目的:为了探索3D打印微孔聚醚醚酮/纳米羟基磷灰石生物材料颅脑修复的功能。方法:基于3D金属打印技术结合聚醚醚酮材料制备构建具有微孔结构聚醚醚酮,通过悬浮涂层和熔融结合技术在微孔聚醚醚酮表面制备出具有生物活性的纳米羟基磷灰石(nano-hydroxyapatite)生物陶瓷涂层,并植入7例患者颅骨缺损处,根据术后影像学来分析颅骨的修复情况。结果:制造出骨骼内部的微仿生结构,孔隙支持细胞穿过和代谢物流通,并为种植细胞提供优良的微环境,以利于其的黏附、增殖及分化。结论:3D打印微孔聚醚醚酮/纳米羟基磷灰石生物材料能做到更好的颅脑修复。 Objective: To explore the function of 3D printed microporous polyetheretherketone (PEEK)/nano- hydroxyapatite (nHA) biomaterials for brain repair. Methods: PEEK with microporous structure was prepared based on 3D metal printing technology and PEEK material. nHA bioceramics coating with biological activity was prepared on the surface of microporous polyether ether by suspension coat-ing and melting bonding technology, and implanted it into the 7 patients skull defect, according to the postoperative imaging to analyze the skull repair. Results: The microbiomimetic structure in-side the bone is produced. The pores support the passage of cells and the circulation of metabolites, and provide an excellent micro environment for the adhesion, proliferation and differentiation of the implanted cells. Conclusion: 3D printed microporous PEEK/nHA biomaterials can achieve better cranial repair.
3D打印,聚醚醚酮,纳米羟基磷灰石,颅脑修复, 3D Printing
PEEK
Nano-Hydroxyapatite
Cerebral Repair
摘要
School of Basic Medicine, Chengdu University, Chengdu Sichuan
Received: Apr. 18th, 2022; accepted: May 13th, 2022; published: May 20th, 2022
ABSTRACT
Objective: To explore the function of 3D printed microporous polyetheretherketone (PEEK)/nano-hydroxyapatite (nHA) biomaterials for brain repair. Methods: PEEK with microporous structure was prepared based on 3D metal printing technology and PEEK material. nHA bioceramics coating with biological activity was prepared on the surface of microporous polyether ether by suspension coating and melting bonding technology, and implanted it into the 7 patients skull defect, according to the postoperative imaging to analyze the skull repair. Results: The microbiomimetic structure inside the bone is produced. The pores support the passage of cells and the circulation of metabolites, and provide an excellent micro environment for the adhesion, proliferation and differentiation of the implanted cells. Conclusion: 3D printed microporous PEEK/nHA biomaterials can achieve better cranial repair.
参考文献References
Dujovng, M., Femandez, P., Alperin, N., et al. (1997) Post-Cranioplasty Cerebrospinal Fluid Hydrodynamic Changes: Magnetic Resonance Imaging Quantitative Analysis. Neurological Research, 19, 311-316.
https://doi.org/10.1080/01616412.1997.11740818
Shah, A.M., Jung, H. and Skirboll, S. (2014) Materials Used in Cranioplasty: A History and Analysis. Neurosurgical Focus, 36, E19.
https://doi.org/10.3171/2014.2.FOCUS13561
Aydin, S., Kucukyuruk, B., Abuzayed, B., et al. (2011) Cranio-plasty: Review of Materials and Techniques. Journal of Neurosciences in Rural Practice, 2, 162-167.
https://doi.org/10.4103/0976-3147.83584
Goutam, M., Giriyapura, C., Mishra, S.K., et al. (2014) Titanium Allergy: A Literature Review. Indian Journal of Dermatology, 59, 630.
https://doi.org/10.4103/0019-5154.143526
Najeeb, S., Zafar, M.S., Khurshid, Z., et al. (2016) Applications of Polyetheretherketone (PEEK) in Oral Implantology and Prosthodontics. Journal of Prosthodontic Research, 60, 12-19.
Lethaus, B., Safi, Y., ter Laak-Poort, M., et al. (2012) Cranioplasty with Customized Titanium and PEEK Implants in a Mechanical Stress Model. Neurotrauma, 29, 1077-1083.
https://doi.org/10.1089/neu.2011.1794
Wang, H., Xu, M., Zhang, W., et al. (2010) Mechanical and Biological Characteristics of Diamond-Like Carbon Coated Poly-Aryl-Ether-Ether-Ketone. Biomaterials, 31, 8181-8187.
https://doi.org/10.1016/j.biomaterials.2010.07.054
El Halabi, F., Rodriguez, J.F., Rebolledo, L., et al. (2011) Mechanical Characterization and Numerical Simulation of Polyether-Ether-Ketone (PEEK) Cranial Implants. Journal of the Mechanical Behavior of Biomedical Materials, 4, 1819- 1832.
https://doi.org/10.1016/j.jmbbm.2011.05.039
钟鸣谷, 古机泳, 张伟明, 栾中钦, 彭逸龙, 董家军. 聚醚醚酮材料在颅骨缺损修补术中的应用效果研究[J]. 实用心脑肺血管病杂志, 2021, 29(3): 110-113.
