大鼠肉瘤(rat sarcoma, RAS)是人类癌症中最常发生突变的癌基因,约占所有人类癌症突变的30%。RAS基因与胞内多条控制增殖、分化等生理过程的通路相关。SOS1 (son of sevenless 1)作为RAS信号通路中的中心节点,可通过蛋白–蛋白相互作用激活RAS蛋白,因此SOS1小分子抑制剂为治疗RAS依赖性癌症提供机遇。最近一些文献和专利文件已经证明了其治疗RAS突变驱动型癌症的潜力,通过对SOS1蛋白及其小分子抑制剂进行总结,为其进一步研究和应用提供参考。 Rat sarcoma (RAS) is the most frequently mutated oncogene in human cancer, accounting for approximately 30% of all human cancer mutations. RAS gene is associated with several intracellular pathways which control proliferation, differentiation and other physiological processes. As a central node in RAS signaling pathway, SOS1 (son of sevenless 1) can activate RAS proteins through protein-protein interaction, thus explaining that SOS1 small molecule inhibitors offer an opportunity to treat RAS-dependent cancers. Its potential in the treatment of RAS mutation-driven cancers has been demonstrated in recent literature and patent documents, and the structure and indications of these SOS1 small molecule inhibitors are summarized to provide reference for further research and application.
Rat sarcoma (RAS) is the most frequently mutated oncogene in human cancer, accounting for approximately 30% of all human cancer mutations. RAS gene is associated with several intracellular pathways which control proliferation, differentiation and other physiological processes. As a central node in RAS signaling pathway, SOS1 (son of sevenless 1) can activate RAS proteins through protein-protein interaction, thus explaining that SOS1 small molecule inhibitors offer an opportunity to treat RAS-dependent cancers. Its potential in the treatment of RAS mutation-driven cancers has been demonstrated in recent literature and patent documents, and the structure and indications of these SOS1 small molecule inhibitors are summarized to provide reference for further research and application.
黄景坤,王 卉,朱 雍. 靶向SOS1的抗肿瘤小分子抑制剂研究进展Research Progress of Antitumor Small Molecule Inhibitor Targeting SOS1[J]. 世界肿瘤研究, 2023, 13(02): 97-105. https://doi.org/10.12677/WJCR.2023.132014
参考文献References
Cherfils, J. and Zeghouf, M. (2013) Regulation of Small GTPases by GEFs, GAPs and GDIs. Physiologjcal Reviews, 93, 269-309. https://doi.org/10.1152/physrev.00003.2012
Bos, J.L., Rehmann, H. and Wittinghofer, A. (2007) GEFs and GAPs: Critical Elements in the Control of Small G Proteins. Cell, 129, 865-877. https://doi.org/10.1016/j.cell.2007.05.018
Buday, L. and Downward, J. (2008) Many Faces of Ras Activation. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1786, 178-187. https://doi.org/10.1016/j.bbcan.2008.05.001
Zhang, Z., Gao, R., Hu, Q., Peacock, H., Peacock, D.M., Dai, S., Shokat, K.M. and Suga, H. (2020) GTP-State-Selective Cyclic Peptide Ligands of K-Ras (G12D) Block Its Interaction with Raf. ACS Central Science, 6, 1753-1761. https://doi.org/10.1021/acscentsci.0c00514
Hillig, R.C. and Bader, N. (2022) Chapter Six: Targeting RAS on Cogenesis with SOS1 Inhibitors. In: O’Bryan, J.P. and Piazza, G.A., Eds., Advances in Cancer Research, Vol. 153, Academic Press, Cambridge, 169-203. https://doi.org/10.1016/bs.acr.2021.07.001
