人类活动引起大气氮沉降速率增加的问题虽有所改善,但仍影响着森林生态系统的物质循环。模拟施氮对中国森林生态系统化学计量比的影响多集中于植物、土壤和微生物的单一分析,对植物–土壤–微生物碳(C)、氮(N)和磷(P)化学计量特征及其耦合关系的研究较少。本文通过整合先前的研究结果,总结了外源氮输入后植物–土壤–微生物C、N和P化学计量特征的响应,结果发现,低浓度施氮有利于土壤主要养分和微生物量的积累,促进植物和微生物养分的吸收利用,高浓度施氮则相反。但对于C和P元素,则表现出不同的结果,C元素随着外源氮的输入而增加或不发生变化,而P元素则充满不确定性,表现为增加、不变或减少等3种结果,这主要是由于养分元素的限制和环境因素的变化所致。通过本文系统的整合,补充了森林生态系统中植物–土壤–微生物C、N、P化学计量特征耦合领域的知识缺失,可为深入认识和理解未来氮沉降对生态系统生物地球化学循环的影响提供理论依据。
Although the problem of increasing atmospheric nitrogen deposition rate caused by human activities has been improved, it still affects the material cycle of forest ecosystems. The effects of simulated nitrogen application on the stoichiometric ratio of forest ecosystems in China are mostly focused on the single analysis of plants, soil and microorganisms, and there are few studies on the stoichiometric characteristics and coupling relationship of plant-soil-microbial carbon (C), nitrogen (N) and phosphorus (P). In this paper, we summarized the response of plant-soil-microorganism C, N and P stoichiometry characteristics after exogenous nitrogen input by integrating previous research results. The results showed that low concentration of nitrogen application was beneficial to the accumulation of soil main nutrients and microbial biomass, and promoted the absorption and utilization of plant and microbial nutrients, while high concentration of nitrogen application was the opposite. However, for C and P elements, different results are shown. C element increases or does not change with the input of exogenous nitrogen, while P element is full of uncertainty, showing three results of increase, constant or decrease, which is mainly due to the limitation of nutrient elements and the change of environmental factors. Through the systematic integration of this paper, the lack of knowledge in the field of plant-soil-microbial C, N and P stoichiometric characteristics coupling in forest ecosystems is supplemented, which can provide a theoretical basis for further understanding and understanding the impact of nitrogen deposition on ecosystem biogeochemical cycles in the future.
氮沉降,植物–土壤–微生物,化学计量比,森林生态系统, Nitrogen Deposition Plant-Soil-Microorganism Stoichiometric Ratio Forest Ecosystem摘要 - beplay安卓登录
Although the problem of increasing atmospheric nitrogen deposition rate caused by human activities has been improved, it still affects the material cycle of forest ecosystems. The effects of simulated nitrogen application on the stoichiometric ratio of forest ecosystems in China are mostly focused on the single analysis of plants, soil and microorganisms, and there are few studies on the stoichiometric characteristics and coupling relationship of plant-soil-microbial carbon (C), nitrogen (N) and phosphorus (P). In this paper, we summarized the response of plant-soil-microorganism C, N and P stoichiometry characteristics after exogenous nitrogen input by integrating previous research results. The results showed that low concentration of nitrogen application was beneficial to the accumulation of soil main nutrients and microbial biomass, and promoted the absorption and utilization of plant and microbial nutrients, while high concentration of nitrogen application was the opposite. However, for C and P elements, different results are shown. C element increases or does not change with the input of exogenous nitrogen, while P element is full of uncertainty, showing three results of increase, constant or decrease, which is mainly due to the limitation of nutrient elements and the change of environmental factors. Through the systematic integration of this paper, the lack of knowledge in the field of plant-soil-microbial C, N and P stoichiometric characteristics coupling in forest ecosystems is supplemented, which can provide a theoretical basis for further understanding and understanding the impact of nitrogen deposition on ecosystem biogeochemical cycles in the future.
