固体废物合成分子筛及其可持续环境应用
Molecular Sieve Synthesis from Solid Waste and Sustainable Environmental Applications
DOI: 10.12677/aac.2024.144032, PDF, HTML, XML,    科研立项经费支持
作者: 张文静, 安则瑶, 朱薇丽, 刘立忠, 刘敬印*:南通大学化学化工学院,江苏 南通;南通大学碳中和技术研究院,江苏 南通
关键词: 分子筛合成方法环境应用废水处理吸附Molecular Sieve Synthetic Method Environmental Application Wastewater Treatment Adsorption
摘要: 三维结构的分子筛既是天然存在的,也可以在实验室中合成。沸石分子筛具有广泛的应用,如环境修复,催化活性,生物技术应用,气体传感和医疗应用。虽然天然分子筛很容易获得,但由于其易于纯相合成,离子交换能力好,尺寸均匀等优点,目前越来越重视分子筛的合成。近年来,如何从低成本材料合成分子筛,特别是如何解决主要的环境问题,也受到了人们的广泛关注。在不同的合成方法中,水热法被广泛应用于以粉煤灰、稻壳灰、高炉渣和高岭土等廉价原料合成各种分子筛。因此,本文对分子筛合成方法及其在环境工程中的潜在应用进行综述。
Abstract: Molecular sieves with the three-dimensional structures occur naturally or can be synthesized in the laboratory. Zeolites have versatile applications such as environmental remediation, catalytic activity, biotechnological application, gas sensing and medicinal applications. Although, naturally occurring molecular sieves are readily available, nowadays, more emphasis is given on the synthesis of the molecular sieves due to their easy synthesis in the pure form, better ion exchange capabilities and uniform in size. Recently, much attention has also been paid on how molecular sieve is being synthesized from low-cost material, particularly, by resolving the major environmental issues. Among different synthesis methods, hydrothermal method is commonly found to be used widely in the synthesis of various molecular sieves from inexpensive raw materials such as fly ash, rice husk ash, blast furnace slag and kaolin. Hence, the main purpose of this review is to make an effective resolution of molecular sieve synthesis methods together with potential applications in environmental engineering.
文章引用:张文静, 安则瑶, 朱薇丽, 刘立忠, 刘敬印. 固体废物合成分子筛及其可持续环境应用[J]. 分析化学进展, 2024, 14(4): 273-286. https://doi.org/10.12677/aac.2024.144032

1. 引言

分子筛是碱或碱土金属的结晶铝硅酸盐,具有三维微孔结构,通常由[SiO4]4四面体和[AlO4]5四面体共用一个氧原子而形成[1]。这一经典定义反映了天然分子筛的化学组成,而合成分子筛的Si/Al比和原子排列不同,导致结构、功能和类型的多样性。分子筛的一般化学成分为Ma/b[(AlO2)a(SiO2)y]∙cH2O,其中M表示碱金属或碱土金属阳离子,b表示该金属阳离子的价态,c表示单位晶胞的结晶水量,a和y分别表示分子筛单位晶胞中[SiO4]4和[AlO4]5四面体的总数[2]。y/a的取值范围为1.0~5.0,该值可以根据结构进行更改。据国际分子筛协会统计,分子筛骨架已达200多种[3]。分子筛具有易于调节的理化性质,工业应用前景广泛,是近年来研究的热点之一。分子筛可以在天然沉积物中找到,也可以由各种高硅、高铝原料合成。由于天然分子筛形成条件复杂、化学成分不稳定、存在杂质,其性能不如合成分子筛,限制了其在工业过程中的应用,因此用合成分子筛替代天然分子筛已成为生产实践中的迫切要求。近年来,煤粉煤灰[4] [5]、煤矸石[6]-[8]、稻壳[9]、甘蔗甘蔗渣[10]、煤气化渣[11] [12]等多种固体废弃物也被探索作为合成分子筛用硅铝的来源。这些固体废物成本较低,储量大,被认为是合成分子筛的良好原料。

