[1] |
Ebrahim-Zadeh, M. and Vodopyanov, K. (2016) Mid-Infrared Coherent Sources and Applications: Introduction. Journal of the Optical Society of America B, 33, MIC1. https://doi.org/10.1364/JOSAB.33.00MIC1 |
[2] |
Majkić, A., Zgonik, M., Petelin, A., Jazbinšek, M., Ruiz, B., Medrano, C. and Günter, P. (2014) Terahertz Source at 9.4 THz Based on a Dual-Wavelength Infrared Laser and Quasi-Phase Matching in Organic Crystals OH1. Applied Physics Letters, 105, Article ID: 141115. https://doi.org/10.1063/1.4897639 |
[3] |
Chang, J.H., Wang, T.T., Zhang, C., Ge, Y.X. and Tao, Z.H. (2013) Compact and Tunable mid-ir Light Source Based on a Dual-Wavelength Fiber Laser. Chinese Physics Letters, 30, Article ID: 114206. https://doi.org/10.1088/0256-307X/30/11/114206 |
[4] |
Walsh, B.M. (2009) Review of Tm and Ho Materials; Spec-troscopy and Lasers. Laser Physics, 19, 855. https://doi.org/10.1134/S1054660X09040446 |
[5] |
Keller, U., Miller, D.A.B., Boyd, G.D., Chiu, T.H. and Asom, M.T. (1992) Solid-State Low-Loss Intracavity Saturable Absorber for Nd:YLF Lasers: An Antiresonant Semiconductor Fabry-Perot Saturable Absorber. Optics Letters, 17, 505-507. https://doi.org/10.1364/OL.17.000505 |
[6] |
Ling, W.J., Xia, T., Dong, Z., You, L.F., Zhang, M.X., Zuo, Y.Y, Li, K. Liu, Q. and Lu, F.P. (2019) Passively Mode-Locked Tm, Ho: LLF Laser at 1895 nm. Journal of Optics, 48, 209-213. https://doi.org/10.1007/s12596-019-00528-y |
[7] |
Wang, Y.C., Xie, G.Q., Xu, X.D., Di, J.Q., Qin, Z.P., Suomalainen, S., Guina, M., Härkönen, A., Agnesi, A., Griebner, U., Mateos, X., Loiko, P. and Petrov, V. (2015) SESAM Mode-Locked Tm:CALGO Laser at 2 µm. Optical Materials Express, 6, 131. https://doi.org/10.1364/OME.6.000131 |
[8] |
Kong, L.C., Xie, G.Q., Yuan, P., Qian, L.J., Wang, S.X., Yu, H.H. and Zhang, H.J. (2015) Passive Q-Switching and Q-Switched Mode-Locking Operations of 2 μm Tm: CLNGG Laser with MoS2 Saturable Absorber Mirror. Photonics Research, 3, A47-A50. https://doi.org/10.1364/PRJ.3.000A47 |
[9] |
Iijima, S. and Ichihashi, T. (1993) Single-Shell Carbon Nanotubes of 1-nm Diameter. Nature, 363, 603. https://doi.org/10.1038/363603a0 |
[10] |
Hasan, T., Sun, Z., Tan, P., Popa, D., Flahaut, E., Kelleher, E.J. and Privitera, G. (2014) Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation. ACS Nano, 8, 4836-4847. https://doi.org/10.1021/nn500767b |
[11] |
Yang, Q., Wang, Y.G., Liu, D.H., Liu, J., Zheng, L.H., Su, L.B. and Xu, J. (2011) Dual-Wavelength Mode-Locked Yb: LuYSiO5 Laser with a Double-Walled Carbon Nanotube Saturable Absorber. Laser Physics Letters, 9, 135. https://doi.org/10.1002/lapl.201110111 |
[12] |
Qu, Z.S., Wang, Y.G., Liu, J., Zheng, L.H., Su, L.B. and Xu, J. (2012) Passively Mode-Locked 2-μm Tm: YAP Laser with a Double-Wall Carbon Nanotube Absorber. Chinese Physics B, 21, Article ID: 064211. https://doi.org/10.1088/1674-1056/21/6/064211 |
[13] |
