表面等离子共振(SPR)技术是一种新型光学分析技术,可以实时、无标记检测分子间相互作用。该技术不仅可以直接反映分子结合的动态过程,还能够得到具体的速率常数及解离常数,被广泛用于分析蛋白之间结合活性。如何高效地完成基于表面等离子共振技术的方法开发及数据分析是研究人员面临的重要问题,本文围绕缓冲液的筛选、固定配体策略的选择、分析物条件的优化、再生条件的筛选等方面,综述了基于SPR技术分析蛋白之间结合活性的方法开发策略。 Surface plasmon resonance (SPR) technology is a novel optical analysis technique that enables real-time, label-free detection of intermolecular interactions. This technique can not only directly reflect the dynamic process of molecular binding, but also obtain specific rate constants and dissociation constants, and is widely used to analyze the binding activity between proteins. How to efficiently complete the method development and data analysis based on surface plasmon resonance technology is an important problem faced by researchers. In this paper, the method development strategies for analyzing the binding activity between proteins based on SPR technology were reviewed in terms of buffer screening, selection of immobilized ligand strategies, optimization of analyte conditions, and screening of regeneration conditions.
表面等离子共振,结合活性,方法开发, Surface Plasmon Resonance
Binding Activity
Method Development
摘要
Surface plasmon resonance (SPR) technology is a novel optical analysis technique that enables real-time, label-free detection of intermolecular interactions. This technique can not only directly reflect the dynamic process of molecular binding, but also obtain specific rate constants and dissociation constants, and is widely used to analyze the binding activity between proteins. How to efficiently complete the method development and data analysis based on surface plasmon resonance technology is an important problem faced by researchers. In this paper, the method development strategies for analyzing the binding activity between proteins based on SPR technology were reviewed in terms of buffer screening, selection of immobilized ligand strategies, optimization of analyte conditions, and screening of regeneration conditions.
Keywords:Surface Plasmon Resonance, Binding Activity, Method Development
通常情况下,蛋白之间结合活性分析实验的缓冲液选择含吐温20的磷酸盐缓冲液或者HBS-EP (配方为0.01 M HEPES,0.15 M NaCl,3 mM EDTA,,0.005% P20)。当实验中非特异性结合值较高时,可通过调整缓冲液pH、盐浓度和表面活性剂的比例有效降低实验中的非特异性结合。因此在方法开发前,需要对缓冲液进行筛选。非特异性结合指分析物与芯片表面的结合,可能由于分析物与芯片表面存在静电作用或者疏水作用 [
9
]。
陈莹莹. 基于表面等离子共振技术分析蛋白之间结合活性的方法开发策略Method Development Strategies for Analysis of Binding Activity between Proteins Based on Surface Plasmon Resonance Technology[J]. 分析化学进展, 2022, 12(03): 178-184. https://doi.org/10.12677/AAC.2022.123023
参考文献References
王静, 王倩, 宋书香. 表面等离子共振技术在药物研发领域的应用进展[J]. 中国药学(英文版), 2020, 29(7): 504-513.
王鸣人, 段徐华, 邵泓, 陈钢. 表面等离子共振(SPR)技术在生物药物质量控制中的应用前景[J]. 中国药师, 2020, 23(11): 2257-2260.
O’connell, N. (2021) Protein Ligand Interactions Using Surface Plasmon Resonance. In: Cacace, A.M., Hickey, C.M. and Békés, M., Eds., Targeted Protein Degradation, Vol. 2365, Humana, New York, 3-20. https://doi.org/10.1007/978-1-0716-1665-9_1
Láng, J.A., Balogh, Z.C., Nyitrai, M.F., Juhász, C., Gilicze, A.K.B., Iliás, A., et al. (2020) In Vitro Functional Characterization of Biosimilar Therapeutic Antibodies. Drug Discovery Today: Technologies, 37, 41-50. https://doi.org/10.1016/j.ddtec.2020.11.010
Jason-Moller, L., Murphy, M. and Bruno, J. (2006) Overview of Biacore Systems and Their Applications. Current Protocols in Protein Science, 45, 19.13.1-19.13.14. https://doi.org/10.1002/0471140864.ps1913s45
Olaru, A., Bala, C., Jaffrezic-Renault, N. and Aboul-Enein, H.Y. (2015) Surface Plasmon Resonance (SPR) Biosensors in Pharmaceutical Analysis. Critical Reviews in Analytical Chemistry, 45, 97-105. https://doi.org/10.1080/10408347.2014.881250
刘芳芳. SPR传感检测细胞表面分子相互作用的方法研究[D]: [博士学位论文]. 北京: 清华大学, 2010.
江丽. 增强的新型表面等离子体共振传感器及其应用[D]: [博士学位论文]. 杭州: 浙江大学, 2018.