近十年来,随着各国政府对可持续绿色发展的需求和微孔材料领域的快速发展,分子筛领域涌现出了许多优秀的研究和综述。从2002年开始,我们可以分别找到粉煤灰[13]-[15]、生物质灰[16]等各种废弃物合成分子筛的文献综述。这些分子筛的合成方法和应用是相似的。目前,利用各种工农业固体废物合成分子筛的相关研究取得了很大进展,粉煤灰固体废物的来源已扩大到矸石、生物质、气化渣、城市生活垃圾等。此外,对合成的分子筛进行了改性处理,不仅可用于废水中污染物的吸附,还可用于大气净化、农业、工业催化等领域。

因此,本文首先介绍了几种典型工农业固体废物合成分子筛的方法和应用研究进展,探讨了合成分子筛的环境应用前景。这有助于深入了解分子筛的合成,并为固体废物处理的研究提供新的思路。

2. 固体废弃物合成分子筛

分子筛的结构种类繁多,例如在2014年已发现了218种不同类型的分子筛结构,并且数量还在不断增加[17]。分子筛根据其生产方法可以分为天然分子筛、改性分子筛和合成分子筛三大类。其中,合成分子筛是首选,因为在合成过程中可以根据不同的用途定制其理化性质。与改性分子筛相比,合成分子筛具有相似甚至更好的应用性能。更重要的是,利用不需要的废物生产合成分子筛不仅可以缩短生产成本,而且还可以解决各种工农业废物造成的污染。

2.1. 常规水热合成法

Holler和Wirsching首次以粉煤灰为原料,在水热条件下加碱,在水热条件下加碱液合成了分子筛材料。在此基础上,后来的研究人员不断改进方法,并进行了大量的实验,将不同的工业废灰溶解在NaOH或KOH等碱性溶液中,经水热处理后生成分子筛晶体。该方法的工艺流程如图1(a)所示。常规一步水热法工艺简单,设备要求低,是最经典的合成方法。然而,晶体相材料(如莫来石)难以有效活化,导致硅和铝元素利用率低。因此,一些研究者采用了两步法[18] [19]或多步法。粉煤灰合成分子筛的两步工艺是:第一步将粉煤灰加入热碱溶液中,搅拌一定时间,促进无定形硅铝酸盐溶解,提高溶液中Si4+和Al3+的浓度,调整硅铝比后,第二步进行水热反应。

2.2. 碱熔–水热法

由于许多固体废物中的硅、铝主要存在于莫来石、石英等惰性矿物中,传统的水热合成方法难以有效提取,因此碱熔水热法得到了发展。Molina等[20]将常规水热法与碱熔融法进行了比较,结果表明碱熔融法合成的分子筛结晶时间短,结晶度高。碱熔水热法是将预处理后的煤基渣与碱在高温下熔合,溶解莫来石、石英等难熔晶体,然后在热碱性溶液中进行水热反应,合成分子筛产品。具体步骤如图1(b)所示。此方法能充分活化废灰,提高分子筛转化率、纯度、性能等。在废灰与碱反应过程中,可形成分子筛的前驱体—地聚合物,有利于分子筛的后续成核结晶。因此,该方法也得到了广泛的应用。

2.3. 微波法

碱熔合法有许多优点,但需要大量的水来洗碱和加热熔合能,因此微波辅助法引起了人们的关注。微波合成与传统水热法的主要区别在于结晶方法的不同。微波合成法是将原料与碱溶液混合,然后将结晶釜放入微波发生器中,利用超高频微波辐射结晶。而传统的水热合成方法则是直接采用加热法结晶[21]。微波辅助水热合成通常分为微波辐照和常规水热两步,如图1(c)所示。微波场的增强促进了体系中硅铝凝胶的形成,提高了分子筛的成核和结晶速率。因此,合成的分子筛结晶度高,晶体表面光滑,晶体颗粒均匀[22]。然而,微波法成本高且难以控制温度。在反应的中后期,微波辐射会阻碍分子筛的生长。因此,提出了热源阶段变换热液法。第一步是常规的水加热来促进晶体成核。然后第二步进行微波加热,提高分子筛的结晶速率,所得分子筛的结晶度可达91%。

