酰胺作为广泛存在于自然界与药物分子中的含氮化合物,在工业,医药,农药等领域发挥了重要作用。因此,酰胺反应的研究逐渐受到合成化学家的广泛关注。文献调研后,本文对无金属条件下的酰胺脱水反应和无金属条件下的酰胺脱水重排反应进行了总结和探讨,并对该脱水反应的发展做出展望。 Amides are widely existing in nature, and drug molecules play an important role in the industry, medicine, pesticides and other fields. Therefore, the study of amides has gradually attracted the attention of synthetic chemists. After a literature review, this paper summarizes and discusses the dehydration and rearrangement of amides under metal-free conditions and looks forward to the development of this dehydration reaction.
Amides are widely existing in nature, and drug molecules play an important role in the industry, medicine, pesticides and other fields. Therefore, the study of amides has gradually attracted the attention of synthetic chemists. After a literature review, this paper summarizes and discusses the dehydration and rearrangement of amides under metal-free conditions and looks forward to the development of this dehydration reaction.
张宗卫. 无金属条件下的酰胺脱水反应Dehydration of Amides under Nonmetallic Conditions[J]. 有机化学研究, 2022, 10(03): 111-117. https://doi.org/10.12677/JOCR.2022.103011
参考文献References
Jagadeesh, R.V., Junge, H. and Beller, M. (2014) Green Synthesis of Nitriles Using Non-Noble Metal Oxides-Based Nanocatalysts. Nature Communications, 5, Article No. 4123.
https://doi.org/10.1038/ncomms5123
Hanada, S., Motoyama Y. and Nagashima, H. (2008) Hydrosilanes Are Not Always Reducing Agents for Carbonyl Compounds but Can Also Induce Dehydration: A Ruthenium-Catalyzed Conversion of Primary Amides to Nitriles. European Journal of Organic Chemistry, 2008, 4097-4100.
https://doi.org/10.1002/ejoc.200800523
Zhou, S., Addis, D., Das, S., Junge, K. and Beller, M. (2009) New Catalytic Properties of Iron Complexes: Dehydration of Amides to Nitriles. Chemical Communications, 32, 4883-4885.
https://doi.org/10.1039/b910145d
Elangovan, S., Quintero-Duque, S., Dorcet, V., Roisnel, T., Norel, L., Darcel C. and Sortais, J.B. (2015) Knölker-Type Iron Complexes Bearing an N-Heterocyclic Carbene Ligand: Synthesis, Characterization, and Catalytic Dehydration of Primary Amides. Organometallics, 34, 4521-4528.
https://doi.org/10.1021/acs.organomet.5b00553
Yao, W., Fang, H., He, Q., Peng, D., Liu G. and Huang, Z. (2019) A BEt3-Base Catalyst for Amide Reduction with Silane. The Journal of Organic Chemistry, 84, 6084-6093.
https://doi.org/10.1021/acs.joc.9b00277
Enthaler S. and Inoue, S. (2012) An Efficient Zinc-Catalyzed Dehydration of Primary Amides to Nitriles. Chemistry - An Asian Journal, 7, 169-175.
https://doi.org/10.1002/asia.201100493
Xue, B., Sun, H., Wang, Y., Zheng, T., Li, X., Fuhr O. and Fenske, D. (2016) Efficient Reductive Dehydration of Primary Amides to Nitriles Catalyzed by Hydrido Thiophenolato Iron(II) Complexes under Hydrosilation Conditions. Catalysis Communications, 86, 148-150.
https://doi.org/10.1016/j.catcom.2016.08.024
Enthaler, S. (2011) Straightforward Uranium-Catalyzed Dehydration of Primary Amides to Nitriles. Chemistry, 17, 9316-9319.
https://doi.org/10.1002/chem.201101478
Enthaler S. and Weidauer, M. (2011) Copper-Catalyzed Dehydration of Primary Amides to Nitriles. Catalysis Letters, 141, 1079-1085.
https://doi.org/10.1007/s10562-011-0660-9
Sueoka, S., Mitsudome, T., Mizugaki, T., Jitsukawa K. and Kaneda, K. (2010) Supported Monomeric Vanadium Catalyst for Dehydration of Amides to Form Nitriles. Chemical Communications, 46, 8243-8245.
https://doi.org/10.1039/c0cc02412k
Bézier, D., Venkanna, G. T., Sortais J.B. and Darcel, C. (2011) Well-Defined Cyclopentadienyl NHC Iron Complex as the Catalyst for Efficient Hydrosilylation of Amides to Amines and Nitriles. ChemCatChem, 3, 1747-1750.
https://doi.org/10.1002/cctc.201100202
Liu, R.Y., Bae, M. and Buchwald, S.L. (2018) Mechanistic Insight Facilitates Discovery of a Mild and Efficient Copper-Catalyzed Dehydration of Primary Amides to Nitriles Using Hydrosilanes. Journal of the American Chemical Society, 140, 1627-1631.
https://doi.org/10.1021/jacs.8b00643
Titherley, A.W. (1904) CLXIX.—The Acylation of Amides. Journal of the Chemical Society, Transactions, 85, 1673-1691.
https://doi.org/10.1039/CT9048501673
Mitchell, J. and Ashby, C.E. (1945) The Determination of Unsubstituted Acid Amides1. Journal of the American Chemical Society, 67, 161-164.