Forest-Nault, C., Gaudreault, J., Henry, O., Durocher, Y. and De Crescenzo, G. (2021) On the Use of Surface Plasmon Resonance Biosensing to Understand IgG-FcγR Interactions. International Journal of Molecular Sciences, 22, Article No. 6616. https://doi.org/10.3390/ijms22126616
Rich, R.L. and Myszka, D.G. (2008) Survey of the Year 2007 Commercial Optical Biosensor Literature. Journal of Molecular Recognition, 21, 355-400. https://doi.org/10.1002/jmr.928
Jovic, M. and Cymer, F. (2019) Qualification of a Surface Plasmon Resonance Assay to Determine Binding of IgG- Type Antibodies to Complement Component C1q. Biologicals, 61, 76-79. https://doi.org/10.1016/j.biologicals.2019.08.004
De Weers, M., Tai, Y.T., Van Der Veer, M.S., Bakker, J.M., Vink, T., Jacobs, D.C.H., et al. (2011) Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors. The Journal of Immunology, 186, 1840-1848. https://doi.org/10.4049/jimmunol.1003032
Patel, R., Neill, A., Liu, H. and Andrien, B. (2015) IgG Subclass Specificity to C1q Determined by Surface Plasmon Resonance Using Protein L Capture Technique. Analytical Biochemistry, 479, 15-17. https://doi.org/10.1016/j.ab.2015.03.012
Dekkers, G., Treffers, L., Plomp, R., Bentlage, A.E.H., de Boer, M. and Koeleman, C.A.M. (2017) Decoding the Human Immunoglobulin G-Glycan Repertoire Reveals a Spectrum of Fc-Receptor- and Complement-Mediated-Effector Activities. Frontiers in Immunology, 8, Article No. 877. https://doi.org/10.3389/fimmu.2017.00877
Li, T., Dilillo, D.J., Bournazos, S., Giddens, J.P., Ravetch, J.V. and Wang, L.X. (2017) Modulating IgG Effector Function by Fc Glycan Engineering. Proceedings of the National Academy of Sciences of the United States of America, 114, 3485-3490. https://doi.org/10.1073/pnas.1702173114
Hayes, J.M., Frostell, A., Cosgrave, E.F., Struwe, W.B., Potter, O., Davey, G.P., et al. (2014) Fc Gamma Receptor Glycosylation Modulates the Binding of IgG Glycoforms: A Requirement for Stable Antibody Interactions. Journal of Proteome Research, 13, 5471-5485. https://doi.org/10.1021/pr500414q
Abdiche, Y.N., Yeung, Y.A., Chaparro-Riggers, J., Barman, I., Strop, P., Chin, S.M., et al. (2015) The Neonatal Fc Receptor (FcRn) Binds Independently to Both Sites of the IgG Homodimer with Identical Affinity. mAbs, 7, 331-343. https://doi.org/10.1080/19420862.2015.1008353
Dorion-Thibaudeau, J., Raymond, C., Lattová, E., Perreault, H., Durocher, Y. and De Crescenzo, G. (2014) Towards the Development of a Surface Plasmon Resonance Assay to Evaluate the Glycosylation Pattern of Monoclonal Antibodies Using the Extracellular Domains of CD16a and CD64. Journal of Immunological Methods, 408, 24-34. https://doi.org/10.1016/j.jim.2014.04.010
Cambay, F., Henry, O., Durocher, Y. and De Crescenzo, G. (2019) Impact of N-Glycosylation on Fcγ Receptor/IgG Interactions: Unravelling Differences with an Enhanced Surface Plasmon Resonance Biosensor Assay Based on Coiled- Coil Interactions. mAbs, 11, 435-452. https://doi.org/10.1080/19420862.2019.1581017
Biacore (2016) Biacore Sensor Surface Handbook. 1st Edition, Biacore, Uppsala, 13-16.
Drake, A.W., Tang, M.L., Papalia, G.A., Landes, G., Haak-Frendscho, M. and Klakamp, S.L. (2012) Biacore Surface Matrix Effects on the Binding Kinetics and Affinity of an Antigen/Antibody Complex. Analytical Biochemistry, 429, 58-69. https://doi.org/10.1016/j.ab.2012.06.024
Douzi, B. (2017) Protein-Protein Interactions: Surface Plasmon Resonance. In: Journet, L. and Cascales, E., Eds., Bacterial Protein Secretion Systems, Humana Press, New York, 257-275. https://doi.org/10.1007/978-1-4939-7033-9_21
Knowling, S., Clark, J., Sjuts, H. and Abdiche, Y.N. (2020) Direct Comparison of Label-Free Biosensor Binding Kinetics Obtained on the Biacore 8K and the Carterra LSA. SLAS Discovery, 25, 977-984. https://doi.org/10.1177/2472555220934814
Schasfoort, R.B. (2017) Handbook of Surface Plasmon Resonance. Royal Society of Chemistry, London.
王晓骏. 磺胺类药物表面等离子共振免疫传感检测研究[D]: [硕士学位论文]. 天津: 天津科技大学, 2015.
Abdiche, Y.N., Malashock, D.S. and Pons, J. (2008) Probing the Binding Mechanism and Affinity of Tanezumab, a Recombinant Humanized Anti-NGF Monoclonal Antibody, Using a Repertoire of Biosensors. Protein Science, 17, 1326-1335. https://doi.org/10.1110/ps.035402.108