通过对德州市秋冬季大气二次颗粒物(SPM)污染变化特征进行分析,发现在PM 2.5重污染发生时,硝酸盐在PM 2.5中的占比显著升高,而有机碳(OC)占比降低,凸显了氮氧化物削减对PM 2.5污染防控的重要性;此外,对二次有机碳(SOC)进行分析,发现SOC/OC值随K +/EC (元素碳)值的升高而增加,说明生物质燃烧对二次气溶胶(SOA)生成有一定的贡献;进一步特征分析,发现SOC/OC值随着风速的增加而增加;结合玫瑰图分析,发现区域传输对SOC有一定贡献,并且高大气光化学氧化剂(O x)或高相对湿度(RH)条件不利于SOC生成,但是高温和高RH条件有利于二次无机盐(包括硫酸盐和硝酸盐)的生成。 In this study, the change characteristics of the atmospheric secondary particulate matter (SPM) pollution in Dezhou city during autumn and winter were analyzed. It is found that the proportion of nitrate in PM 2.5 increased significantly when PM 2.5 level was high, but the proportion of organic carbon (OC) decreased. The result highlights the importance of controlling nitrogen oxide emission to reduce high PM 2.5 episodes. In addition, the analysis of the secondary organic carbon (SOC) showed that the SOC/OC ratio increased with the increase of K +/EC (elemental carbon), indicating that biomass burning has a certain contribution to the formation of secondary aerosols (SOA). It is also found that SOC/OC increased with the increase of wind speed. Combined with wind-rose dia-gram analysis, it implies that regional transport has a certain contribution to SOC. Further analysis showed that high O x or high RH conditions were unfavorable for SOC formation. In contrast, high temperature and high RH conditions were favorable for the formation of secondary inorganic salts (including sulfate and nitrate).
二次颗粒物,化学组分,污染特征,秋冬季, Secondary Particulate Matter
Chemical Composition
Pollution Characteristics
Autumn and Winter
摘要
In this study, the change characteristics of the atmospheric secondary particulate matter (SPM) pollution in Dezhou city during autumn and winter were analyzed. It is found that the proportion of nitrate in PM2.5 increased significantly when PM2.5 level was high, but the proportion of organic carbon (OC) decreased. The result highlights the importance of controlling nitrogen oxide emission to reduce high PM2.5 episodes. In addition, the analysis of the secondary organic carbon (SOC) showed that the SOC/OC ratio increased with the increase of K+/EC (elemental carbon), indicating that biomass burning has a certain contribution to the formation of secondary aerosols (SOA). It is also found that SOC/OC increased with the increase of wind speed. Combined with wind-rose diagram analysis, it implies that regional transport has a certain contribution to SOC. Further analysis showed that high Ox or high RH conditions were unfavorable for SOC formation. In contrast, high temperature and high RH conditions were favorable for the formation of secondary inorganic salts (including sulfate and nitrate).
Keywords:Secondary Particulate Matter, Chemical Composition, Pollution Characteristics, Autumn and Winter
SOR (硫的氧化速率)和NOR (氮的氧化速率)一般用来表征SO2和NO2在大气中被氧化的程度,是二次无机盐气体前体物二次转化的重要指标 [
40
]。
S O R = [ n s s _ S O 4 2 − ] / 96 [ n s s _ S O 4 2 − ] / 96 + [ S O 2 ] / 64 (3)
N O R = [ N O 3 − ] / 62 [ N O 3 − ] / 62 + [ N O 2 ] / 46 (4)
式中[
]表示摩尔浓度, [ n s s _ S O 4 2 − ] 代表 SO 4 2 − 中非海盐成分,可以通过这两个公式算得: [ n s s _ S O 4 2 − ] = [ S O 4 2 − ] − [ s s _ S O 4 2 − ] , [ s s _ S O 4 2 − ] = 0. 25 × [ N a + ] 。NOR和SOR的值越高,说明NO2和SO2向 NO 3 − 和 SO 4 2 − 的转化几率就越大,二次无机盐的生成越活跃。
左敬友,罗德耀,汤 梅. 德州市秋冬季大气二次颗粒物污染变化特征The Change Characterization of Atmospheric Secondary Particulate Matter Pollution during Autumn and Winter in Dezhou City[J]. 环境保护前沿, 2022, 12(05): 1056-1065. https://doi.org/10.12677/AEP.2022.125131
参考文献References
王跃思, 姚利, 刘子锐, 等. 京津冀大气霾污染及控制策略思考[J]. 中国科学院院刊, 2013, 28(3): 353-363.
吴兑, 吴晓京, 李菲, 等. 1951-2005年中国大陆霾的时空变化[J]. 气象学报, 2010, 68(5): 680-688.
白志鹏, 蔡斌彬, 董海燕, 等. 灰霾的健康效应[J]. 环境污染与防治, 2006, 28(3): 198-201.
刘帅, 宋国君. 城市PM2.5健康损害评估研究[J]. 环境科学学报, 2016, 36(4): 1468-1476.
