在国家快速、大力发展新能源的政策和乡村经济振兴的背景下现代乡村的配电网开始出现越来越多的新能源分布式电源和新能源汽车充电负荷接入的现象。在此背景下,老的配电网拓展规划模型可能不再适用。本文先对新能源汽车充电负荷模型进行了分析和近似处理,之后构建了配电网规划模型与目标函数,并通过不同树分别与理想中最优树比较选择出实际最优方案。最后采用33节点系统进行了案例计算。 Under the background of China’s rapid and vigorous new energy policy and rural economic revitalization, more and more new energy distributed power sources and new energy vehicle charging load access appear in modern rural distribution network. In this context, the old distribution network expansion planning model may not be applicable. In this paper, the charging load model of new energy vehicles is analyzed and approximately processed, and then the distribution network planning model and objective function are constructed. The actual optimal scheme is selected by comparing different trees with the optimal tree in the ideal. Finally, a 33-node system is used for case calculation.
在国家快速、大力发展新能源的政策和乡村经济振兴的背景下现代乡村的配电网开始出现越来越多的新能源分布式电源和新能源汽车充电负荷接入的现象。在此背景下,老的配电网拓展规划模型可能不再适用。本文先对新能源汽车充电负荷模型进行了分析和近似处理,之后构建了配电网规划模型与目标函数,并通过不同树分别与理想中最优树比较选择出实际最优方案。最后采用33节点系统进行了案例计算。
新能源汽车,分布式电源,配电网
Jiahui Zhang1,2, Renwei Zhang2, Yu Han2
1Tiangong University, Tianjin
2Tianjin State Grid Tianjin Electric Power Company, Tianjin
Received: May 7th, 2022; accepted: Jun. 8th, 2022; published: Jun. 15th, 2022
Under the background of China’s rapid and vigorous new energy policy and rural economic revitalization, more and more new energy distributed power sources and new energy vehicle charging load access appear in modern rural distribution network. In this context, the old distribution network expansion planning model may not be applicable. In this paper, the charging load model of new energy vehicles is analyzed and approximately processed, and then the distribution network planning model and objective function are constructed. The actual optimal scheme is selected by comparing different trees with the optimal tree in the ideal. Finally, a 33-node system is used for case calculation.
Keywords:New Energy Vehicles, Distributed Power Supply, Power Distribution Network
Copyright © 2022 by author(s) and beplay安卓登录
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/
在发展新能源电源和乡村振兴的政策背景下,乡村配电网中接入了大量分布式新能源电源和充电汽车,然而分布式电源发电的随机性和波动性 [
目前,对于分布式电源大量接入配电网规划的研究,因农村的住宅一般以平房为主,有着大量的屋顶资源可以利用且风力资源丰富,在近年来国家对太能发电、风能的补贴下,农村的太阳能、风能井喷式发展 [
近年来,针对电动汽车对于规划问题影响的研究,由于乡村振兴政策,农村收入、充电条件、出行需求相符合,电费对比汽油价格相对便宜,同时家家户户独门独院,充电条件便利,同时出行需求一般为村内或村与村通行,通行距离短。对于电动汽车充电模式以及接入电网影响的研究是保障配网规划模型稳定的基础,文献 [