Ling, W.J., Xia, T., Dong, Z., Zhang, M.X., Zuo, Y.Y., Li, K., Lu, F.P., Liu, Q., Zhao, X.L. and Wang, Y.G. (2018) Low Threshold 1895 nm Mode-Locked Laser Based on Double Wall Carbon Nanotubes. Acta Optica Sinica, 38, Article ID: 0614001. https://doi.org/10.3788/AOS201838.0614001 |
[14] |
Kmetec, J.D., Kubo, T.S., Kane, T.J. and Grund, C.J. (1994) Laser Performance of Diode-Pumped Thulium-Doped Y3Al5O12, (Y, Lu)3Al5O12, and Lu3Al5O12 Crystals. Optics Letters, 19, 186-188. https://doi.org/10.1364/OL.19.000186 |
[15] |
Stoneman, R.C. and Esterowitz, L. (1990) Efficient, Broadly Tunable, Laser-Pumped Tm:YAG and Tm:YSGG CW Lasers. Optics Letters, 15, 486-488. https://doi.org/10.1364/OL.15.000486 |
[16] |
Yang, K.J., Bromberger, H., Ruf, H., Schäfer, H., Neuhaus, J., Dekorsy, T., Grimm, C.V.B., Helm, M., Biermann, K. and Künzel, H. (2010). Passively Mode-Locked Tm, Ho: YAG Laser at 2 µm Based on Saturable Absorption of Intersubband Transitions in Quantum Wells. Optics Express, 18, 6537-6544. https://doi.org/10.1364/OE.18.006537 |
[17] |
Ma, J., Xie, G.Q., Zhang, J., Yuan, P., Tang, D.Y. and Qian, L.J. (2014) Passively Mode-Locked Tm: YAG Ceramic Laser Based on Graphene. IEEE Journal of Selected Topics in Quantum Electronics, 21, 50-55. https://doi.org/10.1109/JSTQE.2014.2361785 |
[18] |
Koopmann, P., Lamrini, S., Scholle, K., Fuhrberg, P., Petermann, K. and Huber, G. (2011) Efficient Diode-Pumped Laser Operation of Tm:Lu2O3 around 2 μm. Optics Letters, 36, 948-950. https://doi.org/10.1364/OL.36.000948 |
[19] |
Schmidt, A., Koopmann, P., Huber, G., Fuhrberg, P., Choi, S.Y., Yeom, D.I., Rotermund, F., Petrov, V. and Griebner, U. (2012) 175 fs Tm: Lu2O3 Laser at 2.07 μm Mode-Locked Using Sin-gle-Walled Carbon Nanotubes. Optics Express, 20, 5313-5318. https://doi.org/10.1364/OE.20.005313 |
[20] |
Beil, K., Fredrich-Thornton, S.T., Tellkamp, F., Peters, R., Kränkel, C., Petermann, K. and Huber, G. (2010) Thermal and Laser Properties of Yb: LuAG for kW Thin Disk Lasers. Optics Express, 18, 20712-20722. https://doi.org/10.1364/OE.18.020712 |
[21] |
Feng, T., Yang, K., Zhao, J., Zhao, S., Qiao, W., Li, T., Dekorsy, T., He, J., Zheng, L., Wang, Q., Xu, X., Su, L. and Xu, J. (2015) 1.21 W Passively Mode-Locked Tm: LuAG Laser. Optics Express, 23, 11819-11825. https://doi.org/10.1364/OE.23.011819 |
[22] |
Yang, K.J., Luan, C., Zhao, S.Z., Feng, T.L., He, J.L., Dekorsy, T., Mircea, G. and Zheng, L.H. (2017) Diode-Pumped Mode-Locked Tm: LuAG 2 µm Laser Based on GaSb-SESAM. In: The European Conference on Lasers and Electro-Optics, Optical Society of America, Washington DC, CAP 27. https://doi.org/10.1109/CLEOE-EQEC.2017.8086322 |
[23] |
孙锐, 陈晨, 令维军, 等. 2017 nm和2029 nm双波长Tm:LuAG调Q锁模激光器[J]. 光学学报, 2019, 39(12): 1214003. |
[24] |
孙锐, 陈晨, 令维军, 等. 基于氧化石墨烯的瓦级调Q锁模Tm:LuAG激光器[J]. 物理学报, 2019, 68(10): 127-132. |
[25] |
令维军, 孙锐, 陈晨, 等. 基于反射式MoS2可饱和吸收体调Q锁模Tm:LuAG激光器[J]. 中国激光, 2019, 46(8): 248-253. |
[26] |
Hecht, J. (2010) A Short History of Laser Development. Applied Optics, 49, F99-F122. https://doi.org/10.1364/AO.49.000F99 |
[27] |
李斌. 二极管泵浦Nd:YVO4固体激光器谐振腔及耦合系统的研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2013. |