丁一汇, 李巧萍, 柳艳菊, 等. 空气污染与气候变化[J]. 气象, 2009, 35(3): 3-14+129.
Kang, S., Zhang, Q., Zhang, Y., et al. (2022) Warming and Thawing in the Mt. Everest Region: A Review of Climate and Environmental Changes. Earth-Science Reviews, 225, Article ID: 103911.
https://doi.org/10.1016/j.earscirev.2021.103911
Zhai, S., Jacob, D.J., Wang, X., et al. (2019) Fine Particulate Matter (PM2.5) Trends in China, 2013-2018: Separating Contributions from Anthropogenic Emissions and Meteorology. Atmospheric Chemistry and Physics, 19, 11031-11041.
https://doi.org/10.5194/acp-19-11031-2019
Zhang, Q., Zheng, Y., Tong, D., et al. (2019) Drivers of Improved PM2.5 Air Quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences, 116, 24463-24469.
https://doi.org/10.1073/pnas.1907956116
Chu, B., Ma, Q., Liu, J., et al. (2020) Air Pollutant Correlations in China: Secondary Air Pollutant Responses to NOx and SO2 Control. Environmental Science & Technology Letters, 7, 695-700.
https://doi.org/10.1021/acs.estlett.0c00403
Lu, X., Zhang, S., Xing, J., et al. (2020) Progress of Air Pollution Control in China and Its Challenges and Opportunities in the Ecological Civilization Era. Engineering, 6, 1423-1431.
https://doi.org/10.1016/j.eng.2020.03.014
Ding, A., Huang, X., Nie, W., et al. (2019) Significant Reduction of PM2.5 in Eastern China Due to Regional-Scale Emission Control: Evidence from SORPES in 2011-2018. Atmospheric Chemistry and Physics, 19, 11791-11801.
https://doi.org/10.5194/acp-19-11791-2019
Liu, X.G., Li, J., Qu, Y., et al. (2013) Formation and Evolution Mechanism of Regional Haze: A Case Study in the Megacity Beijing, China. Atmospheric Chemistry and Physics, 13, 4501-4514.
https://doi.org/10.5194/acp-13-4501-2013
Zhang, Z., Zhang, X., Gong, D., et al. (2016) Possible Influence of Atmospheric Circulations on Winter Haze Pollution in the Beijing-Tianjin-Hebei Region, Northern China. Atmospheric Chemistry and Physics, 16, 561-571.
https://doi.org/10.5194/acp-16-561-2016
Huang, R., Wang, Y., Cao, J., et al. (2019) Primary Emissions versus Secondary Formation of Fine Particulate Matter in the Most Polluted City (Shijiazhuang) in North China. At-mospheric Chemistry and Physics, 19, 2283-2298.
https://doi.org/10.5194/acp-19-2283-2019
An, Z., Huang, R., Zhang, R., et al. (2019) Severe Haze in North-ern China: A Synergy of Anthropogenic Emissions and Atmospheric Processes. Proceedings of the National Academy of Sciences, 116, 8657-8666.
https://doi.org/10.1073/pnas.1900125116
郝建奇, 葛宝珠, 王自发, 等. 2013年京津冀重污染特征及其气象条件分析[J]. 环境科学学报, 2017, 37(8): 3032-3043.
石琳琳, 李令军, 王新辉, 等. 北京市秋冬大气污染传输特征遥感研究[J]. 环境科学学报, 2018, 38(10): 3834-3845.
钤伟妙, 张艳品, 陈静, 等. 石家庄大气污染物输送通道及污染源区研究[J]. 环境科学学报, 2018, 38(9): 3438-3448.
Dao, X., Lin, Y., Cao, F., et al. (2019) Introduction to the National Aerosol Chemical Composition Monitoring Network of China: Objectives, Current Status, and Outlook. Bulletin of the American Meteorological Society, 100, ES337-ES351.
Ji, D., Gao, M., Maenhaut, W., et al. (2019) The Carbonaceous Aerosol Levels Still Remain a Challenge in the Beijing-Tianjin-Hebei Region of China: Insights from Continuous High Temporal Resolution Measurements in Multiple Cities. Environment International, 126, 171-183.
https://doi.org/10.1016/j.envint.2019.02.034
Sun, Y., Du, W., Fu, P., et al. (2016) Primary and Secondary Aerosols in Beijing in Winter: Sources, Variations and Processes. Atmospheric Chemistry and Physics, 16, 8309-8329.
https://doi.org/10.5194/acp-16-8309-2016
Xu, H., Xiao, Z., Chen, K., et al. (2019) Spatial and Temporal Distribution, Chemical Characteristics, and Sources of Ambient Particulate Matter in the Beijing-Tianjin-Hebei Region. Science of the Total Environment, 658, 280-293.
https://doi.org/10.1016/j.scitotenv.2018.12.164
刘盈盈, 殷宝辉, 王静, 等. 济南冬季大气重污染过程颗粒物组分变化特征[J]. 环境化学, 2018, 37(12): 2749-2757.