2.4. 超声辅助法

超声辅助水热法合成分子筛的工艺步骤如图1(d)所示。将预处理后的废灰与碱溶液混合搅拌,然后用超声波处理一段时间,最后转移到反应器中进行水热反应。废灰的溶解需要很大的能量来激活。超声波是一个不错的选择,它可以通过空化效应和摄动效应增加分子的运动频率,产生的高密度能量可以加速反应。因此,利用超声辅助合成可以增强固体废物中二氧化硅–氧化铝氧化物的溶解,也可以加速老化过程中凝胶的形成和浓度。此外,超声形成的空化气泡可以为结晶提供附着点,大大缩短成核所需的诱导周期,加速分子筛晶体的形成[23]。连续的碱、超声后处理能很好地保持分子筛骨架结构和立方相的完整性,显著提高了矸石级配多孔分子筛的吸附性能。分子筛吸附剂对有害金属离子(Cu2+)和有机污染物(Rh-B)的吸附能力分别提高了12%和5.5% [24]。Tahani Aldahri等[25]研究表明,超声辅助水热技术提高了成核速率,缩短了结晶时间,促进了转化过程中Na-P分子筛的生成。Belviso [26]表明超声能量的效果一般优于水热法。超声波不仅加速了晶体的形成,而且提高了产品的稳定性。

Figure 1. Process flow chart of different synthesis methods of zeolite: (a) Conventional hydrothermal synthesis; (b) Alkali fusion-hydrothermal synthesis; (c) Microwave assisted hydrothermal synthesis; (d) Ultrasonic assisted hydrothermal synthesis [17]

1. 分子筛不同合成方法的工艺流程图:(a) 常规水热合成;(b) 碱熔融–水热合成;(c) 微波辅助水热合成;(d) 超声辅助水热合成[17]

3. 分子筛在环境方面的应用

分子筛广泛应用于各种技术应用,如环境工程(如水处理和水软化),作为催化剂和分子筛材料,用于去除放射性污染物,生物技术和生物医学应用以及石化应用。分子筛的这些应用通常与它们的特殊性质有关。虽然分子筛有许多类型的应用,但本章主要讨论的是环境工程部分,如水和废水处理,气体净化以及农业土壤修复。

3.1. 水处理中的应用

从废水或天然水系统中去除重金属、有机和无机污染物等污染或有毒物质一直是分子筛应用的主要研究领域之一(图2)。用于分子筛吸附研究的污染物已报道至少一次,包括重金属:Cd (II)、Cr (II)、Co (II)、Cr (III)、Cu (II)、Ni (II)、Pb (II)、Zn (II);有机污染物:苯胺、染料、抗生素、总有机碳;无机污染物:钙(II)、镁(II)、铵、氟化物、磷酸盐和硝酸盐。在本节中,详细讨论了这三种主要类型的污染物在分子筛上的处理性能。

3.1.1. 重金属

分子筛在去除工业废水中的阳离子重金属方面表现出巨大的潜力。众所周知,重金属对环境和生物系统有许多不利影响。各种吸附剂或离子交换材料用于处理重金属污染的水和废水。天然分子筛和合成分子筛都已成功地应用于吸附各种污染水流中的各种重金属阳离子,如Cu2+、Cd2+、Cr6+、Zn2+、Pb2+

Figure 2. Illustration of versatile applications of zeolite in wastewater treatment [17]

2. 分子筛在污水处理中的多种应用实例[17]

Hg2+。在各种分子筛吸附剂中,粉煤灰基分子筛由于成本低和可用性高,分子和多孔结构明确,热稳定性高,离子选择性强,离子交换容量高和比表面积高[27],越来越受到研究人员的青睐。粉煤灰分子筛对重金属的去除效率远高于生粉煤灰,这主要是由于其矿物蚀变[28] [29]。Lee [30]研究发现生粉煤灰对Pb2+的去除率不到8%,而分子筛化后的粉煤灰对Pb2+的去除率高达98%。Ji等[31]也证明了由粉煤灰合成的分子筛在人工污染的介质中对不同重金属阳离子的吸附能力较高,并计算得到分子筛对海水中Cu2+、Cd2+、Cr6+、Zn2+和Pb2+的最大吸附量分别为3.057、1.123、0.325、13.101和6.116 mg∙g1。使用从火力发电厂收集的粉煤灰中的分子筛对Fe、Mn、Cu、Zn、Pb、Cd和Ni的去除率分别为99%、100%、90%、100%、100%、100%和100% [32]

