser. Yb doped rare earth calcium oxyborate crystal is a low gain laser medium with small stimulated emission cross section and strong energy storage capacity. It is suitable for the operation of acousto-optic Q-switched pulse laser. Under the longitudinal pumping condition of 937 nm semiconductor laser, the characteristics of acousto-optic Q-switched pulsed laser in Yb doped rare earth calcium oxyborate X-cut Yb:YLuGdCOB crystal are studied by using a flat concave resonator. Under the condition that the optimal output transmittance of the resonator T = 50%, a stable acousto-optic Q-switched pulse operation in the repetition rate range of 1~20 kHz is realized. When PRF = 1 kHz, the maximum pulse energy generated by acousto-optic Q-switching can reach 1 mJ, the maximum peak power generated exceeds 166.00 kW, the laser slope efficiency is 26.6%, and the shortest pulse width is 6.0 ns.

声光调Q,Yb稀土钙氧硼酸盐晶体,脉冲激光, Acousto-Optic Q-Switching Yb Rare Earth Calcium Oxyborate Crystal Pulsed Laser
摘要

声光调Q是固体激光器实现脉冲运转、获得mJ量级脉冲能量的最常用方法,声光调Q能够严格控制脉冲激光的重复率。掺Yb稀土钙氧硼酸盐晶体为低增益激光介质,受激发射截面很小,晶体的能量储存能力强,适合声光调Q脉冲激光的运转。我们在937 nm半导体激光器纵向泵浦条件下,利用平凹谐振腔,对掺Yb稀土钙氧硼酸盐X-切向Yb:YLuGdCOB晶体的声光调Q脉冲激光特性做了深入的研究。在最佳谐振腔输出透过率为T = 50%条件下,实现了重复率1~20 kHz范围内稳定的声光调Q脉冲运转。PRF = 1 kHz的重复率时,声光调Q产生的最大脉冲能量可达1 mJ,所产生的最大峰值功率超过166.00 kW,激光斜率效率为26.6%,最短脉冲宽度为6.0 ns。

关键词

声光调Q,Yb稀土钙氧硼酸盐晶体,脉冲激光

Properties of Acousto-Optic Q-Switched Pulsed Laser of X-Cut Yb:YLuGdCOB Crystal<sup> </sup>

Fenfen Liu, Cunhai Liu

Naval Aviation University, Yantai Shandong

Received: Aug. 3rd, 2021; accepted: Aug. 27th, 2021; published: Sep. 3rd, 2021

ABSTRACT

Acousto-optic Q-switching is the most common method for solid-state lasers to realize pulse operation and obtain mJ pulse energy. Acousto-optic Q-switching can strictly control the repetition rate of pulsed laser. Yb doped rare earth calcium oxyborate crystal is a low gain laser medium with small stimulated emission cross section and strong energy storage capacity. It is suitable for the operation of acousto-optic Q-switched pulse laser. Under the longitudinal pumping condition of 937 nm semiconductor laser, the characteristics of acousto-optic Q-switched pulsed laser in Yb doped rare earth calcium oxyborate X-cut Yb:YLuGdCOB crystal are studied by using a flat concave resonator. Under the condition that the optimal output transmittance of the resonator T = 50%, a stable acousto-optic Q-switched pulse operation in the repetition rate range of 1~20 kHz is realized. When PRF = 1 kHz, the maximum pulse energy generated by acousto-optic Q-switching can reach 1 mJ, the maximum peak power generated exceeds 166.00 kW, the laser slope efficiency is 26.6%, and the shortest pulse width is 6.0 ns.