大气氮沉降作为一种自然现象,自地球诞生以来就一直存在,是氮素进入生物圈的重要途径,即沉降方式可分为干沉降,湿沉降和混合沉降3种,干沉降指通过降尘的方式,主要是NO、N2O、NH3和HNO3等气态N化合物和(NH4)2SO4与NH4NO3等颗粒,以及附着在其他粒子上的N;湿沉降通过降水的方式使氮返回陆地和水体,主要由 N H 4 + 和 N O 3 − 以及少量可溶性有机氮组成。而混合沉降则是指两者的混合物。自19世纪后期以来,由于大量含氮化肥的使用和化石燃料的燃烧,人类向大气中排放的含氮气体激增,这些气体通过沉降再次回到陆地和水体生态系统 [10] ,深刻影响着陆地和水生生态系统的物质循环和能量流动。段娜 [11] 等研究表明,2019年全球氮沉降通量已达到103 TgYr−1,预计2050年将达到195 TgYr−1,超过全球氮素临界负荷。尽管中国已成为仅次于欧美的氮沉降区域之一,但局部地区沉降现象日益严重。Zhu [12] 等人基于大气化学传输模型GEOS-Chem,计算了我国大气活性氮干湿沉降在2005~2015年间的年际变化,评估表明,还原氮沉降在2007~2015年间干沉降显著增加,但近年来无显著变化,而氧化氮干湿沉降在2012年前后达到高峰,随着减排等政策的实施,到2030年我国陆地区域氧化氮沉降会降低49%~73%,而还原氮沉降将降低9%~14%。尽管如此,氮沉降仍然是影响局部地区生态系统结构和功能的重要环境因子。
植物从土壤中吸收的营养元素对于氮的输入更为敏感,国内外氮添加的形式多样(尿素、NH4NO3, N H 4 + 态肥、 N O 3 − 态肥),以应对不同的人工模拟试验要求。大量研究证明,外源氮输入增加了土壤N的有效性,促进了土壤元素矿化,使植物将更多的氮素分配到叶片进行酶的合成,运输蛋白质和氨基酸参与光合作用和呼吸等代谢活动 [20] 。王晓光 [21] 等研究发现,土壤C/N是反映土壤N素矿化和有机质累积的标志,当C/N大于25时,土壤有机碳含量相对较高,有机质处于积累过程中。与此不同的是,C/N在12~16时,意味着部分有机碳被土壤微生物分解,矿化过程已经发生。而土壤P元素矿化是由土壤C/P表征的,当C/P较低时,有利于微生物进一步分解有机质释放养分,促进土壤P素的有效性。当C/P较高时,土壤P元素相对较少,在不同程度上制约了微生物对土壤有机质的分解 [8] 。土壤化学计量特征不仅可以表征土壤肥力,还可以为植物养分元素限制的判定做出贡献,间接表明了土壤对植物生长发育具有显著影响。
刘 扬,王庆贵,闫国永,邢亚娟. 氮添加对森林生态系统植物–土壤–微生物化学计量比影响的研究进展Effects of Nitrogen Addition on Plant-Soil-Microorganism Stoichiometry Ratio of Forest Ecosystem: A Review[J]. 环境保护前沿, 2023, 13(05): 1157-1164. https://doi.org/10.12677/AEP.2023.135138
ReferencesElser, J.J., Sterner, R.W., Gorokhova, E., et al. (2000) Biological Stoichiometry from Genes to Ecosystems. Ecology Letters, 3, 540-550. <br>https://doi.org/10.1046/j.1461-0248.2000.00185.xBernot, R.J. and Poulin, R. (2018) Ecological Stoichiometry for Parasitologists. Trends in Parasitology, 34, 928-933.
<br>https://doi.org/10.1016/j.pt.2018.07.008Redfield, A.C., Ketchum, B.H. and Richards, F.A. (1963) The In-fluence of Organisms on the Composition of the Sea Water. In: Hill, M.N., Ed., The Sea, Vol. 2, Interscience Publishers, New York, 26-77.Hillebrand, H., Steinert, G., Boersma, M., et al. (2013) Goldman Revisited: Faster-Growing Phytoplankton Has Lower N:P and Lower Stoichiometric Flexibility. Limnology and Oceanography, 58, 2076-2088.