Hoang, H.M., Umutesi, H.G. and Heo, J. (2021) Allosteric Autoactivation of SOS and Its Kinetic Mechanism. Small GTPases, 12, 44-59. https://doi.org/10.1080/21541248.2019.1601954
Bandaru, P., Kondo, Y. and Kuriyan, J. (2019) The Interdependent Activation of Son-of-Sevenless and Ras. Cold Spring Harbor Perspectives in Medicine, 9, 1-14. https://doi.org/10.1101/cshperspect.a031534
Lee, Y.K., Low-Nam, S.T., Chung, J.K., Hansen, S.D., Lam, H.Y.M., Alvarez, S. and Groves, J.T. (2017) Mechanism of SOS PR-Domain Autoinhibition Revealed by Single-Molecule Assays on Native Protein from Lysate. Nature Communications, 8, Article No. 15061. https://doi.org/10.1038/ncomms15061
Toma-Fukai, S. and Shimizu, T. (2019) Structural Insights into the Regulation Mechanism of Small GTPases by GEFs. Molecules, 24, Article 3308. https://doi.org/10.3390/molecules24183308
Gureasko, J., Kuchment, O., Makino, D.L., Sondermann, H., Bar-Sagi, D. and Kuriyan, J. (2010) Role of the Histone Domain in the Autoinhibition and Activation of the Ras Activator Son of Sevenless. PNAS, 107, 3430-3405. https://doi.org/10.1073/pnas.0913915107
Zarich, N., Anta, B., Fernandez-Medarde, A., Ballester, A., de Lucas, M.P., Camara, A.B., Anta, B., Oliva, J.L., Rojas-Cabaneros, J.M. and Santos, E. (2019) The CSN3 Subunit of the COP9 Signalo Some Interacts with the HD Region of SOS1 Regulating Stability of this GEF Protein. Oncogenesis, 8, Article No. 2. https://doi.org/10.1038/s41389-018-0111-1
Soisson, S.M., Nimnual A.S., Uy, M., Bar-Sagi, D. and Kuriyan, J. (1998) Crystal Structure of the Dbl and Pleckstrin Homology Domains from the Human Son of Sevenless Protein. Cell, 95, 259-268. https://doi.org/10.1016/S0092-8674(00)81756-0
Gureasko, J., Galush, Boykevisch, W.J., Sondermann, S.H., Bar-Sagi, D., Groves, J.T. andKuriyan, J. (2008) Membrane-Dependent Signal Integration by the Ras Activator Son of Sevenless. Nature Structural & Molecular Biology, 15, 452-461. https://doi.org/10.1038/nsmb.1418
Yadav, K.K. and Bar-Sagi, D. (2010) Allosteric Gating of Son of Sevenless Activity by the Histone Domain. PNAS, 107, 3436-3440. https://doi.org/10.1073/pnas.0914315107
Margarit, S.M., Sondermann, H., Hall, B.E., Nagar, B., Hoelz, A., Pirruccello, M., Bar-Sagi, D. and Kuriyan, J. (2003) Structural Evidence for Feedback Activation by Ras∙GTP of the Ras-Specific Nucleotide Exchange Factor SOS. Cell, 112, 685-695. https://doi.org/10.1016/S0092-8674(03)00149-1
Boriack-Sjodin, P.A., Margarit, S.M., Bar-Sagi, D. and Kuriyan, J. (1998) The Structural Basis of the Activation of Ras by SOS. Nature, 394, 337-343. https://doi.org/10.1038/28548
Hall, B.E., Yang, S.S., Boriack-Sjodin, P.A., Kuriyan, J. and Bar-Sagi, D. (2001) Structure-Based Mutagenesis Reveals Distinct Functions for Ras Switch 1 and Switch 2 in SOS-Catalyzed Guanine Nucleotide Exchange. Journal of Biological Chemistry, 276, 27629-27637. https://doi.org/10.1074/jbc.M101727200