https://doi.org/10.1021/ja01218a003
Thompson, Q.E. (1951) Preparation and Identification of N-Formylbenzamide and its Condensation Product with Phenylhydrazine. Journal of the American Chemical Society, 73, 5914-5915.
https://doi.org/10.1021/ja01156a560
Stephens, C.R., Bianco, E.J. and Pilgrim, F.J. (1955) A New Reagent for Dehydrating Primary Amides under Mild Conditions. Journal of the American Chemical Society, 77, 1701-1702.
https://doi.org/10.1021/ja01611a102
Dennis, W.E. (1970) Nitrile Synthesis. Dehydration of Amides by Silazanes, Chlorosilanes, Alkoxysilanes, and Aminosilanes. The Journal of Organic Chemistry, 35, 3253-3255.
https://doi.org/10.1021/jo00835a016
Campagna, F., Carotti A. and Casini, G. (1977) A Convenient Synthesis of Nitriles from Primary Amides under Mild Conditions. Tetrahedron Letters, 18, 1813-1815.
https://doi.org/10.1016/S0040-4039(01)83612-1
Kuo, C.W., Zhu, J.L., Wu, J.D., Chu, C.M., Yao C.F. and Shia, K.S. (2007) A Convenient New Procedure for Converting Primary Amides into Nitriles. Chemical Communications, No. 3, 301-303.
https://doi.org/10.1039/B614061K
Rappai, J.P., Karthikeyan, J., Prathapan, S. and Unnikrishnan, P.A. (2011) Simple and Efficient One-Pot Synthesis of Nitriles from Amides and Oximes Using in Situ-Generated Burgess-Type Reagent. Synthetic Communications, 41, 2601-2606.
https://doi.org/10.1080/00397911.2010.515333
Heck, M.P., Wagner, A. and Mioskowski, C. (1996) Conversion of Primary Amides to Nitriles by Aldehyde-Catalyzed Water Transfer. The Journal of Organic Chemistry, 61, 6486-6487.
https://doi.org/10.1021/jo961128v
Zhou, S., Junge, K., Addis, D., Das, S. and Beller, M. (2009) A General and Convenient Catalytic Synthesis of Nitriles from Amides and Silanes. Organic Letters, 11, 2461-2464.
https://doi.org/10.1021/ol900716q
Shipilovskikh, S.A., Vaganov, V.Y., Denisova, E.I., Rubtsov, A.E. and Malkov, A.V. (2018) Dehydration of Amides to Nitriles under Conditions of a Catalytic Appel Reaction. Organic Letters, 20, 728-731.
https://doi.org/10.1021/acs.orglett.7b03862
Ding, R., Liu, Y., Han, M., Jiao, W., Li, J. Tian, H. and Sun, B. (2018) Synthesis of Nitriles from Primary Amides or Aldoximes under Conditions of a Catalytic Swern Oxidation. The Journal of Organic Chemistry, 83, 12939-12944.
https://doi.org/10.1021/acs.joc.8b02190
Hota, P.K., Maji, S., Ahmed, J., Rajendran, N.M. and Mandal, S.K. (2020) NHC-Catalyzed Silylative Dehydration of Primary Amides to Nitriles at Room Temperature. Chemical Communications, 56, 575-578.
https://doi.org/10.1039/C9CC08413D
Brannock, K.C. and Burpitt, R.D. (1965) The Preparation of 4-Pentenenitriles and 3,4-Pentadienenitriles from N-(2-Alkenyl)- and N-(2-Alkynyl)Amides. The Journal of Organic Chemistry, 30, 2564-2565.
https://doi.org/10.1021/jo01019a016
Tsunoda, T., Sakai, M., Sasaki, O., Sako, Y., Hondo Y. and Itô, S. (1992) Asymmetric Induction in Aza-Claisen Rearrangement of Carboxamide Enolates. Effect of Chiral Auxiliary on Nitrogen. Tetrahedron Letters, 33, 1651-1654.
https://doi.org/10.1016/S0040-4039(00)91698-8
Blechert, S. (1989) The Hetero-Cope Rearrangement in Organic Synthesis. Synthesis, 89, 71-82.
https://doi.org/10.1055/s-1989-27158
Ziegler, F.E. (1977) Stereo- and Regiochemistry of the Claisen Rearrangement: Applications to Natural Products Synthesis. Accounts of Chemical Research, 10, 227-232.
https://doi.org/10.1021/ar50114a006
Walters, M.A., McDonough, C.S., Brown P.S. and Hoem, A.B. (1991) An Extremely Mild 3-Aza-Claisen Reaction. 1. Rearrangement of Simple N-Allylamides. Tetrahedron Letters, 32, 179-182.
https://doi.org/10.1016/0040-4039(91)80848-Z
Walters, M.A, Hoem, A.B., Arcand, H.R., Hegeman, A.D. and McDonough, C.S. (1993) An Extremely Mild 3-Aza-Claisen Reaction. 2. New Conditions and the Rearrangement of α-Heteroatom Substituted Amides. Tetrahedron Letters, 34, 1453-1456.
https://doi.org/10.1016/S0040-4039(00)60316-7
Walters, M.A. (1994) Ab Initio Investigation of Three 3-Aza-Claisen Variations. Journal of the American Chemical Society, 116, 11618-11619.
https://doi.org/10.1021/ja00104a072