Figure 1. Palladium-catalyzed direct phosphonation of azoles with dialkyl phosphitesw--图1. 钯催化的氮唑与磷酸二烷基酯的直接膦化反应--Figure 2. Phosphorus-carbon bond formation: Palladium-catalyzed cross-coupling of H-Phosphinates and Other P(O)H-cont-aining compounds--图2. 磷碳键的形成:钯催化的H-膦酸酯和其他含P(O)H化合物的交叉偶联--
Figure 3. General oxidative aryl C-P bond formation through palladium catalyzed decar bony-lative coupling of aroylhydrazides with P(O)H compounds--图3. 钯催化芳酰肼与P(O)H化合物脱羰偶联形成芳基C-P键--
Figure 4. Palladium-catalyzed C-P bond activation of aroyl phosphine oxides--图4. 钯催化芳酰膦氧化物的C-P键活化--Figure 5. Palladium-catalyzed C-P(III) bond formation by coupling ArBr/ArOTf with acylphosphines--图5. 钯催化ArBr/ArOTf与酰基膦偶联形成C-P(III)键--
Figure 7. Palladium-catalyzed chemoselective phosphorylation of poly(pseudo)halides: a route for organophosphorus synthesis--图7. 钯催化卤化物的化学选择性磷酸化:合成有机磷化合物--2.2. C(苄基)-P键的构建
Figure 11. Phosphinodifluoroalkylation of alkynes using P(O)H compounds and ethyl difluoroiodoacetate--图11. 用亚磷酸酯化合物和二氟碘乙酸乙酯对炔烃进行膦酰二氟烷基化--Figure 12. Palladium-catalyzed C-P cross-coupling of allenic alcohols with H-phosphonates--图12. 钯催化烯丙醇与H-膦酸酯的C-P偶联反应--2.4. C(烯丙基)-P键的构建
References
Monge, S., Canniccioni, B., Graillot, A. and Robin, J. (2011) Phosphorus-Containing Polymers: A Great Opportunity for the Biomedical Field. Biomacromolecules, 12, 1973-1982.
>https://doi.org/10.1021/bm2004803
Quílez-Bermejo, J., Ghisolfi, A., Grau-Marín, D., San-Fabián, E., Morallón, E. and Cazorla-Amorós, D. (2019) Post-synthetic Efficient Functionalization of Polyaniline with Phosphorus-Containing Groups. Effect of Phosphorus on Electrochemical Properties. European Polymer Journal, 119, 272-280.
>https://doi.org/10.1016/j.eurpolymj.2019.07.048
Strasser, P. and Teasdale, I. (2020) Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules, 25, Article No. 1716.
>https://doi.org/10.3390/molecules25071716
Zhao, R.Y., Erickson, H.K., Leece, B.A., Reid, E.E., Goldmacher, V.S., Lambert, J.M., et al. (2012) Synthesis and Biological Evaluation of Antibody Conjugates of Phosphate Prodrugs of Cytotoxic DNA Alkylators for the Targeted Treatment of Cancer. Journal of Medicinal Chemistry, 55, 766-782.
>https://doi.org/10.1021/jm201284m
Sullivan, I. and Planchard, D. (2017) Targeting ALK-Rearranged Non-Small-Cell Lung Cancer: An Update. Future Oncology, 13, 1213-1217.
>https://doi.org/10.2217/fon-2017-0127
Hodge, R.L., Kaduk, J.A., Gindhart, A.M. and Blanton, T.N. (2021) Crystal Structure of Brigatinib Form A (Alunbrig®), C
29H
39ClN
7O
2P. Powder Diffraction, 36, 262-269.
>https://doi.org/10.1017/s0885715621000518
Falagas, M.E., Vouloumanou, E.K., Samonis, G. and Vardakas, K.Z. (2016) Fosfomycin. Clinical Microbiology Reviews, 29, 321-347.
>https://doi.org/10.1128/cmr.00068-15
Edwards, J.E., Bequette, B.J., McKain, N., McEwan, N.R. and Wallace, R.J. (2005) Influence of Flavomycin on Microbial Numbers, Microbial Metabolism and Gut Tissue Protein Turnover in the Digestive Tract of Sheep. British Journal of Nutrition, 94, 64-70.