Vo, U., Vajpai, N., Flavell, L., Bobby, R., Breeze, A.L., Embrey, K.J. and Golovanov, A.P. (2016) Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (SOS) Using Site-Specific NMR Reporter Signals and Intrinsic Fluorescence. Journal of Biological Chemistry, 291, 1703-1718. https://doi.org/10.1074/jbc.M115.691238
Freedman, T.S., Sondermann, H., Kuchment, O., Friedland, G.D., Kortemme, T. and Kuriyan, J. (2009) Differences in Flexibility Underlie Functional Differences in the Ras Activators Son of Sevenless and Ras Guanine Nucleotide Releasing Factor 1. Structure, 17, 41-53. https://doi.org/10.1016/j.str.2008.11.004
Sondermann, H., Soisson, S.M., Boykevisch, S., Yang, S.S., Bar-Sagi, D. and Kuriyan, J. (2004) Structural Analysis of Autoinhibition in the Ras Activator Son of Sevenless. Cell, 119, 393-405. https://doi.org/10.1016/j.cell.2004.10.005
Alessi, D.R., Cuenda, A., Cohen, P., Dudley, D.T. and Saltiel, A.R. (1995) PD 098059 Is a Specific Inhibitor of the Activation of Mitogen-Activated Protein Kinase Kinase in Vitro and in Vivo. Journal of Biological Chemistry, 270, 27489-27494. https://doi.org/10.1074/jbc.270.46.27489
Zarich, N., Oliva, J.L., Martinez, N., Jorge, R., Ballester, A., Gutierrez-Eisman, S., Garcia-Vargas, S. and Rojas, J.M. (2006) Grb2 Is a Negative Modulator of the Intrinsic Ras-GEF Activity of HSOS1. Molecular Biology of the Cell, 17, 3591-3597. https://doi.org/10.1091/mbc.e05-12-1104
Corbalán-García, S., Margarit, S.M., Galron,D., Yang, S.S. and Bar-Sagi, D. (1998) Regulation of SOS Activity by Intramolecular Interactions. Molecular and Cellular Biology, 18, 880-886. https://doi.org/10.1128/MCB.18.2.880
Nimnual, A. and Bar-Sagi, D. (2002) The Two Hats of SOS. Science Signaling, 2002, epe36. https://doi.org/10.1126/stke.2002.145.pe36
Rojas, J.M., Oliva, J.L. and Santos, E. (2011) Mammalian Son of Sevenless Guanine Nucleotide Exchange Factors: Old Concepts and New Perspectives. Genes & Cancer, 2, 298-305. https://doi.org/10.1177/1947601911408078
Pierre, S., Bats, A.S. and Coumoul, X. (2011) Understanding SOS (Son of Sevenless). Biochemical Pharmacology, 82, 1049-1056. https://doi.org/10.1016/j.bcp.2011.07.072
Christensen, S.M., Tu, H.-L., Jun, J.E., Alvarez, S., Triplet, M.G., Iwig, J.S., Yadav, K.K., Bar-Sagi, D., Roose, J.P. and Groves, J.T. (2016) One-Way Membrane Trafficking of SOS in Receptor-Triggered Ras Activation. Nature Structural & Molecular Biology, 23, 838-846. https://doi.org/10.1038/nsmb.3275
Ambrogio, C. (2021) ES28.03 Mechanisms of Resistance to KRAS G12C Inhibitors. Journal of Thoracic Oncology, 16, S96. https://doi.org/10.1016/j.jtho.2021.01.062
Corbalan-Garcia, S., Yang, S.S., Degenhardt K.R. and Bar-Sagi D. (1996) Identification of the Mitogen-Activated Protein Kinase Phosphorylation Sites on Human SOS1 that Regulate Interaction with Grb2. Molecular and Cellular Biology, 16, 5674-5682. https://doi.org/10.1128/MCB.16.10.5674
Rozakis-Adcock, M., van der Geer, P., Mbamalu, G. and Pawson, T. (1995) MAP Kinase Phosphorylation of mSos1 Promotes Dissociation of mSos1-Shc and mSos1-EGF Receptor Complexes. Oncogene, 11, 1417-1426.
