Design and Parameter Optimization Test of Comb-Type Filter Bag Folding Machine
This paper addresses issues such as the high labor intensity and low productivity associated with manually folding filter bags and proposes the design of an automatic filter bag folding machine. Initially, a conceptual and structural design was carried out for a comb-type filter bag folding machine, and a geometric analysis was performed on the filter bag folding process of the comb-type folding machine. A three-factor, three-level orthogonal experiment was conducted to examine the effects of the input pressure of the pressing cylinder, the filter bag material, and the operating speed of the pressing cylinder rod on the thrust exerted by the pressing cylinder on the filter bag. The range analysis results indicate that the combination producing the maximum thrust on the filter bag by the pressing cylinder is A 1B 3C 3, with a thrust value of 94.5 N. Conversely, the combination yielding the minimum thrust is A 3B 2C 1, with a thrust value of 20.2 N. The variance analysis results show that the input pressure of the pressing cylinder and the filter bag material significantly affect the thrust exerted by the pressing cylinder on the filter bag, while the operating speed of the pressing cylinder rod does not have a significant impact. The experimental results provide a theoretical basis for the design and development of the filter bag folding machine.
Dust Filter Bag
除尘滤袋是袋式除尘器中的核心部件,除尘滤袋由纤维织物等材料编织而成,利用颗粒自重、静电吸附、纤维空隙过滤等方式达到气体净化的目的,在我国每年消耗大约6000万条
在滤袋折叠研究方面发表的文献不多,现整理了关于毛巾、布料、薄膜等折叠方面的研究,为滤袋折叠机研究提供理论借鉴。Chaos Xiaoxun等人研究了旋转曲面的分割、映射和折叠方法,开发了一种新的折叠方法对具有旋转面的复杂织物进行模拟
本研究拟设计一种滤袋的自动折叠机,先对梳齿式滤袋折叠机进行了方案设计和结构设计,对梳齿式滤袋折叠机折叠滤袋的过程进行了几何学分析;然后开展下压气缸输入压强、滤袋材质、下压气缸杆运行速度对下压气缸对滤袋推力试验。
,
式中,LAB为AB段长度, 为AB中心点连线与AB切线夹角。
BA段滤袋的长度为:
(1)
(2)
式中, 为原点A0垂线与AB中心点连线夹角。
滤袋左包角
(3)
式中, 为A处左边包边对应角度。
滤袋左包角对应的滤袋长度为:
(4)
(5)
式中, 为原点A0垂线与AC中心点连线夹角。
滤袋右包角
(6)
式中, 为A处右边包边对应角度。
滤袋右包角对应的滤袋长度为:
(7)
式中, 为AC中心点连线与AC切线夹角
AC段滤袋的长度为:
(8)
联立(式1)、(式4)、(式7)、(式8)得滤袋总长度L为:
(9)
为了分析气缸输入压强、滤袋材质、下压气缸杆运行速度等因素对下压气缸运行时阻力,即折叠滤袋时下压气缸对滤袋的作用力,开展正交试验。影响因素分别为下压气缸输入压强、滤袋材质、下压气缸杆运行速度,分别用A、B、C表示,根据工厂生产的实际状况确定各因素的水平,其值如
编码水平 |
因素 |
||
下压气缸输入压强A/(MPa) |
滤袋材质B |
下压气缸杆运行速度C/(m/s) |
|
1 |
0.30 |
1 |
0.20 |
2 |
0.40 |
2 |
0.25 |
3 |
0.50 |
3 |
0.30 |
项 |
因素 |
||
下压气缸输入压强A/(MPa) |
滤袋材质B |
下压气缸杆运行速度C/(m/s) |
|
水平1 |
0.30 |
1 |
0.20 |
水平2 |
0.40 |
2 |
0.25 |
水平3 |
0.50 |
3 |
0.30 |
K1 |
802.1 |
974.4 |
922.9 |
K2 |
794.8 |
376.2 |
523.4 |
K3 |
506.8 |
753.1 |
657.4 |
1水平平均值k1 |
72.92 |
64.96 |
57.68 |
2水平平均值k2 |
66.23 |
34.20 |
58.16 |
3水平平均值k3 |
38.98 |
75.31 |
59.76 |
极差R |
33.93 |
41.11 |
2.08 |
主次因素 |
BAC |
||
影响最大组合 |
A1B3C3 |
源 |
III类平方和 |
自由度 |
均方 |
F |
显著性 |
修正模型 |
16806.230a |
26 |
646.393 |
99.798 |
0.000 |
截距 |
106323.936 |
1 |
106323.936 |
16415.521 |
0.000 |
A |
3850.194 |
2 |
1925.097 |
297.219 |
0.000 |
B |
9435.468 |
2 |
4717.734 |
728.378 |
0.000 |
C |
32.549 |
2 |
16.275 |
2.513 |
0.136 |
B*C |
124.320 |
4 |
31.080 |
4.798 |
0.024 |
A*C |
129.715 |
4 |
32.429 |
5.007 |
0.021 |
A*B |
1190.302 |
4 |
297.576 |
45.943 |
0.000 |
A*B*C |
288.988 |
8 |
36.123 |
5.577 |
0.009 |
误差 |
58.293 |
9 |
6.477 |
||
总计 |
139796.570 |
36 |
|||
修正后总计 |
16864.523 |
35 |
|||
a. R2 = 0.997 (调整后R2 = 0.987) |
对下压气缸对滤袋推力影响因素作方差分析
本研究设计了一台梳齿式滤袋折叠机,对滤袋折叠过程进行了几何学分析。开展了下压气缸输入压强、滤袋材质、下压气缸杆运行速度对下压气缸对滤袋推力影响的三因素三水平正交试验。极差分析结果表明:下压气缸对滤袋推力最大值组合为A1B3C3,推力值为94.5 N;下压气缸对滤袋推力值最小组合为A3B2C1,推力值为20.2 N。方差分析结果表明:下压气缸输入压强和滤袋材质对下压气缸对滤袋推力的影响显著,气缸杆运行速度对下压气缸对滤袋推力的影响不显著。
2023年大学生创新创业训练计划项目,项目编号202310148007。