且现阶段研究配电网拓展规划,较多的模型考虑了分布式电源或新能源汽车接入的一种,较少有模型同时考虑了分布式电源以及新能源的情况 [
本文中的配电网规划中考虑了分布式电源、电动汽车、主动管理措施对配电网扩建的影响。尤其是需要注意夜间的负荷模型,因为新能源车的充电多在夜间进行,与传统负荷曲线有所不同。在建模过程中,对于扩建新线路采用最小生成树方法,在电压、潮流、容量等方面设置约束,同时考虑模型的可靠性和经济性。可靠性指标以停电次数进行量化;经济性则考虑了新建投资、维护费用、运行损耗等指标。最终通过IEEE33节点系统验证了模型的有效性。
分布式电源和负荷的模型数据是根据不同时刻的历史数据,对其进行概率特征的提取,对比由确定公式的经验概率生成的数据更具实际参考意义。其中因为乡村电动汽车的充电方式一般为常规充电模式,即所谓的慢充模式。该种方式的充电曲线采用恒流–恒压的传统充电模式对电动车进行充电,此种充电方式在特性上和电池的固有特性基本一致,避免了电池发生欠充和过充,减少了对电池的损害。图1为恒流–恒压充电曲线。
图1. 恒流–恒压充电曲线
常规充电模式的充电电流较小,一般为0.1~0.3库伦,因为充电电流较小,所以充电时间也较长,一般为8~10小时不等。由图2可知,常规充电的开始和结束阶段相对于整个充电过程所占比例很小,可以忽略,大部分的充电过程可近似为恒功率充电。图2为实际–简化恒功率充电曲线。
图2. 实际–简化恒功率充电曲线
假设某电动汽车充电功率为 P 1 ,其电池的起始荷电状态为 X 1 , X 1 服从正态分布 N ( μ 1 , σ 1 ) ,则此辆电动车的充电时间如公式1.1所示
T 1 = E 1 P 1 (1.1)
式中 E 1 为此车电池待充电量,计算方法如公式1.2所示
E 1 = ( 1 − X 1 ) C (1.2)
式中C为此车电池标称电量。
采用蒙特卡罗法随机抽取汽车电池的起始荷电 X 1 ,即可求出 E 1 。设定汽车的充电开始时间为t,则可得到该车的充电负荷曲线。假设某一乡村内有电动汽车N辆,累加乡村内所有电动汽车的充电曲线则可得充电模型L。在选取开始充电时间t时,考虑到对传统负荷曲线起到“填谷”的作用,所以将汽车充电时段安排在负荷曲线上滑动平均值最小的时段。图3为电动汽车充电模型计算流程。
图3. 电动汽车充电模型计算流程
本文构建了主动管理措施、约束经济成本、供电可靠性的量化目标函数。主动管理措施在制定恢复供电路径时,需要全面考虑新拓扑结构下下系统运行的约束,包括电压约束、潮流约束、容量约束等其它约束条件,需保证恢复供电的策略是可靠的,并且以停电次数最少为目标。
{ V i min ≤ V i , ω ≤ V i max ∀ i ∈ Θ n V b = 1 b ∈ Θ n b I i j min ≤ I i j , ω line ≤ I i j max ∀ i j ∈ Θ line (2.1)
式中: Θ n 为包括原系统与待建网络的所有节点集合; Θ n b 为平衡节点; V i min 为节点i的电压下限; V i max 为节点i的电压上限; V b 为平衡节点电压值; V i , ω 为节点i在场景 ω 下的实际运行电压值; I i j , ω line 为线路ij在场景 ω 下的实际运行电流值。
{ c r L _ P i , ω L , p r ≤ P i , ω L ≤ P i , ω L , p r ∀ i ∈ Θ L , c u t c r L _ Q i , ω L , p r ≤ Q i , ω L ≤ Q i , ω L , p r ∀ i ∈ Θ L , c u t c r p h _ P i , ω p h , p r ≤ P i , ω p h ≤ P i , ω p h , p r ∀ i ∈ Θ p h c r w _ P i , ω w , p r ≤ P i , ω w ≤ P i , ω w , p r ∀ i ∈ Θ w c r w _ Q i , ω w , p r ≤ Q i , ω w ≤ Q i , ω w , p r ∀ i ∈ Θ w (2.2)
式中: Θ L , c u t 为参与主动管理措施的负荷点集合; c r L _ 为负荷切除的下限比例; c r p h _ 为光伏切除的下限比例; c r w _ 为风电功率切除的下限比例。
{ ∑ k : ( j , k ) ∈ Θ line P j k , ω = ∑ i : ( i , j ) ∈ Θ line ( P i j , ω − r line , i j P i j , ω 2 + Q i j , ω 2 V i , ω 2 ) − P j , ω L + P j , ω s s + P j , ω p h + P j , ω w ∑ k : ( j , k ) ∈ Θ line Q j k , ω = ∑ i : ( i , j ) ∈ Θ line ( Q i j , ω − x line , i j P i j , ω 2 + Q i j , ω 2 V i 2 ) − Q j , ω L + Q j , ω s s + Q j , ω p h + Q j , ω w + Q j , ω s v c I i j , ω 2 = ( P i j , ω 2 + Q i j , ω 2 ) / V i , ω 2 ∀ j ∈ Θ n V j , ω 2 = V i , ω 2 − 2 ( r line , i j P i j , ω + x line , i j Q i j , ω ) + ( r line, i j 2 + x line , i j 2 ) ( P i j , ω 2 + Q i j , ω 2 ) V i , ω 2 ∀ j ∈ Θ n \ Θ OLTC V j , ω 2 = V i , ω 2 λ i , ω − 2 ( r line , i j P i j , ω + x line , i j Q i j , ω ) + ( r line , i j 2 + x line , i j 2 ) ( P i j , ω 2 + Q i j , ω 2 ) V i , ω 2 ∀ j ∈ Θ OLTC (2.3)