<br>https://doi.org/10.4319/lo.2013.58.6.2076Small, G.E. and Pringle, C.M. (2010) Deviation from Strict Ho-meostasis Across Multiple Trophic Levels in an Invertebrate Consumer Assemblage Exposed to High Chronic Phos-phorus Enrichment in a Neotropical Stream. Oecologia, 162, 581-590. <br>https://doi.org/10.1007/s00442-009-1489-4Trautwein, K., Feenders, C., Hulsch, R., et al. (2017) Non-Redfield, Nutrient Synergy and Flexible Internal Elemental Stoichiometry in a Marine Bacterium. FEMS Micro-biology Ecology, 93, Article No. fix059.
<br>https://doi.org/10.1093/femsec/fix059Erga, S.R., Haugen, S.B., Bratbak, G., et al. (2017) Seasonal Variations in C:N:Si:Ca:P:Mg:S:K:Fe Relationships of Seston from Norwegian Coastal Water: Impact of Extreme Offshore Forcing during Winter-Spring 2010. Marine Chemistry, 196, 1-12. <br>https://doi.org/10.1016/j.marchem.2017.07.001曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005(6): 141-153.王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947.常运华, 刘学军, 李凯辉, 等. 大气氮沉降研究进展[J]. 干旱区研究, 2012, 29(6): 972-979.段娜, 李清河, 多普增, 汪季. 植物响应大气氮沉降研究进展[J]. 世界林业研究, 2019, 32(4): 6-11.Zhu, H., Chen, Y., Zhao, Y., et al. (2022) The Response of Nitrogen Deposition in China to Recent and Future Changes in Anthropogenic Emissions. Journal of Geophysical Research: Atmospheres, 127, e2022JD037437.
<br>https://doi.org/10.1029/2022JD037437Güsewell, S. (2004) N:P Ratios in Terrestrial Plants: Variation and Functional Significance. New Phytologist, 164, 243-266. <br>https://doi.org/10.1111/j.1469-8137.2004.01192.xReich, P.B., Tjoelker, M.G., Machado, J.-L. and Oleksyn, J. (2006) Universal Scaling of Respiratory Metabolism, Size and Nitrogen in Plants. Nature, 439, 457-461. <br>https://doi.org/10.1038/nature04282范慧珠. 氮添加对红松人工林草本层植物多样性的影响[D]: [硕士学位论文]. 哈尔滨: 东北林业大学, 2022.
<br>https://doi.org/10.27009/d.cnki.gdblu.2022.000508许爱云, 张丽华, 王晓佳, 等. 蒙古冰草非结构性碳水化合物及碳氮磷化学计量特征对氮添加的响应[J]. 草业学报, 2023, 32(2): 35-43.Zhang, H., Li, W., Adams, H.D, et al. (2018) Responses of Woody Plant Functional Traits to Nitrogen Addition: A Meta-Analysis of Leaf Economics, Gas Exchange, and Hydraulic Traits. Frontiers in Plant Science, 9, Article 683.
<br>https://doi.org/10.3389/fpls.2018.00683高小敏, 刘世荣, 王一, 等. 穿透雨减少和氮添加对毛竹叶片和细根化学计量学的影响[J]. 生态学报, 2021, 41(4): 1440-1450.Koerselman, W. and Meuleman, A.F.M. (1996) The Vegetation N:P Ratio: A New Tool to Detect the Nature of Nutrient Limitation. Journal of Applied Ecology, 33, 1441-1450. <br>https://doi.org/10.2307/2404783杨霞, 陈丽华, 郑学良. 不同林龄油松人工林土壤碳、氮和磷生态化学计量特征[J]. 中国水土保持科学, 2021, 19(2): 108-116.王晓光, 乌云娜, 宋彦涛, 等. 土壤与植物生态化学计量学研究进展[J]. 大连民族大学学报, 2016, 18(5): 437-442+449.何相玉, 周冠军, 张新洁, 等. 氮磷添加对水曲柳人工林叶片、细根和土壤生态化学计量特征的影响[J]. 森林工程, 2023, 39(1): 73-81.Holzmann, S., Missong, A., Puhlmann, H., et al. (2016) Impact of Anthropogenic Induced Nitrogen Input and Liming on Phosphorus Leaching in Forest Soils. Journal of Plant Nutrition and Soil Science, 179, 443-453.
