本文采用基于密度泛函理论的第一性原理计算方法,研究了非金属元素B、N和O掺杂对单层PC6的电子结构和磁学性质的影响。本征体系单层PC6是直接带隙半导体,没有磁性。计算结果表明,掺杂非金属元素B、N和O使得单层PC6发生了局域结构畸变。此外,这三种非金属元素掺杂对单层PC6的电学性质产生了影响,使得单层PC6发生了从半导体到导体的转变。更为有趣的是,B和O两种非磁性元素的引入使原本没有磁性的单层PC6具有了磁性。 The first principles calculations method based on density functional theory in this paper is used to study the influence of the doped non-metallic elements B, N and O on the electronic structure and magnetic properties of monolayer PC6. The intrinsic system PC6 is a direct band gap semiconductor without magnetism. The calculation results show that, the introduction of non-metallic elements B, N and O induces local structural distortion in monolayer PC6. In addition, doping these three non-metallic elements has an impact on the electronic properties of monolayer PC6, making the monolayer PC6 change from semiconductor to conductor. More interestingly, the introduction of non-magnetic atoms B and O makes the original non-magnetic monolayer PC6 possess magnetism.
The first principles calculations method based on density functional theory in this paper is used to study the influence of the doped non-metallic elements B, N and O on the electronic structure and magnetic properties of monolayer PC6. The intrinsic system PC6 is a direct band gap semiconductor without magnetism. The calculation results show that, the introduction of non-metallic elements B, N and O induces local structural distortion in monolayer PC6. In addition, doping these three non-metallic elements has an impact on the electronic properties of monolayer PC6, making the monolayer PC6 change from semiconductor to conductor. More interestingly, the introduction of non-magnetic atoms B and O makes the original non-magnetic monolayer PC6 possess magnetism.
Keywords:Monolayer PC6, First-Principles Calculations, Doped, Electronic Properties, Magnetic Properties
高佳喜,刘光华. 掺杂非金属元素B、N和O对单层PC6电学和磁学性质的影响Effects of Doped Non-Metallic Elements B, N and O on Electronic and Magnetic Properties of Monolayer PC6[J]. 现代物理, 2022, 12(06): 146-153. https://doi.org/10.12677/MP.2022.126015
参考文献References
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
https://doi.org/10.1126/science.1102896
Miro, P., Au-diffred, M. and Heine, T. (2014) An Atlas of Two-Dimensional Materials. Chemical Society Reviews, 43, 6537-6554.
https://doi.org/10.1039/C4CS00102H
Komsa, H.P., Kotakoski, J., Kurasch, S., Lehtinen, O., Kaiser, U. and Krasheninnikov, A. (2012) Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Pro-duction and Doping. Physical Review Letters, 109, Article ID: 035503.
https://doi.org/10.1103/PhysRevLett.109.035503
Ma, Z.N., Wang, B., Ou, L.K., Zhang, Y., Zhang, X. and Zhou, Z. (2016) Structure and Properties of Phosphorene- Like IV-VI 2D Materials. Nanotechnology, 27, Article ID: 415203.
https://doi.org/10.1088/0957-4484/27/41/415203
Ni, Z.Y., Liu, Q.H., Tang, K.C., Zheng, J.X., Zhou, J., Qin, R., et al. (2011) Tunable Bandgap in Silicene and Germanene. Nano Letters, 12, 113-118.
https://doi.org/10.1021/nl203065e
Liao, L., Lin, Y.C., Bao, M.Q., Cheng, R., Bai, J.W., Liu, Y., et al. (2010) High-Speed Graphene Transistors with a Self-Aligned Nanowire Gate. Nature, 467, 305-308.
https://doi.org/10.1038/nature09405
Schwierz, F. (2010) Graphene Transistors. Nature Nanotechnology, 5, 487-496.
https://doi.org/10.1038/nnano.2010.89
Cheng, Y.C., Zhu, Z.Y., Mi, W.B., Guo, Z.B. and Schwingenschlogl, U. (2013) Prediction of Two-Dimensional Diluted Magnetic Semiconductors: Doped Monolayer MoS2 Systems. Physical Review B, 87, 100401(R).
https://doi.org/10.1103/PhysRevB.87.100401
Bafekry, A., Faraji, M., Mohamed, M., Fadlallah, A., Khatibani, B., Ziabari, A.A., et al. (2021) Tunable Electronic and Magnetic Properties of MoSi2N4 Monolayer via Vacancy Defects, Atomic Adsorption and Atomic Doping. Applied Surface Science, 559, Article ID: 149862.