>https://doi.org/10.1079/bjn20051444
Huang, Y., Zhu, Y., Yue, H., Liu, Y., Deng, L., Lv, L., et al. (2024) Flavomycin Restores Colistin Susceptibility in Multidrug-Resistant Gram-Negative Bacteria. mSystems, 9, e00109-24.
>https://doi.org/10.1128/msystems.00109-24
Asselah, T. (2013) Sofosbuvir for the Treatment of Hepatitis C Virus. Expert Opinion on Pharmacotherapy, 15, 121-130.
>https://doi.org/10.1517/14656566.2014.857656
Surial, B., Mugglin, C., Calmy, A., Cavassini, M., Günthard, H.F., Stöckle, M., et al. (2021) Weight and Metabolic Changes after Switching from Tenofovir Disoproxil Fumarate to Tenofovir Alafenamide in People Living with HIV: A Cohort Study. Annals of Internal Medicine, 174, 758-767.
>https://doi.org/10.7326/m20-4853
Byun, K.S., Choi, J., Kim, J., Lee, Y.S., Lee, H.C., Kim, Y.J., et al. (2022) Tenofovir Alafenamide for Drug-Resistant Hepatitis B: A Randomized Trial for Switching from Tenofovir Disoproxil Fumarate. Clinical Gastroenterology and Hepatology, 20, 427-437.e5.
>https://doi.org/10.1016/j.cgh.2021.04.045
Hong, G., Gan, X., Leonhardt, C., Zhang, Z., Seibert, J., Busch, J.M., et al. (2021) A Brief History of OLEDs—Emitter Development and Industry Milestones. Advanced Materials, 33, Article ID: 2005630.
>https://doi.org/10.1002/adma.202005630
You, X., Gao, J., Duan, Y., Geng, Y., Zhang, M., Zhao, L., et al. (2022) A Theoretical Analysis on the Electron and Energy Transfer between Host and Guest Materials in Phosphor-Doped OLED. Journal of Photochemistry and Photobiology A: Chemistry, 432, Article ID: 114058.
>https://doi.org/10.1016/j.jphotochem.2022.114058
Hou, C., Ren, Y., Lang, R., Hu, X., Xia, C. and Li, F. (2012) Palladium-Catalyzed Direct Phosphonation of Azoles with Dialkyl Phosphites. Chemical Communications, 48, 5181-5183.
>https://doi.org/10.1039/c2cc30429e
Berger, O., Petit, C., Deal, E.L. and Montchamp, J. (2013) Phosphorus-Carbon Bond Formation: Palladium-Catalyzed Cross-Coupling of H-Phosphinates and Other P(O)H-Containing Compounds. Advanced Synthesis&Catalysis, 355, 1361-1373.
>https://doi.org/10.1002/adsc.201300069
Dong, J., Liu, L., Ji, X., Shang, Q., Liu, L., Su, L., et al. (2019) General Oxidative Aryl C-P Bond Formation through Palladium-Catalyzed Decarbonylative Coupling of Aroylhydrazides with P(O)H Compounds. Organic Letters, 21, 3198-3203.
>https://doi.org/10.1021/acs.orglett.9b00922
Chen, X., Liu, X., Zhu, H. and Wang, Z. (2021) Palladium-Catalyzed C-P Bond Activation of Aroyl Phosphine Oxides without the Adjacent “Anchoring Atom”. Tetrahedron, 81, Article ID: 131912.
>https://doi.org/10.1016/j.tet.2020.131912
Chen, X., Wu, H., Yu, R., Zhu, H. and Wang, Z. (2021) Palladium-Catalyzed C-P(III) Bond Formation by Coupling ArBr/ArOTf with Acylphosphines. The Journal of Organic Chemistry, 86, 8987-8996.
>https://doi.org/10.1021/acs.joc.1c00937
Chen, C., Ding, J., Liu, L., Huang, Y. and Zhu, B. (2021) Palladium-Catalyzed Domino Cyclization/Phosphorylation of gem-Dibromoolefins with P(O)H Compounds: Synthesis of Phosphorylated Heteroaromatics. Advanced Synthesis&Catalysis, 364, 200-205.
