基于L-M优化BP神经网络的风电功率预测
The Capacity Prediction for the Wind Power Based on L-M Optimized BP Algorithm
摘要:
在传统
BP
算法的基础上,将
Levenbery-Marquardt
优化法与神经网络模型相结合的
L-M
优化
BP
算法进行了深入应用和分析。此方法与传统算法相比提高了系统的学习速度,加快了网络的收敛。针对某风电场
58
台机组额定功率为
850 kw
的风电机组
20
天
(
每
15
分钟一个预测点
)
的历史数据使用
L-M
算法优化下的前馈神经网
络模型
——
BP
神经网络模型进行了该风电场的实时预测,结果表明该方法在一定程度上更好
的逼近了真实的曲线。
Abstract:
Based on the
traditional BP algorithm, combining Levenhery-Marquardt optimized algorithm and a neural network forecasting method
,
this paper put forward a L-M optimized BP algorithm. The algorithm quickens the train, improves stability. For the real power data of 58 wind turbines of some wind farm in somewhere, a real-time prediction has been made based on L-M optimized BP algorithm, and the result shows that the algorithm produces better results than traditional method.
参考文献
[1] |
洪翠, 林维明, 温步瀛. 风电场风速及风电功率预测方法研究综述[J]. 电网与清洁能源, 2011, 27(1): 20-66. |
[2] |
屠强. 风电功率预测技术的应用现状及运行建议[J]. 电网与清洁能源, 2009, 25(10): 4-9. |
[3] |
曹邦兴. LM算法在地下水动态预测中的应用研究[J]. 广西水利水电, 2007, 3: 4-5, 16. |
[4] |
代小红, 王光利. L-M优化BP算法在短期负荷预测中的应用[J]. 计算机科学, 2011, 38(7): 265-267. |
[5] |
刘玉. 基于实测数据分析的大型风电场风电功率预测研究[J]. 黑龙江电力, 2011, 33(1): 11-15. |