式中: k : ( j , k ) ∈ Θ line 表示末节点为k的支路集合; i : ( i , j ) ∈ Θ line 表示首节点为i的支路集合; λ i , ω 为连接OLTC节点在场景下的变比; Q i j , ω 为线路ij场景 ω 下的无功功率。
供电可靠性以停电次数最少为目标,具体目标函数表达式为:
min ∑ ω π ω ∑ i j ∈ U x i j l i n e F i j ( ω ) (2.4)
式中: x i j line 为线路是否新建的决策变量, F i j ( ω ) 为线路ij故障后系统在场景 ω 下的停电次数。
由式(2.4)可知,停电次数越少则该指标越优。
经济成本包括新建投资、维护费用、运行损耗。每个网架树在场景 ω 下的总费用 C k 目标函数为:
C k ( ω ) = C I , k + C M , k + ∑ t = 1 T C R , k ( ω ) (2.5)
式中: C I , k 为网架树 ϒ k 的投资费用; C M , k 为网架树 ϒ k 的维护费用; C R , k 为网架树 ϒ k 的运行损耗费用;T为总规划年限。
由式(2.5)可知,总费用数额越小则该指标越优。
在本文中,对于任一概率下,所有网架树均有对应的权重值。取不同概率下不同网架树的权重值最小的值构成理想网架树,计算得出与理想网架树正弦互熵最小的网架树即为最优网架优树。图4为理想树构成示意图。
图4. 理想树构成示意图
在本文中取供电可靠性与每个树总费用为权重值1与权重值2,与分布概率组成三维坐标系,由此对不同树与理想树的指标进行判别衡量。
使用IEEE33节点算例对本文模型及算法进行验证,见图5。算例网络结构、分布式电源安装信息、待建负荷节点、支路信息如表图、表所示。分布式电源类型为太阳能、风能发电,采用的风力强度、光照强度数据来自实际的风力发电站和光伏发电站。
功率基准值取10 MVA,电压基准值取12.66 kV。节点电压约束条件标幺值为0.95~1.05。分布式电源渗透为0.4。运行阶段的投资费用、维护费用、运行费用、等费用相关信息见表1。
图5. 33节点系统图
投资费用 | |||
---|---|---|---|
设备 | 容量(MW) | 价格 | 单位 |
新建线路 | 0.1 | 130,000 | ¥/km |
新建光伏 | 0.2 | 110,000 | ¥/MW |
新建风电 | 0.15 | 120,000 | ¥/MW |
新建变电站 | 5 | 3,900,000 | ¥/MW |
维护费用 | |||
线路 | 3000 | ¥/(km*year) | |
变电站 | 13,000 | ¥/(MW*year) | |
分布式电源 | 4000 | ¥/(MW*year) | |
运行费用 | |||
配电网 | 3200 | ¥/MW | |
分布式电源 | 3200 | ¥/MW | |
变电站网损 | 4000 | ¥/MW | |
线路网损 | 4000 | ¥/MW | |
主动管理措施费用 | |||
弃风 | 12,000 | ¥/MW | |
弃光 | 12,000 | ¥/MW | |
丢负荷 | 3000 | ¥/MW |
表1. 费用清单
本程序在Matlab R2016a环境下基于CPLEX算法包进行计算,系统硬件环境为i5-3337U CPU 1.8 GHz,4 GB内存,操作系统为Win8 64bit。
经程序计算后输出所有网架树与理想网架树的供电可靠性权重、供电经济性权重以及分布概率的三维分布图,如图6所示。
图6. 所有树与理想树三维分布图
图7. 供电可靠性权重和供电经济性权重的二维投影
理想网架树用红色标出,综合最优网架树用绿色标出,经济最优网架树用黄色标出,可靠性最优网架树用金色标出。本文计算程序同时输出了供电可靠性权重和供电经济性权重的二维投影,如图7所示。概率分布越靠近左边,系统的可靠性越高,年停电次数越少;概率分布越靠近左边,综合成本越低。
理想网格树的概率分布在最左边因此,它具有最佳的经济性和可靠性,可以作为衡量最优规划方案的基准。网格树的分布函数越接近理想的树分布函数,相应的规划方案就越好。计算各网架树与理想网架树权重概率分布的正弦互熵,以此比较实际网架树分布与理想网架树的接近程度。
张佳辉,张仁伟,韩 彧. 考虑分布式电源及新能源汽车的配电网拓展规划Consider the Distribution Network Expansion Planning of Distributed Power Supply and New Energy Vehicles[J]. 电气工程, 2022, 10(02): 103-111. https://doi.org/10.12677/JEE.2022.102012
https://doi.org/10.1051/e3sconf/202125601018
https://doi.org/10.1007/978-981-10-7986-3_9