Keywords:Acousto-Optic Q-Switching, Yb Rare Earth Calcium Oxyborate Crystal, Pulsed Laser

Copyright © 2021 by author(s) and beplay安卓登录

This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

1. 引言

以三价镧系稀土离子为激活离子的激光晶体,是常用的激光材料,在中小功率固体激光器中具有广泛的应用。掺Yb稀土钙氧硼酸盐(Yb:ReCOB)晶体为低增益激光介质,受激发射截面很小,晶体的能量储存能力强,具有偏振吸收的特性,优良的热机械性能 [ 1 ] - [ 6 ],适合声光调Q脉冲激光的运转。本文用提拉法生长了Yb:YLuGdCOB晶体,该晶体是掺Yb的含Lu、Y和Gd三种非活性光学离子的稀土钙氧硼酸盐。声光调Q由外加调制信号控制所产生的激光脉冲的重复率,通过声光介质产生的超声衍射来调制激光谐振腔的损耗或Q值,是实现固体激光器脉冲运转的常用的技术途径。声光调Q脉冲激光性质的研究对于Yb离子固体激光器的应用具有重要的意义,由声光调Q产生的脉冲激光运转,重复率一般为几个kHz至几十个kHz [ 7 ] [ 8 ] [ 9 ] [ 10 ]。我们利用简单的平–凹谐振腔,在高功率半导体激光器纵向泵浦的条件下,对Yb:YLuGdCOB晶体的声光调Q脉冲激光特性做了较全面和深入的实验研究。

2. 声光调Q脉冲激光实验装置

与被动调Q相比,关于Yb离子激光材料声光调Q的研究相对较少。本节中,我们将分析和讨论976 nm泵浦下X-切向Yb:YLuGdCOB晶体的声光调Q脉冲激光特性。激光实验中仍使用简单的平凹谐振腔。图1所示为激光实验装置示意图,声光Q开关(AO)超声频率为80 MHz,射频(rf)驱动功率16 W,声光介

图1. 声光调Q激光实验装置示意图

质长度 20 mm ,两个端面镀 1.06 m m 增透膜。谐振腔的凹面输出镜曲率半径R2 = 50 mm,腔长为60 mm。实验中Yb:YLuGdCOB晶体样品和声光Q开关都由温度为10℃的循环水冷却。

为了减小脉冲激光运转中腔内光学元件表面出现光损伤的可能性,提高脉冲激光输出功率水平和获得大的单脉冲能量,声光调Q激光谐振腔的输出耦合透过率T也应当足够高。另外,使用高的谐振腔输出透过率,也有利于抑制声光调Q脉冲激光运转中连续波振荡的产生和多脉冲现象的出现。

3. X-切向Yb:YLuGdCOB晶体的声光调Q脉冲激光实验 3.1. 脉冲激光输出功率随吸收泵浦功率的变化

利用图1所示平凹谐振腔,976 nm半导体激光器纵向泵浦,实验测量了X-切向Yb:YLuGdCOB晶体的声光调Q脉冲激光输出功率随泵浦功率的变化,结果表明X-切向Yb:YLuGdCOB晶体可在输出耦合透过率T = 10%~60%的范围内,实现稳定的声光调Q脉冲激光运转。由实验确定的谐振腔最佳输出透过率为T = 50%,和连续波运转的最佳透过率在T = 5%不同。

在最佳输出透过率T = 50%条件下,Yb:YLuGdCOB晶体能够在脉冲重复率PRF = 0.2~20 kHz的范围内实现稳定的声光调Q激光振荡。图2展示了重复率PRF = 0.2~1 kHz情况下,脉冲输出功率随着吸收泵浦功率的变化关系。为便于比较,图中也给出了T = 50%下的连续波(cw)输出功率,是在声光Q开关留在腔内、但未施加射频驱动功率情况下测得的,以尽量维持激光谐振腔的构型不变。在高重复率PRF = 10~20 kHz的范围内,Yb:YLuGdCOB晶体的声光调Q输出特性的差别很小。一定泵浦功率下产生的脉冲输出功率,略低于连续波输出功率水平。例如,在吸收泵浦功率Pabs = 22.7 W,重复率为20 kHz时,产生的脉冲输出功率为4.7 W,低于连续波输出功率5.3 W;而脉冲激光斜率效率hs = 26.6%,略低于连续波运转的斜率效率28.7%。在PRF = 1 kHz的低重复率条件下,声光调Q阈值泵浦功率Pabs,th = 2.1 W;超过阈值后,脉冲输出功率以hs = 10.0%的斜率效率增加,在泵浦功率Pabs = 13.6 W时单脉冲能量为1 mJ,但是脉冲输出功率Pavr仅为1 W。