刘晓迪, 孟静静, 侯战方, 等. 济南市夏、冬季PM2.5中化学组分的季节变化特征及来源解析[J]. 环境科学, 2018, 39(9): 4014-4025.
Sun, Y., Zhou, X. and Wang, W. (2016) Aerosol Size Distributions during Haze Episodes in Winter in Jinan, China. Particuology, 28, 77-85.
https://doi.org/10.1016/j.partic.2015.12.001
陶士康, 张清爽, 安静宇, 等. 基于地基观测及源清单的2017-2019年德州市秋冬季大气污染防治效果评估[J]. 环境科学研究, 2019, 32(10): 1739-1746.
Dao, X., Ji, D., Zhang, X., et al. (2022) Significant Reduction in Atmospheric Organic and Elemental Carbon in PM2.5 in 2+26 Cities in Northern China. Environmental Research, 2022, Article ID: 113055.
https://doi.org/10.1016/j.envres.2022.113055
徐伟召, 朱雯斐, 王甜甜, 等. 冬季德州市大气颗粒物消光与化学组成关系研究[J]. 环境科学学报, 2019, 39(4): 1057-1065.
Millet, D.B. (2005) Atmospheric Volatile Organic Compound Measurements during the Pittsburgh Air Quality Study: Results, Interpretation, and Quantification of Primary and Secondary Contributions. Journal of Geophysical Research, 110, D07S07.
https://doi.org/10.1029/2004JD004601
Wu, C. and Yu, J. (2016) Determination of Primary Combustion Source Organic Carbon-to-Elemental Carbon (OC/ EC) Ratio Using Ambient OC and EC Measurements: Secondary OC-EC Correlation Minimization Method. Atmospheric Chemistry and Physics, 16, 5453-5465.
https://doi.org/10.5194/acp-16-5453-2016
Wu, C., Wu, D. and Yu, J. (2019) Estimation and Uncertainty Analysis of Secondary Organic Carbon Using 1 Year of Hourly Organic and Elemental Carbon Data. Journal of Geo-physical Research: Atmospheres, 124, 2774-2795.
https://doi.org/10.1029/2018JD029290
吴兴贺, 殷耀兵, 谭瑞, 等. 华北区域点冬季二次有机气溶胶特征与影响因素[J]. 环境科学学报, 2020, 40(1): 58-64.
Wang, Y., Chen, Y., Wu, Z., et al. (2020) Mutual Promotion between Aerosol Particle Liquid Water and Particulate Nitrate Enhancement Leads to Severe Nitrate-Dominated Particulate Matter Pollution and Low Visibility. Atmospheric Chemistry and Physics, 20, 2161-2175.
https://doi.org/10.5194/acp-20-2161-2020
Xu, Q., Wang, S., Jiang, J., et al. (2019) Nitrate Dominates the Chemical Composition of PM2.5 during Haze Event in Beijing, China. Science of the Total Environment, 689, 1293-1303.
https://doi.org/10.1016/j.scitotenv.2019.06.294
Li, H., Zhang, Q., Zheng, B., et al. (2018) Nitrate-Driven Urban Haze Pollution during Summertime over the North China Plain. Atmospheric Chemistry and Physics, 18, 5293-5306.
https://doi.org/10.5194/acp-18-5293-2018
Li, H., Cheng, J., Zhang, Q., et al. (2019) Rapid Transition in Winter Aerosol Composition in Beijing from 2014 to 2017: Response to Clean Air Actions. Atmospheric Chemistry and Physics, 19, 11485-11499.
https://doi.org/10.5194/acp-19-11485-2019
Leung, D.M., Shi, H., Zhao, B., et al. (2020) Wintertime Partic-ulate Matter Decrease Buffered by Unfavorable Chemical Processes despite Emissions Reductions in China. Geophysical Research Letters, 47, e2020GL087721.
https://doi.org/10.1029/2020GL087721
Petit, J.E., Favez, O., Albinet, A., et al. (2017) A User-Friendly Tool for Comprehensive Evaluation of the Geographical Origins of Atmospheric Pollution: Wind and Trajectory Analyses. Environmental Modelling & Software, 88, 183-187.
https://doi.org/10.1016/j.envsoft.2016.11.022
Chen, D., Liu, X., Lang, J., et al. (2017) Estimating the Contribution of Regional Transport to PM2.5 Air Pollution in a Rural Area on the North China Plain. Science of the Total Environment, 583, 280-291.
https://doi.org/10.1016/j.scitotenv.2017.01.066
Squizzato, S., Masiol, M., Brunelli, A., et al. (2013) Factors Determining the Formation of Secondary Inorganic Aerosol: A Case Study in the Po Valley (Italy). Atmospheric Chemistry and Physics, 13, 1927-1939.
https://doi.org/10.5194/acp-13-1927-2013
Fan, M., Zhang, Y., Lin, Y., et al. (2020) Changes of Emission Sources to Nitrate Aerosols in Beijing after the Clean Air Actions: Evidence from Dual Isotope Compositions. Journal of Geophysical Research: Atmospheres, 125, e2019JD031998.
https://doi.org/10.1029/2019JD031998