Camarini, E.T., Tomeh, J.K., Dias, R.R., et al. (2011) Reconstruc-tion of Frontal Bone Using Specific Implant Polyether-Etherketone. Journal of Craniofacial Surgery, 22, 2205-2207.
https://doi.org/10.1097/SCS.0b013e3182326f2c
Marbacher, S. andereggen, L., Fandino, J., et al. (2011) Combined Bone and Soft-Tissue Augmentation Surgery in Tempororbital Contour Reconstruction. Journal of Craniofa-cial Surgery, 22, 266-268.
https://doi.org/10.1097/SCS.0b013e3181f7b781
Rosenthal, G., Ng, I., Moscovici, S., et al. (2014) Polyether-etherketone Implants for the Repair of Large Cranial Defects: A 3 Center Experience. Neurosurgery, 75, 523-529.
https://doi.org/10.1227/NEU.0000000000000477
王国良, 公方知, 刘金龙, 等. 聚醚醚酮在颅骨缺损个体化重建手术中的应用[J]. 中国微侵袭神经外科杂志, 2013, 18(10): 456-458.
张峰. 聚醚醚酮和钛网材料修补颅骨缺损远期效果及不良事件的差异: 前瞻性、单中心、非随机对照、2年随访临床试验方案[J]. 中国组织工程研究, 2021, 25(34): 5501-5505.
Zheng, Y., Xiong, C., Li, X., et al. (2014) Covalent Attachment of Cell-Adhesive Peptide Gly-Arg-Gly-Asp (GRGD) to Poly(etheretherketone) Surface by Tailored Silanization Layers Technique. Applied Surface Science, 320, 93-101.
https://doi.org/10.1016/j.apsusc.2014.09.091
Zhao, Y., Wong, H.M., Wang, W., et al. (2013) Cytocompatibil-ity, Osseointegration, and Bioactivity of Three-Dimen- sional Porous and Nanostructured Network on Polyetherether-ketone. Biomaterials, 34, 9264-9277.
https://doi.org/10.1016/j.biomaterials.2013.08.071
Ma, R. and Tang, T. (2014) Current Strategies to Improve the Bioactivity of PEEK. International Journal of Molecular Sciences, 15, 5426-5445.
https://doi.org/10.3390/ijms15045426
Kurtz, S.M. (2011) PEEK Biomaterials Handbook. Elsevier, Amster-dam.
胡章咏, 刘志, 董守勋, 刘奇. PPEK材料的人工颅骨多点成型工艺参数优化[J]. 机械设计与制造, 2021(11): 292-296.
https://doi.org/10.19356/j.cnki.1001-3997.2021.11.065
Roth, E.A., Xu, T., Das, M., et al. (2004) Inkjet Printing for High-Throughput Cell Patterning. Biomaterials, 25, 3707- 3715.
https://doi.org/10.1016/j.biomaterials.2003.10.052
Seol, Y.J., Kang, H.W., Lee, S.J., et al. (2014) Bioprinting Technology and Its Applications. The European Journal of Cardio-Thoracic Surgery, 46, 342-348.
https://doi.org/10.1093/ejcts/ezu148
李会兵, 李永事, 李锐祥, 杨宝应. 3D打印引导聚醚醚酮在儿童颅骨缺损的应用[J]. 中国微侵袭神经外科杂志, 2021, 26(6): 272-273.
Murphy, S.V. and Atala, A. (2014) 3D Bi-oprinting of Tissues and Organs. Nature Biotechnology, 32, 773-785.
https://doi.org/10.1038/nbt.2958
Ferlin, K.M., Prendergast, M.E., Miller, M.L., et al. (2016) Influence of 3D Printed Porous Architecture on Mesenchymal Stem Cell Enrichment and Differentiation. Acta Biomaterialia, 32, 161-169.
https://doi.org/10.1016/j.actbio.2016.01.007
Inzana, J.A., Olvera, D., Fuller, S.M., et al. (2014) 3D Printing of Composite Calcium Phosphate and Collagen Scaffolds for Bone Regeneration. Biomaterials, 35, 4026-4034.
https://doi.org/10.1016/j.biomaterials.2014.01.064
中华神经外科学会神经创伤专业组, 中华创伤学会神经损伤专业组, 中国神经外科医师协会神经创伤专家委员会. 创伤性颅骨缺损成形术中国专家共识[J]. 中华神经外科杂志, 2016, 32(8): 767-770.
吴水华, 陈朝晖, 范双石, 等. 个性化聚醚醚酮植入物在儿童颅骨修补术中的临床应用及分析[J/CD]. 中华神经创伤外科电子杂志, 2021, 7(4): 252-255.
Kim, M.M., Boahene, K.D. and Byren, P.J. (2009) Use of Customized Polyether-Ether-Ketone (PEEK) Implants in the Reconstruction of Complex Maxillofacial Defects. Archives of Facial Plastic Surgery, 11, 53-57.
https://doi.org/10.1001/archfaci.11.1.53
Wu, X.L., Zhou, M.L., Jiang, F., Yin, S., Lin, S.H., Yang, G.Z., Lu, Y.Z., Zhang, W.J. and Jiang, X.Q. (2021) Marginal Sealing around Integral Bilayer Scaffolds for Repairing Osteochon-dral Defects Based on Photocurable Silk Hydrogels. Bioactive Materials, 6, 3976-3986.
https://doi.org/10.1016/j.bioactmat.2021.04.005