>https://doi.org/10.1002/adsc.202100949
Chen, Z., Pang, W.H., Yuen, O.Y., Ng, S.S. and So, C.M. (2024) Palladium-Catalyzed Chemoselective Phosphorylation of Poly(pseudo)halides: A Route for Organophosphorus Synthesis. The Journal of Organic Chemistry.
>https://doi.org/10.1021/acs.joc.3c02345
Matsude, A., Hirano, K. and Miura, M. (2018) Palladium-Catalyzed Benzylic Phosphorylation of Diarylmethyl Carbonates. Organic Letters, 20, 3553-3556.
>https://doi.org/10.1021/acs.orglett.8b01323
Chen, L., Zhou, Z., Zhang, S., Li, X., Ma, X. and Dong, J. (2019) Palladium(II)-Catalyzed Oxidative C(sp
3)-P Bond Formation via C(sp
3)-H Bond Activation. Chemical Communications, 55, 13693-13696.
>https://doi.org/10.1039/c9cc07637a
Weng, J., Xing, L., Hou, W., Liang, R. and Jia, Y. (2019) Palladium-Catalyzed Dearomative Arylphosphorylation of Indoles. Organic Chemistry Frontiers, 6, 1577-1580.
>https://doi.org/10.1039/c9qo00246d
Zhang, P., Ying, J., Tang, G. and Zhao, Y. (2017) Phosphinodifluoroalkylation of Alkynes Using P(O)H Compounds and Ethyl Difluoroiodoacetate. Organic Chemistry Frontiers, 4, 2054-2057.
>https://doi.org/10.1039/c7qo00466d
Hu, S., Sun, W., Chen, J., Li, S., Zhao, R., Xu, P., et al. (2021) Palladium-Catalyzed C-P Cross-Coupling of Allenic Alcohols with H-Phosphonates Leading to 2-Phosphinoyl-1,3-butadienes. Chemical Communications, 57, 339-342.
>https://doi.org/10.1039/d0cc07022j
Sun, J., Ye, H., Sun, F., Pan, Y., Zhu, X. and Wu, X. (2023) Palladium-Catalyzed Allylation of P(O)H Compounds: Access to 2-Fluoroallylic Phosphorus Compounds. Organic Letters, 25, 5220-5225.
>https://doi.org/10.1021/acs.orglett.3c01674
Huang, H., Wu, Y., Han, L., Jiang, L., Zhang, Z., Zhang, X., et al. (2024) Palladium-Catalyzed (z)-Selective Allylation of Phosphine Oxides with Vinylethylene Carbonates to Construct Phosphorus Allyl Alcohols. Organic&Biomolecular Chemistry, 22, 3068-3072.
>https://doi.org/10.1039/d4ob00354c
Ramesh, K. and Satyanarayana, G. (2019) Microwave-Assisted Domino Heck Cyclization and Phosphorylation: Synthesis of Phosphorus Containing Heterocycles. European Journal of Organic Chemistry, 2019, 3856-3866.
>https://doi.org/10.1002/ejoc.201900510
Hong, Y., Liu, W., Dong, M., Chen, X., Xu, T., Tian, P., et al. (2019) Pd(0)-Catalyzed Cyclizative Phosphorylation of (z)-1-Iodo-1,6-Diene: Synthesis of Alkylphosphonate and Alkylthionophosphonate. Organic Letters, 21, 5742-5746.
>https://doi.org/10.1021/acs.orglett.9b02149
Zhang, M., Ma, Z., Du, H. and Wang, Z. (2020) Palladium-Catalyzed C(sp
3)-P(III) Bond Formation Reaction with Acylphosphines as Phosphorus Source. Tetrahedron Letters, 61, 152125.
>https://doi.org/10.1016/j.tetlet.2020.152125
Pan, Y., Zhu, X., Shi, L., Jiang, G. and Wu, X. (2023) Palladium-Catalyzed Heck Cyclization with P(O)H Compounds to Construct Phosphinonyl-Azaindoline and-Azaoxindole Derivatives. The Journal of Organic Chemistry, 88, 9843-9852.
>https://doi.org/10.1021/acs.joc.3c00521