利用细胞凋亡试剂盒(TdT mediated dUTP Nick End Labeling, TUNEL) (上海碧云天生物技术公司)对VSMCs凋亡进行检测评估。操作如下:将对数增长的细胞均匀铺于24孔板中,贴壁良好后用PA处理,清洗细胞后用4%多聚甲醛固定细胞30分钟,清洗一次。然后加入含有0.3% TritonX-100的PBS,在室温下孵育5 min。再将50 µl TUNEL测定溶液加入到样本中,避光于37℃下培养60 min,封片,在荧光显微镜下进行观测。
2.4. 流式检测平滑肌细胞凋亡
利用PE Annexin V细胞凋亡检测试剂盒(美国BD Pharmingen公司)对VSMCs凋亡进行进一步检测评估。操作如下:对数增长的细胞均匀的铺到6孔板中,用PA处理,增殖到足够浓度后移到15毫升离心管中以1600转/分离心4分钟然后去除上清液。再加冷的PBS,离心去掉上清液,此过程重复2遍。用100 ul 1×结合缓冲液重悬细胞,在显微镜下进行计数。各离心管内样品的数量到达106个单位/毫升。取上述100 ul液体加到15 ml离心管底部。双染管中避光添加5 ul PE + 5 ul 7-ADD (单染管与双染管类似,只是分别分开添加PE、7-ADD各5 ul),轻轻吹打,静置15 min。每一个离心管中加400 ul 1×结合缓冲液,再用滤网过滤液体到5 ml流式管中。1小时内上流式分析仪进行检测分析。结果用FlowJo_V10统计学处理。
<xref></xref>2.5. 统计方法
将所得资料以均值 ± 标准差表达,以独立样本t检验进行组间对比,多组之间进行ANOVA分析,以P < 0.05为显著性。本研究使用Graph Pad Prism 9及SPSS27.0对上述资料进行处理。
为了进一步明确丙酮酸对细胞凋亡的影响,我们分别设立空白对照组、Ang II组及Ang II + PA组,用流式分析仪检测细胞凋亡情况。结果如
图3
。得出,与对照组相比Ang II组平滑肌细胞凋亡率(%)增加(14.03 ± 0.05 vs 29.67 ± 0.03, P = 0.002)。Ang II + PA与Ang II组相比,细胞凋亡率(%)减少(29.67 ± 0.03 vs 19.69 ± 0.08, P = 0.013)。这些结果提示丙酮酸抑制平滑肌细胞凋亡。
References
Kochanek, K.D., Murphy, S.L., Xu, J., et al. (2019) Deaths: Final Data for 2017. National Vital Statistics Reports, 68, 1-77.
Pinard, A., Jones, G.T. and Milewicz, D.M. (2019) Genetics of Thoracic and Abdominal Aortic Diseases. Circulation Research, 124, 588-606. >https://doi.org/10.1161/circresaha.118.312436
Aggarwal, S., Qamar, A., Sharma, V., et al. (2011) Abdominal Aortic Aneurysm: A Comprehensive Review. Experimental&Clinical Cardiology, 16, 11-15.
Norman, P.E. and Curci, J.A. (2013) Understanding the Effects of Tobacco Smoke on the Pathogenesis of Aortic Aneurysm. Arteriosclerosis, Thrombosis, and Vascular Biology, 33, 1473-1477. >https://doi.org/10.1161/atvbaha.112.300158
Cui, H., Chen, Y., Li, K., Zhan, R., Zhao, M., Xu, Y., et al. (2021) Untargeted Metabolomics Identifies Succinate as a Biomarker and Therapeutic Target in Aortic Aneurysm and Dissection. European Heart Journal, 42, 4373-4385. >https://doi.org/10.1093/eurheartj/ehab605
Zeng, Q., Rong, Y., Li, D., Wu, Z., He, Y., Zhang, H., et al. (2020) Identification of Serum Biomarker in Acute Aortic Dissection by Global and Targeted Metabolomics. Annals of Vascular Surgery, 68, 497-504. >https://doi.org/10.1016/j.avsg.2020.06.026
Zhou, X., Wang, R., Zhang, T., Liu, F., Zhang, W., Wang, G., et al. (2019) Identification of Lysophosphatidylcholines and Sphingolipids as Potential Biomarkers for Acute Aortic Dissection via Serum Metabolomics. European Journal of Vascular and Endovascular Surgery, 57, 434-441. >https://doi.org/10.1016/j.ejvs.2018.07.004
王翔魏. 丙酮酸补充与运动能力[J]. 北京体育大学学报, 2002, 25(2): 207-210.
干懿洁, 丁树哲. 丙酮酸的抗氧化作用[J]. 中国临床康复, 2006, 10(8): 141-143.
Postnov, A., Suslov, A., Sobenin, I., Chairkin, I., Sukhorukov, V., Ekta, M.B., et al. (2021) Thoracic Aortic Aneurysm: Blood Pressure and Inflammation as Key Factors in the Development of Aneurysm Dissection. Current Pharmaceutical Design, 27, 3122-3127. >https://doi.org/10.2174/1381612827666210210142200
Hu, Y., Lu, L., Qiu, Z., Huang, Q., Chen, Y. and Chen, L. (2018) Mechanical Stretch Aggravates Aortic Dissection by Regulating MAPK Pathway and the Expression of MMP-9 and Inflammation Factors. Biomedicine&Pharmacotherapy, 108, 1294-1302. >https://doi.org/10.1016/j.biopha.2018.09.129
Lian, G., Li, X., Zhang, L., Zhang, Y., Sun, L., Zhang, X., et al. (2019) Macrophage Metabolic Reprogramming Aggravates Aortic Dissection through the Hif1α-Adam17 Pathway. eBioMedicine, 49, 291-304. >https://doi.org/10.1016/j.ebiom.2019.09.041
Luo, W., Wang, Y., Zhang, L., Ren, P., Zhang, C., Li, Y., et al. (2020) Critical Role of Cytosolic DNA and Its Sensing Adaptor STING in Aortic Degeneration, Dissection, and Rupture. Circulation, 141, 42-66. >https://doi.org/10.1161/circulationaha.119.041460
Le, S., Zhang, H., Huang, X., Chen, S., Wu, J., Chen, S., et al. (2020) PKM2 Activator TEPP-46 Attenuates Thoracic Aortic Aneurysm and Dissection by Inhibiting NLRP3 Inflammasome-Mediated Il-1β Secretion. Journal of Cardiovascular Pharmacology and Therapeutics, 25, 364-376. >https://doi.org/10.1177/1074248420919966