3.1.2. 有机污染物

除重金属外,分子筛因还具有比表面积大、吸收率高、选择性强的特点,对苯胺、染料、抗生素、总有机碳等有机污染物具有较高的亲和力。如图3,Seyed等利用[33]粉煤灰合成了HZSM-5纳米分子筛,在连续5次吸附/解吸循环后仍保持良好的性能,表明HZSM-5可以作为吸附剂使用,提高对芳香族污染物的去除效率,降低实际污水处理厂的运行成本。Hosseini等[34]以膨润土为原料成功合成Y型分子筛,并用十六烷基三甲基溴化铵对其进行改性,当表面活性剂用量为50%的分子筛可脱除烯烃废水中89%的有机物,其脱除机理为疏水和静电相互作用。用高岭土制备的4A分子筛可去除亚甲基蓝(MB),基于密度泛函理论(DFT)的Fukui函数和振动分析进一步强化推测MB与分子筛4A表面相互作用的合理机制为静电相互作用、氢键和n-π键的形成[35]。Liu等[36]研究对比了抗生素(磺胺甲恶唑和氧氟沙星)在两种粒径分子筛上的吸附。不同粒径的分子筛对抗生素的吸收和作用机制有不同的影响。其中,粉状分子筛和块状分子筛对抗生素的吸附分别为单层吸附和多层吸附,粉末分子筛的竞争性吸附强度高于块状分子筛。

3.1.3. 无机污染物

分子筛具有较高的离子交换能力和选择性,在去除废水或硬水中的无机污染物方面有着广泛的应用。改性和合成的分子筛能有效去除Li+,K+,Mg2+和Ca2+离子[37]。分子筛脱除铵盐的研究非常广泛[38] [39]。Liu [40]以流化床粉煤灰为原料,采用无溶剂法合成分子筛P1,对铵的最大吸附量为22.9 mg/g,高于

Figure 3. Benzene, toluene & m-xylene removal from aqueous solutions by HZSM-5 nano-zeolite synthesized from coal fly ash containing muscovite plates [33]

3. 含白云母板的煤粉煤灰合成的HZSM-5纳米分子筛从水溶液中去除苯,甲苯和间二甲苯[33]

许多天然分子筛。Chen等[41]研究了由煤粉煤灰合成的氢氧化铝分子筛(AHZ)在水处理中脱氟的作用,在分子筛上涂覆氢氧化铝可将氟化物的吸附能力从4.40 mg/g大大提高到18.12 mg/g。FT-IR和XPS研究进一步表明,氟化物吸附对AHZ的吸附机理是配体与羟基交换和F-Al键的形成。

3.1.4. 放射性物质

分子筛具有高交换容量、热稳定性、机械稳定性和高抗辐射性等特点,是目前公认的用于放射性废水净化的无机离子交换剂之一。在核电事故和核废料处理过程中,放射性核素的处理和处置受到越来越多的关注。研究表明,天然和合成分子筛对137Cs、90Sr和60Co具有良好的吸附能力[42]-[44]。近年来,在实验室规模的连续处理系统中,磁性分子筛复合材料(Ze/FeO)被选为处理铯污染水的理想吸附剂,该装置的铯去除率为100%,产生的清洁废水安全排放到环境中,不构成任何环境和健康风险[45]。最近,Liang等[46]合成了一种具有CHA型分子筛骨架的铝硅酸盐,并研究了其对Sr2+离子的吸附,在非常高的浓度下可以100%去除这些离子。由此可见,合成分子筛在这一领域的重要意义。但在吸附机理、合成分子筛的表面改性、吸附过程的安全处理等方面的应用还有待进一步研究。

3.2. 在气体净化中的应用

除了水资源污染问题,空气污染也严重影响人体健康。常见的空气污染物有挥发性有机化合物、二氧化碳等。吸附法是目前应用最广泛的气体捕获方法。用于二氧化碳捕获的固体吸附剂包括碳质材料,如活性炭、碳纳米管和石墨烯,以及非碳质材料,如介孔二氧化硅、金属有机框架、树脂和分子筛。沸石分子筛具有体积大的晶体空腔和空矿物骨架结构,比表面积大,具有大量均匀微孔,且均具有极性。在这些吸附剂中,分子筛由于其分子筛性质、可调的物理化学性质和对二氧化碳的高选择性,在二氧化碳捕获中起着至关重要的作用。考虑到成本效益,利用粉煤灰等固体废物合成的分子筛材料在改善VOCs和CO2吸附方面取得了重大进展。