图2. X-切向Yb:YLuGdCOB晶体声光调Q脉冲激光输出功率随吸收泵浦功率的变化

应当指出,T = 50%是由实验确定的、实现低重复率下高功率或高能量声光调Q脉冲运转的最佳输出透过率,但脉冲激光效率相对较低,因为远离谐振腔的连续波运转最佳输出透过率T = 5%。当减小谐振腔输出耦合透过率时,脉冲激光效率可获得显著的提升,但却增加了腔内光学元件(激光晶体、声光介质)表面遭受光损伤的可能性 [ 11 ] [ 12 ] [ 13 ] [ 14 ] [ 15 ],实验中观察得到在低输出透过率下得到的最大脉冲输出功率远低于T = 50%。

3.2. 脉冲激光发射谱

利用光谱仪测量X-切向Yb:YLuGdCOB晶体的声光调Q脉冲激光发射谱,实验结果显示,在T = 50%的高输出耦合透过率下,发射谱几乎不随重复率或泵浦功率变化。图3给出了泵浦功率Pabs = 11.9 W下测得的PRF = 5 kHz、10 kHz和20 kHz的激光发射谱,我们看到,声光调Q (1031~1034 nm)的激光波长已非常接近Yb:YLuGdCOB晶体主发射峰(1030.0 nm)的峰值位置。

图3. 吸收泵浦功率Pabs =11.9 W时X-切向Yb:YLuGdCOB晶体声光调Q脉冲激光发射谱

3.3. 脉冲宽度随吸收泵浦功率的变化关系

对于声光调Q脉冲激光运转,脉冲宽度通常随泵浦功率水平的提高而减小,这一特征在高重复率下尤为显著。实验利用示波器测量不同重复率下的脉冲宽度,图4示出了T = 50%下的重复率PRF = 0.2~20 kHz范围内,Yb:YLuGdCOB晶体声光调Q激光脉冲宽度随泵浦功率的变化情况。在PRF = 20 kHz的高重复率下,随着泵浦功率自阈值开始增加,脉冲宽度从259 ns逐渐地缩短至21 ns (Pabs = 22.7 W);而在PRF = 1 kHz的低重复率下,脉冲宽度仅在Pabs < ~ 5.5 W的低泵浦功率区域有所减小,高功率下近似地

图4. T = 50%时,X-切向Yb:YLuGdCOB晶体声光调Q脉冲宽度随吸收泵浦功率的变化

保持不变,其值约为6.0 ns (Pabs = 13.6 W)。对于PRF = 5 kHz,阈值附近的低功率下脉冲宽度随泵浦功率升高而快速地减小;在高泵浦功率区域脉冲宽度也近似地保持不变。

3.4. 激光脉冲波形

图5(a)给出了低重复率PRF = 1 kHz的条件下,由Yb:YLuGdCOB晶体声光调Q获得的最短激光脉冲波形,脉冲宽度为6.08 nm,是在最高泵浦功率Pabs = 13.6 W测得的。图5(b)所示为相应的激光脉冲序列,脉冲幅度涨落不超过10%;与被动调Q情形不同的是,这里的脉冲重复周期是由外加调制信号决定的,不存在可观察到的时间抖动。本文计算了X-切向Yb:YLuGdCOB晶体声光调Q脉冲激光主要参数,如表1所示。这些参数包括最大脉冲输出功率Pavr,脉冲能量Ep,脉冲宽度tp,峰值功率Pp。可以看出在重复率PRF = 1 kHz的条件下,活动最大脉冲能量Ep = 0.996 W,最高峰值功率Pp = 125.00 W。

图5. 泵浦功率Pabs = 11.2 W下测得的声光调Q脉冲轮廓(a)和脉冲序列(b)

Laser parameters of X-cut Yb:YLuGdCOB crystal at different repetition frequencie
PRF (kHz) 0.2 0.5 1.0 2.0 5.0 10.0 20.0
Pavr (W) 0.136 0.400 0.996 1.789 3.062 4.12 4.663
Ep (mJ) 0.680 0.800 0.996 0.894 0.612 0.412 0.233
tp (ns) 8.9 6.4 6.0 6.2 9.2 12.6 21.2
Pp (kW) 76.40 125.00 166.00 144.27 66.57 32.70 11.00