<br>https://doi.org/10.1002/jpln.201500552于江珊, 宋沼鹏, 侯继华. 氮添加对天然油松林油松不同器官N-P分配策略的影响[J]. 生态学报, 2022, 42(2): 732-741.刘西军, 蔡天培, 杜杰, 等. 氮添加和采脂对湿地松林土壤酶活性及酶化学计量比的影响[J]. 生态学杂志, 2022, 41(2): 227-235.Francioli, D., Schulz, E., Buscot, F. and Reitz, T. (2018) Dynamics of Soil Bacterial Communities Over a Vegetation Season Relate to Both Soil Nutrient Status and Plant Growth Phenology. Microbial Ecology, 75, 216-227.
<br>https://doi.org/10.1007/s00248-017-1012-0Cleveland, C.C. and Liptzin, D. (2007) C:N:P Stoichiometry in Soil: Is There a “Redfield Ratio” for the Microbial Biomass? Biogeochemistry, 85, 235-252. <br>https://doi.org/10.1007/s10533-007-9132-0Xu, X., Thornton, P.E. and Post, W.M. (2013) A Global Analysis of Soil Microbial Biomass Carbon, Nitrogen and Phosphorus in Terrestrial Ecosystems. Global Ecology and Bio-geography, 22, 737-749.
<br>https://doi.org/10.1111/geb.12029Heuck, C., Weig, A.R. and Spohn, M. (2015) Soil Microbial Biomass C:N:P Stoichiometry and Microbial Use of Organic Phosphorus. Soil Biology & Biochemistry, 85, 119-129. <br>https://doi.org/10.1016/j.soilbio.2015.02.029Li, J., Liu, Y., Hai, X., et al. (2019) Dynamics of Soil Microbial C:N:P Stoichiometry and Its Driving Mechanisms Following Natural Vegetation Restoration after Farmland Aban-donment. Science of the Total Environment, 693, Article ID: 133613. <br>https://doi.org/10.1016/j.scitotenv.2019.133613Zhang, J., et al. (2019) How Microbes Cope with Short-Term N Addition in a Pinus tabuliformis Forest-Ecological Stoichiometry. Geoderma: An International Journal of Soil Science, 337, 630-640.
<br>https://doi.org/10.1016/j.geoderma.2018.10.017Wei, C., Yu, Q., Bai, E., et al. (2013) Nitrogen Deposition Weakens Plant-Microbe Interactionsin Grassland Ecosystems. Global Change Biology, 19, 3688-3697. <br>https://doi.org/10.1111/gcb.12348Zhang, J., Ai, Z., Liang, C., Wang, G. and Xue, S. (2017) Response of Soil Microbial Communities and Nitrogen Thresholds of Bothriochloa ischaemum to Short-Term Nitrogen Addition on the Loess Plateau. Geoderma, 308, 112-119. <br>https://doi.org/10.1016/j.geoderma.2017.08.034赵子文. 氮添加对白羊草群落不同物种植物-土壤-微生物计量学特征的影响[D]: [硕士学位论文]. 北京: 中国科学院大学, 2021. <br>https://doi.org/10.27558/d.cnki.gsthc.2021.000021Wang, Q., Ma, M., Jiang, X., et al. (2019) Impact of 36 Years of Nitrogen Fertilization on Microbial Community Composition and Soil Carbon Cycling-Related Enzyme Activities in Rhizospheres and Bulk Soils in Northeast China. Applied Soil Ecology, 136, 148-157. <br>https://doi.org/10.1016/j.apsoil.2018.12.019王邵军. “植物-土壤”相互反馈的关键生态学问题: 格局、过程与机制[J]. 南京林业大学学报, 2020, 44(2): 1-9.Xu, H., et al. (2022) Impact of Nitrogen Addition on Plant-Soil-Enzyme C-N-P Stoichiometry and Microbial Nutrient Limitation. Soil Biology and Biochemistry, 170, Article ID: 108714. <br>https://doi.org/10.1016/j.soilbio.2022.108714