https://doi.org/10.1016/j.apsusc.2021.149862
Yu, T., Zhao, Z.Y., Sun, Y.H., Bergara, A., Lin, J.Y., Zhang, S.T., et al. (2019) Two-Dimensional PC6 with Direct Band Gap and Anisotropic Carrier Mobility. Journal of the Ameri-can Chemical Society, 141, 1599-1605.
https://doi.org/10.1021/jacs.8b11350
Dou, K.Y., Ma, Y.D., Zhang, T., Huang B.B. and Dai, Y. (2019) Pre-diction of Two-Dimensional PC6 as a Promisinganode Material for Potassium-Ion Batteries. Physical Chemistry Chemi-cal Physics, 21, 26212-26218.
https://doi.org/10.1039/C9CP05251H
Yu, X.F., Xiao, L. and Li, Y.C. (2020) PC6 Monolayer: A Potential Candidate as NOx Sensor with High Sensitivity and Selectivity. Physica E: Low-Dimensional Systems and Nanostruc-tures, 118, Article ID: 113958.
https://doi.org/10.1016/j.physe.2020.113958
Zhang, J.N., Xu, L.Q., Yang, C., Zhang, X.Y., Ma, L., Zhang, M., et al. (2020) Two-Dimensional Single-Layer PC6 as Promising Anode Materials for Li-Ion Batteries: The First-Principles Calculations Study. Applied Surface Science, 510, Article ID: 145493.
https://doi.org/10.1016/j.apsusc.2020.145493
Fan, K., Ying, Y., Luo, X. and Huang, H. (2020) Monolayer PC5/PC6: Promising Anode Materials for Lithium-Ion Batteries. Physical Chemistry Chemical Physics, 22, 16665-16671.
https://doi.org/10.1039/D0CP01133A
Jiang, Q.L., Meng, Y.N., Li, K., Wang, Y. and Wu, Z.J. (2021) Theo-retical Insights into Bimetallic Atoms Supported on PC6 as Highly Efficient Electrocatalysts for N2 Electroreduction to NH3. Applied Surface Science, 547, Article ID: 149208.
https://doi.org/10.1016/j.apsusc.2021.149208
Du, P.Y., Huang, Y.H., Wang, J.N., Zhu, G.Q., Fei, M., Zhang, J.M., et al. (2021) The Electronic and Optical Properties of PC6/WS2 Heterostructure Modulated via Biaxial Strain and External Electric Field. Surfaces and Interfaces, 24, Article ID: 101100.
https://doi.org/10.1016/j.surfin.2021.101100
Han, S., Wei, X.M., Huang, Y.H., Zhang, J.M., Zhu, G.Q. and Yang, J. (2022) Influence of Strain and External Electric Field on the Performance of PC6/MoSe2 Heterostruc-ture. Electronic Materials, 57, 477-488.
https://doi.org/10.1007/s10853-021-06636-0
Jiang, Q.L., Meng, Y.N., Li, K., Wang, Y. and Wu, Z.J. (2021) Screening Highly Efficient Hetero-Diatomic Doped PC6 Electrocatalysts for Selective Nitrogen Reduction to Ammonia. Journal of the Electrochemical Society, 168, Article ID: 116519.
https://doi.org/10.1149/1945-7111/ac3aba
Du, P.Y., Huang, Y.H., Zhu, G.Q., Ma, F., Zhang, J.M., Wei, X.M., et al. (2021) Nitrogen Reduction Reaction on Single Cluster Catalysts of Defective PC6-Trimeric or Tetrameric Transition Metal. Physical Chemistry Chemical Physics, 24, 2219-2226.
https://doi.org/10.1039/D1CP04926G
王欣, 马玲. 基于密度泛函理论研究的一种新型气体传感材料: Pd掺杂的PC6 [J]. 四川大学学报: 自然科学版, 2022, 59(1): 014001. http://dx.doi.org/10.19907/j.0490-6756.2022.014001
Zhong, M., Zeng, W., Qin, H., Zhu, S.H., Li, X.H., Liu, F.S., et al. (2022) Doping Effects on the Antibonding States and Carriers of Two-Dimensional PC6. Physical Chemistry Chemical Physics, 24, Article ID: 10175.
https://doi.org/10.1039/D2CP00848C
Segall, M.D., Lindan, J.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., et al. (2002) First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, 14, 2717-2744.
https://doi.org/10.1088/0953-8984/14/11/301
Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.
https://doi.org/10.1103/PhysRevLett.77.3865