Thompson, S.K., Buckl, A., Dossetter, A.G., Griffen, E. and Gill, A. (2021) Small Molecule Son of Sevenless 1 (SOS1) Inhibitors: A Review of the Patent Literature. Expert Opinion on Therapeutic Patents, 31, 1189-1204. https://doi.org/10.1080/13543776.2021.1952984
Hillig, R.C., Sautier, B., Schroeder, J., Moosmayer, D., Hilpmann, A., Stegmann, C.M., Werbeck, N.D., Briem, H., Boemer, U., Weiske, J., Badock, V., Mastouri, J., Petersen, K., Siemeister, G., Kahmann, J.D., Wegener, D., Bohnke, N., Eis, K., Graham, K., Wortmann, L., von Nussbaum, F. and Bader, B. (2019) Discovery of Potent SOS1 Inhibitors that Block RAS Activation via Disruption of the RAS-SOS1 Interaction. Proceedings of the National Academy of Sciences of the United States of America, 116, 2551-2560. https://doi.org/10.1073/pnas.1812963116
Liceras-Boillos, P., Jimeno, D., Garcia-Navas, R., Lorenzo-Martin, L.F., Menacho-Marquez, M., Segrelles, C., Gomez, C., Calzada, N., Fuentes-Mateos, R., Paramio, J.M., Bustelo, X.R., Baltanas, F.C. and Santos, E. (2018) Differential Role of the RasGEFs SOS1 and SOS2 in Mouse Skin Homeostasis and Carcinogenesis. Molecular and Cellular Biology, 38, 4538-4551. https://doi.org/10.1128/MCB.00049-18
Hofmann, M.H., Gmachl, M., Ramharter, J., Savarese, F., Gerlach, D., Marszalek, J.R., Sanderson, M.P., Kessler, D., Trapani, F., Arnhof, H., Rumpel, K., Botesteanu, D.A., Ettmayer, P., Gerstberger, T., Kofink, C., Wunberg, T., Zoephel, A., Fu, S.C., Teh, J.L., Bottcher, J., Pototschnig, N., Schachinger, F., Schipany, K., Lieb, S., Vellano, C.P., O’Connell, J.C., Mendes, R.L., Moll, J., Petronczki, M., Heffernan, T.P., Pearson, M., McConnell, D.B. and Kraut, N. (2021) BI-3406, a Potent and Selective SOS1-KRAS Interaction Inhibitor, Is Effective in KRAS-Driven Cancers through Combined MEK Inhibition. Cancer Discovery, 11, 142-157. https://doi.org/10.1158/2159-8290.CD-20-0142
唐春雷, 范懿庆, 范为正, 姜虹羽, 等. 一种取代喹唑啉类化合物、药物组合物及其用途[P]. 中国专利, 115141188. 2022-10-04.
He, H., Zhang, Y., Xu, J., Li, Y., Fang, H., Liu, Y. and Zhang, S. (2022) Discovery of Orally Bioavailable SOS1 Inhibitors for Suppressing KRAS-Driven Carcinoma. Journal of Medicinal Chemistry, 65, 13158-13171. https://doi.org/10.1021/acs.jmedchem.2c00986
Hofmann, M.H., Lu, H., Duenzinger, U., Gerlach, D., Trapani, F., Machado, A.A., Daniele, J.R., Waizenegger, I., Gmachl, M., Rudolph, D., Vellano, C.P., Marotti, M., Vucenovic, V., Heffernan, T.P., Marszalek, J.R., Petronczki, M.P. and Kraut, N. (2021) Abstract CT210: Trial in Process: Phase 1 Studies of BI 1701963, a SOS1: KRAS Inhibitor, in Combination with MEK Inhibitors, Irreversible KRASG12C Inhibitors or Irinotecan. Cancer Reaserch, 81, CT210. https://doi.org/10.1158/1538-7445.AM2021-CT210
Theard, P.L., Sheffels, E., Sealover, N.E., Linke, A.J., Pratico, D.J. and Kortum, R.L. (2020) Marked Synergy by Vertical inhibition of EGFR Signaling in NSCLC Spheroids Shows SOS1 Is a Therapeutic Target in EGFR-Mutated Cancer. eLife, 9, e58204. https://doi.org/10.7554/eLife.58204