随着抗生素的滥用和耐药性的不断增加,寻找新的抗生素传递系统已成为当前医学研究的重要课题之一。纳米粒子作为一种重要的药物传递系统,因其独特的特性,在抗生素输送和治疗方面具有广泛的应用前景。本综述将概述纳米粒子在抗生素传递系统中的应用进展。
With the overuse of antibiotics and the continuous increase in drug resistance, finding new antibiotic delivery systems has become one of the important research topics in current medicine. Nanoparticles, as an important drug delivery system, have wide application prospects in antibiotic delivery and treatment due to their unique characteristics. This review will outline the advances in the application of nanoparticles in antibiotic delivery systems.
纳米粒子,药物传递系统,抗生素剂型,靶向治疗,控释系统,抗菌, Nanoparticles Drug Delivery Systems Antibiotic Formulations Targeted Therapy Controlled
Release Systems Antimicrobial摘要 - beplay安卓登录
Advances in the Application of Nanoparticles in Antibiotic Delivery Systems
Yidan Fan1, Guoqiang Xu1,2*
1Department of Oral Implantology, The First Affiliated Hospital (Affiliated Stomatological Hospital) of Xinjiang Medical University, Urumqi Xinjiang
2Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi Xinjiang
Received: Jan. 18th, 2024; accepted: Mar. 19th, 2024; published: Mar. 26th, 2024
ABSTRACT
With the overuse of antibiotics and the continuous increase in drug resistance, finding new antibiotic delivery systems has become one of the important research topics in current medicine. Nanoparticles, as an important drug delivery system, have wide application prospects in antibiotic delivery and treatment due to their unique characteristics. This review will outline the advances in the application of nanoparticles in antibiotic delivery systems.
范译丹,徐国强. 纳米粒子在抗生素传递系统中的应用进展 Advances in the Application of Nanoparticles in Antibiotic Delivery Systems[J]. 材料科学, 2024, 14(03): 291-296. https://doi.org/10.12677/MS.2024.143034
ReferencesZhu, M., Tse, M.W., Weller, J., Chen, J. and Blainey, P.C. (2021) The Future of Antibiotics Begins with Discovering New Combina-tions. Annals of the New York Academy of Sciences, 1496, 82-96. <br>https://doi.org/10.1111/nyas.14649Patra, J.K., Das, G., Fraceto, L.F., et al. (2018) Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. Journal of Nanobiotech-nology, 16, Article No. 71. <br>https://doi.org/10.1186/s12951-018-0392-8Chakraborty, N., Jha, D., Roy, I., et al. (2022) Nanobiotics against Antimicrobial Resistance: Harnessing the Power of Nanoscale Materials and Technologies. Journal of Nanobi-otechnology, 20, Article No. 375.
<br>https://doi.org/10.1186/s12951-022-01573-9Huang, K.W., Hsu, F.F., Qiu, J.T., et al. (2020) Highly Efficient and Tu-mor-Selective Nanoparticles for Dual-Targeted Immunogene Therapy against Cancer. Science Advances, 6, eaax5032. <br>https://doi.org/10.1126/sciadv.aax5032Arias, L.S., Pessan, J.P., Vieira, A.P.M., Lima, T.M.T., Delbem, A.C.B. and Mon-teiro, D.R. (2018) Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics, 7, Article 46. <br>https://doi.org/10.3390/antibiotics7020046郭嘉欣. 基于Fe3O4纳米粒光热协同类酶催化抗菌与促成骨研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2022.吴佳禾. 基于银纳米粒的酸响应型纳米药物的构建及其抗耐药细菌感染的研究[D]: [博士学位论文]. 杭州: 浙江大学, 2020. <br>https://doi.org/10.27461/d.cnki.gzjdx.2020.000661Deng, H., McShan, D., Zhang, Y., Sinha, S.S., Arslan, Z., Ray, P.C. and Yu, H.T. (2016) Mechanistic Study of the Synergistic Antibacterial Activity of Combined Silver Nanoparticles and Common Anti-biotics. Environmental Science & Technology, 50, 8840-8848. <br>https://doi.org/10.1021/acs.est.6b00998李天傲, 杨建苗, 许东航, 等. 多柔比星-TiO2纳米粒克服肿瘤多药耐药的研究[J]. 中国药学杂志, 2018, 53(14): 1198-1202.李天傲, 许东航, 高建青. 无机纳米粒克服肿瘤多药耐药的研究进展[J]. 中国药学杂志, 2016, 51(16): 1360-1363.Manshian, B.B., Jiménez, J., Himmelreich, U. and Soenen, S.J. (2017) Personalized Medicine and Follow-Up of Therapeutic Delivery through Exploitation of Quantum Dot Toxicity. Biomaterials, 127, 1-12.