表1. X-切向Yb:YLuGdCOB晶体不同重复频率下的激光参数

4. X-切向Yb:YLuGdCOB晶体的声光调Q脉冲激光特性理论计算

根据准三能级材料主动调Q脉冲激光参数的理论计算公式 [ 11 ] [ 12 ] [ 13 ] [ 14 ] [ 15 ],可由Yb:YLuGdCOB晶体的光谱学参数、晶体样品参数、谐振腔和泵浦光束参数等出发,计算给定重复频率下的声光调Q脉冲激光输出特性、脉冲能量和脉冲宽度等。所需要的参数值在表2中列出。

Parameters used in the theoretical calculation of acousto-optic Q-switched pulsed laser characteristics of X-cut Yb:YLuGdCOB crysta
参数 数值
激光发射波长ll (nm) 1030
受激发射截面sem (10− 20 cm 2) 1.62
共振吸收截面sabs (10− 20 cm 2) 0.12
晶体荧光寿命tf (ms) 0.93
Yb离子浓度Nt ( 1020 cm −3) 6.23
晶体样品长度l (cm) 0.50
谐振腔光学长度Le (cm) 12.6
泵浦光斑半径wp (cm) 0.01
激光模半径wl (cm) 0.007
谐振腔输出透过率T 0.5
谐振腔杂散损耗Li 0.02
激光光子能量hnl (10−19 J) 1.94
泵浦光子能量hnp (10−19 J) 2.13

表2. X-切向Yb:YLuGdCOB晶体声光调Q脉冲激光特性理论计算过程中所用到的参数

在平面波(或平均场)近似下,理论计算所需的两个中间量,泵浦速率Rp和激光介质内有效模体积Va,可按下面的公式计算 [ 16 ] [ 17 ]:

R p = 1 h v p P abs π w p 2 l (1)

V a = π w l 2 l (2)

对重复率PRF = 1, 2, 5, 10, 30 kHz,泵浦功率Pabs = 10.8 W的条件下,声光调Q脉冲能量和脉冲宽度做了理论计算。表3给出了计算值和测量值的比较。表中Ep,cal和Ep,exp分别为脉冲能量的计算值和测量值;而tp,cal和tp,exp分别为脉冲宽度的计算值和测量值。我们看到,不同重复率下,脉冲能量的理论计算结果与实验测量值符合得相当好;但对于脉冲宽度,理论计算与实验测量之间却存在着很大差异,这在低重复率下尤为显著。这一问题的根源在于,我们的理论计算是基于平面波或平均场近似,其中假定激光介质内反转粒子数密度N和光子数f都具有均匀的横向空间分布(即与(r, q)或(x, y)无关)。这一假设,对于主动调Q激光脉冲能量理论计算的影响很小,但却会给脉冲宽度的计算带来很大的误差 [ 17 ]。

Comparison between calculated and measured values of Yb:YLuGdCOB acousto-optic Q-switched pulse energy and pulse width at different repetition rate
PRF (kHz) 1.0 2.0 5.0 10.0 30.0
Ni (1020 cm−3) 1.82 1.21 0.74 0.59 0.49
Nf ( 1020 cm −3) 0.04 0.11 0.25 0.34 0.41
Ep,cal (mJ) 2.360 1.450 0.638 0.325 0.109
Ep,exp (mJ) 3.100 1.550 0.636 0.337 0.114
tp,cal (ns) 2.8 4.0 8.7 17.2 64.0
tp,exp (ns) 23.9 24.3 24.6 26.0 42.0

表3. 不同重复率下Yb:YLuGdCOB声光调Q脉冲能量和脉冲宽度计算值与测量值的比较

表3中除了脉冲能量和脉冲宽度外,还列出了Ni和Nf的计算值。我们看到,随着重复率降低(泵浦时间tp缩短),激光脉冲开始建立时的反转粒子数密度Ni很快地减小;而脉冲结束时激光介质内剩余的反转粒子数密度Nf则不断增加。当脉冲重复率提高至PRF = 30 kHz时,Ni和Nf的差值已相当小,这意味着激光介质内储存能量的利用率很低。应当指出,高重复率下储能利用率降低,仅表明在主动调Q的一个重复周期内,激光介质反转粒子数的利用率降低,但剩余的反转粒子数或储能并没有损失,而是继续用于后一重复周期内激光脉冲的形成。因此,高重复率条件下储能利用率的降低,对声光调Q脉冲激光效率没有影响。事实上,声光调Q脉冲激光效率通常会随重复率提高而增加。