<br>https://doi.org/10.1016/j.biomaterials.2017.02.039Afsharzadeh, M., Hashemi, M., Mokhtarzadeh, A., Abnous, K. and Ramezani, M. (2018) Recent Advances in Co-Delivery Systems Based on Polymeric Nanoparticle for Cancer Treatment. Artificial Cells, Nanomedicine, and Biotechnology, 46, 1095-1110. <br>https://doi.org/10.1080/21691401.2017.1376675Su, Y., Zhang, B., Sun, R., et al. (2021) PLGA-Based Biodegradable Microspheres in Drug Delivery: Recent Advances in Research and Application. Drug Delivery, 28, 1397-1418. <br>https://doi.org/10.1080/10717544.2021.1938756Lee, B.K., Yun, Y. and Park, K. (2016) PLA Micro- and Nano-Particles. Advanced Drug Delivery Reviews, 107, 176-191.
<br>https://doi.org/10.1016/j.addr.2016.05.020Mohammadian, S., Khazaei, M., Maghami, P., Avan, A. and Rezaei, M. (2023) Polycaprolactone-Based Nanocarriers Containing 5-Fluorouracil as a Therapeutic Guided Drug Delivery Approach for Enhancing An-ticancer Activity. Current Cancer Drug Targets, 23, 524-533. <br>https://doi.org/10.2174/1568009623666230210140212Bharadwaz, A. and Jayasuriya, A.C. (2020) Recent Trends in the Application of Widely Used Natural and Synthetic Polymer Nanocomposites in Bone Tissue Regeneration. Materials Science and En-gineering: C, 110, Article ID: 110698.
<br>https://doi.org/10.1016/j.msec.2020.110698Dai, L. and Si, C. (2019) Recent Advances on Cellulose-Based Nano-Drug Delivery Systems: Design of Prodrugs and Nanoparticles. Current Medicinal Chemistry, 26, 2410-2429. <br>https://doi.org/10.2174/0929867324666170711131353Chiriac, A.P., Ghilan, A., Neamtu, I., Nita, L.E., Rusu, A.G. and Chiriac, V.M. (2019) Advancement in the Biomedical Applications of the (Nano)gel Structures Based on Particular Polysaccharides. Macromolecular Bioscience, 19, e1900187.
<br>https://doi.org/10.1002/mabi.201900187Zhang, Y., Cui, L., Li, F., et al. (2016) Design, Fabrication and Biomedical Appli-cations of Zein-Based Nano/Micro-Carrier Systems. International Journal of Pharmaceutics, 513, 191-210. <br>https://doi.org/10.1016/j.ijpharm.2016.09.023Sharma, K., Porat, Z. and Gedanken, A. (2021) Designing Natural Poly-mer-Based Capsules and Spheres for Biomedical Applications—A Review. Polymers, 13, Article 4307. <br>https://doi.org/10.3390/polym13244307乐国平, 张明, 席立成, 等. 盐酸万古霉素@聚乳酸-羟基乙酸共聚物-壳聚糖-透明质酸复合缓释微球的制备及体外评价[J]. 中国组织工程研究, 2022, 26(4): 528-534.由子樱, 伍彦霖, 孙一民, 等. 搭载米诺环素-壳聚糖纳米粒复合水凝胶用于牙周炎治疗的初步研究[J]. 华西口腔医学杂志, 2023, 41(1): 11-20.Bayón-Cordero, L., Alkorta, I. and Arana, L. (2019) Application of Solid Lipid Nanoparticles to Improve the Efficiency of Anticancer Drugs. Nanomaterials, 9, Article 474. <br>https://doi.org/10.3390/nano9030474陈胜广, 马俊花, 王菁楠, 等. 环丙沙星-固体脂质纳米粒的制备及抗菌效果[J]. 同济大学学报(医学版), 2019, 40(6): 815-820. <br>https://doi.org/10.16118/J.1008-0392.2019.06.009Thi, T.T.H., Suys, E.J.A., Lee, J.S., Nguyen, D.H., Park, K.D. and Truong, N.P. (2021) Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines, 9, Article 359.
<br>https://doi.org/10.3390/vaccines9040359Ibraheem, D.R., et al. (2022) Ciprofloxacin-Loaded Silver Nanoparticles as Potent Nano-Antibiotics against Resistant Pathogenic Bacteria. Nanomaterials, 12, Article 2808. <br>https://doi.org/10.3390/nano12162808Mahkam, M., et al. (2021) Novel Methotrexate-Ciprofloxacin Loaded Alginate-Clay Based Nanocomposite as Anticancer and Antibacterial Co-Drug Delivery System. Advanced Pharmaceutical Bulletin, 11, 477-489.
<br>https://doi.org/10.34172/apb.2021.055Ren, H.M., Han, L., Zhang, L.J., et al. (2022) Inhalable Responsive Polysaccha-ride-Based Antibiotic Delivery Nanoparticles to Overcome Mucus Barrier for Lung Infection Treatment. Nanotoday, 44, Article ID: 101489.
<br>https://doi.org/10.1016/j.nantod.2022.101489Fang, R.H., Hu, C.M.J., Chen, K.N.H., et al. (2013) Lipid-Insertion Enables Targeting Functionalization of Erythrocyte Membrane-Cloaked Nanoparticles. Nanoscale, 5, 8884-8888. <br>https://doi.org/10.1039/c3nr03064dHussain, S., Joo, J., Kang, J., et al. (2018) Antibiotic-Loaded Nanoparticles Targeted to the Site of Infection Enhance Antibacterial Efficacy. Nature Biomedical Engineering, 2, 95-103. <br>https://doi.org/10.1038/s41551-017-0187-5Wang, H., et al. (2015) Tetracycline-Grafted PLGA Nanoparticles as Bone-Targeting Drug Delivery System. International Journal of Nanomedicine, 10, 5671-5685. <br>https://doi.org/10.2147/IJN.S88798Wei, X., Ying, M., Dehaini, D., et al. (2018) Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis. ACS Nano, 12, 109-116.
<br>https://doi.org/10.1021/acsnano.7b07720Zhang, Q.Z., Dehaini, D., Zhang, Y., et al. (2018) Neutrophil Membrane-Coated Nanoparticles Inhibit Synovial Inflammation and Alleviate Joint Damage in Inflammatory Arthritis. Nature Nanotechnology, 13, 1182-1190.
<br>https://doi.org/10.1038/s41565-018-0254-4Yang, R., Xu, J., Xu, L, G., et al. (2018) Cancer Cell Membrane-Coated Adju-vant Nanoparticles with Mannose Modification for Effective Anticancer Vaccination. ACS Nano, 12, 5121-5129. <br>https://doi.org/10.1021/acsnano.7b09041Zhang, A.N., Wu, W., Zhang, C., et al. (2019) A Versatile Bacterial Mem-brane-Binding Chimeric Peptide with Enhanced Photodynamic Antimicrobial Activity. Journal of Materials Chemistry B, 7, 1087-1095.
<br>https://doi.org/10.1039/C8TB03094DXuan, M.J., et al. (2015) Macrophage Cell Membrane Camouflaged Mesoporous Silica Nanocapsules for in Vivo Cancer Therapy. Advanced Healthcare Materials, 4, 1645-1652. <br>https://doi.org/10.1002/adhm.201500129Günday, C., et al. (2020) Ciprofloxacin-Loaded Polymeric Nanoparticles Incorpo-rated Electrospun Fibers for Drug Delivery in Tissue Engineering Applications. Drug Delivery and Translational Research, 10, 706-720.
<br>https://doi.org/10.1007/s13346-020-00736-1Toti, U.S., et al. (2011) Targeted Delivery of Antibiotics to Intracellular Chla-mydial Infections Using PLGA Nanoparticles. Biomaterials, 32, 6606-6613. <br>https://doi.org/10.1016/j.biomaterials.2011.05.038陶静, 李黎, 廖蓉惠, 等. 阿霉素白蛋白透明质酸纳米粒的制备及评价[J]. 中国抗生素杂志, 2023, 48(8): 921-929.
<br>https://doi.org/10.13461/j.cnki.cja.007509