5. 总结

和被动调Q一样,声光调Q也是固体激光器实现脉冲运转、获得mJ量级(或低于此)脉冲能量的最常用方法。当需要严格的固定重复频率脉冲激光时,声光调Q常是最合适而简单的选择。然而,与被动调Q情形不同的是,Yb离子激光材料的声光调Q的相关研究,无论在广度还是深度上,都难以与被动调Q研究相比拟。

我们在937 nm半导体激光器纵向泵浦条件下,利用平凹谐振腔,对掺Yb稀土钙氧硼酸盐晶体Yb:YLuGdCOB的声光调Q脉冲激光特性做了较为深入的研究,确定了不同晶体能够实现稳定声光调Q的脉冲重复率范围,实现了高效率的脉冲激光运转,获得了近1 mJ的单脉冲能量,所产生的最大峰值功率超过166.00 kW。对于X-切向Yb:YLuGdCOB晶体,高能量声光调Q的最佳谐振腔输出透过率为T = 50%。在这一输出透过率下,可实现1~20 kHz重复率范围内稳定的声光调Q脉冲运转。在PRF = 1 kHz的重复率下限,声光调Q产生的最大脉冲能量可达1 mJ,最短脉冲宽度为6.0 ns,而激光斜率效率为26.6%。根据准三能级材料主动调Q脉冲激光参数的理论计算公式,利用Yb:YLuGdCOB晶体的光谱学参数、晶体样品参数、谐振腔和泵浦光束参数,计算出了给定重复频率下的声光调Q脉冲能量和脉冲宽度。

文章引用

刘芬芬,刘存海. X-切向Yb:YLuGdCOB晶体的声光调Q脉冲激光性质Properties of Acousto-Optic Q-Switched Pulsed Laser of X-Cut Yb:YLuGdCOB Crystal[J]. 材料科学, 2021, 11(09): 959-966. https://doi.org/10.12677/MS.2021.119111

参考文献 References Aron, A., Aka, G., Viana, B., Kahn-Harari, A., Vivien, D., Druon, F., Balembois, F., Georges, P., Brun, A., Lenain, N. and Jacquet, M. (2001) Spectroscopic Properties and Laser Performances of Yb:YCOB and Potential of the Yb:LaCOB Material. Optical Materials, 16, 181-188.
https://doi.org/10.1016/S0925-3467(00)00075-6
Liu, F., Dong, L., Chen, J. and Liu, J. (2021) Spectroscopic and Lasing Properties of a Mix (Yb, Y, Lu, Gd) Calcium Oxyborate Crystal: Yb0.19Y0.34Lu0.12Gd0.35Ca4O(BO3)3. Journal of Luminescence, 232, Article ID: 117789.
https://doi.org/10.1016/j.jlumin.2020.117789
Druon, F., Augé, F., Balembois, F., Georges, P., Brun, A., Aron, A., Mougel, F., Aka, G. and Vivien, D. (2000) Efficient, Tunable, Zero-Line Diode-Pumped, Continuous-Wave Yb3+:Ca4LnO(BO3)3 (Ln = Gd, Y) Lasers at Room Temperature and Application to Miniature Lasers. Journal of the Op-tical Society of America B, 17, 18-22.
https://doi.org/10.1364/JOSAB.17.000018
Shah, L., Ye, Q., Eichenholz, J.M., Hammons, D.A., Richardson, M., Chai, B.H.T. and Peale, R.E. (1999) Laser Tunability in Yb3+:YCa4O(BO3)3 (Yb:YCOB). Optics Communications, 167, 149-153.
https://doi.org/10.1016/S0030-4018(99)00293-X
Valentine, G.J., Kemp, A.J., Birkin, D.J.L., Burns, D., Balembois, F., Georges, P., Bernas, H., Aron, A., Aka, G., Sibbett, W., Brun, A., Dawson, M.D. and Bente, E. (2000) Femtosecond Yb: YCOB Laser Pumped by Narrow-Stripe Laser Diode and Passively Modelocked Using Ion Implanted Saturable-Absorber Mirror. Electronics Letters, 36, 1621-1623.
https://doi.org/10.1049/el:20001141
Druon, F., Balembois, F., Georges, P., Brun, A., Coujaud, A., Hön-ninger, C., Salin, F., Aron, A., Mougel, F., Aka, G. and Vivien, D. (2000) 90-fs Pulse Generation from a Mode-Locked Diode-Pumped Yb3+:Ca4GdO(BO3)3 Laser. Optics Letters, 25, 423-425.
https://doi.org/10.1364/OL.25.000423
Yubing, T., Huiming, T., Jiying, P. and HongYi, L. (2008) LD-Pumped Actively Q-Switched Yb:YAG Laser with an Acoustic-Optical Modulator. Laser Physics, 18, 12-14.
https://doi.org/10.1134/S1054660X08010027
Dong, L., Liu, F., Chen, J. and Liu, J. (2021) Highly Efficient Continuous-Wave and Passively Q-Switched Yb:YLuGdCOB Compact Lasers. Optics Express, 29, 1838-1850.
https://doi.org/10.1364/OE.415451
Liu, J., Dai, Q., Han, W., Wang, S., Yu, H. and Zhang, H. (2013) Ac-tively Q-Switched Compact Yb:YSGG Laser Generating 3.1 mJ of Pulse Energy. Optics Letters, 38, 3788-3791.
https://doi.org/10.1364/OL.38.003788
Liu, J., Chen, X., Han, W., Dai, Q., Wu, K. and Zhang, H. (2013) Generation of 2.6-mJ 400-kW Pulses from a Compact Yb:Gd3Ga5O12 Laser Repetitively Q-Switched by an Acous-to-Optic Modulator. Optics Express, 21, 26605-26611.
https://doi.org/10.1364/OE.21.026605
刘宗华, 郑义. LD泵浦被动调Q-Yb3+: YAG微晶片激光器的优化设计[J]. 发光学报, 2013, 34(9): 1219-1226.
https://doi.org/10.3788/fgxb20133409.1219
卢意. 掺稀土离子硼酸镧氧钙晶体的生长和光谱特性[D]: [硕士学位论文]. 福州: 中国科学院福建物质结构研究所, 2013. Zhong, D., Teng, B., Kong, W., Ji, S., Zhang, S., Li, J., Cao, L., Jing, H. and He, L. (2017) Growth, Structure, Spectroscopic and Continuous-Wave Laser Properties of a New Yb: GdYCOB Crystal. Journal of Alloys and Compounds, 692, 413-419.
https://doi.org/10.1016/j.jallcom.2016.09.021
刘芬芬, 曹枢旋, 刘均海. 掺Yb稀土钙氧硼酸盐晶体激光器研究进展[J]. 激光与光电子学进展, 2020, 57(7): 070004.
https://doi.org/10.3788/LOP57.070004
Zhang, Y., Lin, Z., Hu, Z. and Wang, G. (2005) Growth and Spectroscopic Properties of Yb3+: Gd0.5Y0.5Ca4O(BO3)3 Crystal. Journal of Alloys and Compounds, 390, 194-196.
https://doi.org/10.1016/j.jallcom.2004.07.058
Yakshin, M.A., Prasad, C.R., Schwemmer, G., Banta, M. and Hwang, I.H. (2011) Compact, Diode-Pumped Yb:YAG Laser with Combination Acousto-Optic and Passive Q-Switch for LIDAR Applications. 2011 Conference Showcases Lasers & Electro-Optics Innovation, From Breakthrough Scientific Research to State of the Art Commercial Applications, Balti-more, 1-6 May 2011, Paper No. JWA46.
https://doi.org/10.1364/CLEO_AT.2011.JWA46
Koechner, W. and Bass, M. (2003) Solid-State Lasers: A Graduate Text. Springer, New York.
https://doi.org/10.1007/b97423
Baidu
map