3.2.1. 二氧化碳

分子筛是CO2的良好物理吸附剂捕获,其效率主要受分子筛化学成分、孔径和电荷密度的影响。具有高结晶结构、高比表面积和三维孔隙结构的分子筛可以通过成分(例如硅铝比)的变化来实现。分子筛结构中各种碱和碱土阳离子的存在是另一个研究领域,分子筛成分的优化有望增加CO2吸附能力。如图4,Zhou等[47]采用一锅模板和无粘合剂的工艺自组装了一种非常稳定的含铁丝光分子筛Fe-MOR,框架铁与精准狭窄的微孔通道的结合赋予其高CO2吸附能力、高效的基于尺寸的分子筛分能力和优异的湿稳定分离性能。将Zn离子加入到CHA型分子筛中,控制Zn2+在CHA笼中的状态和位置,与标准的低硅13X分子筛相比,含锌分子筛具有更高的CO2吸附容量、更快的动力学和更低的解吸能[48]。考虑到合成分子筛材料的实用性和经济性,其可重复利用性也是一个值得研究的方向。Aquino等[49]利用粉煤灰合成了高质量的NaX和NaA,并表明两种样品在热活化后均表现出优异的再生能力。经过5次吸附/解吸循环后,其CO2捕获能力几乎保持不变,表明其性能与商业分子筛相似。Kongnoo等[50]证明,使用碱性熔融法从棕榈油厂粉煤灰中获得的酸活化分子筛13X具有高达6.42 mmol∙g1的CO2吸附能力。尽管已有超过230种不同的分子筛被合成并登记在国际分子筛协会的数据库中,但只有少数类型的分子筛可供商业使用。不同形态的LTA型分子筛(3A、4A和5A)和Faujasite分子筛(X和Y)是碳捕获和利用研究最多的[51] [52]表1总结了CO2各种分子筛基吸附剂在不同温度和压力下的捕获能力。

Figure 4. Self-assembly of Fe-MOR monoliths. Shown are schematic illustrations of the synthetic procedure (a) and a side view (b) and top view (c) of precisely narrowed microchannels (kinetic diameter: 3.3 to 3.4 Å) by occupying isolated tetrahedral Fe species inside the 12-MR MOR microchannel [47]

4. Fe-MOR单体的自组装。(a)合成过程的示意图,以及通过占据12-MR MOR微通道内分离的四面体Fe物种而精确缩小的微通道(动力学直径:3.3至3.4 Å)的侧视图(b)和顶视图(c) [47]

Table 1. CO2 adsorption capacities of zeolite-based adsorbents at different temperatures and pressures

1. 分子筛基吸附剂在不同温度和压力下的CO2吸附能力

吸附剂

温度(℃)

CO2吸附量(mmol·g−1)

压强(bar)

参考文献

Fe-MOR(0.25)

25

3.07

0.1

[47]

Fe-MOR(0.25)

0

4.55

0.1

[47]

CHA

30

0.03

1

[48]

Zn-CHA

30

0.51

1

[48]

FAU

30

0.41

1

[48]

Zn-FAU

30

0.01

1

[48]

13X-C

25

6.2

1

[53]

13X-B

25

4.8

1

[53]

Na-Y

25

7

7

[54]

La-Y

25

4.5

5

[54]

Na-A

25

5.1

1

[54]

Na-chabazite

25

5.7

1

[55]

续表

Na-Rho

25

6.1

1

[55]

Na-ECR-18

25

4.4

1

[55]

Na-ZSM-25

25

3.9

1

[55]

NaTEA-ZSM-25

25

4.3

1

[55]

Na-PST-20

25

4.4

1

[55]

NaTEA-PST-20

25

4.8

1

[55]

3.2.2. 挥发性有机化合物

挥发性有机化合物(Volatile Organic Compounds, VOCs)是一类具有高挥发性、低蒸气压(20℃时≥0.01 kPa)、低水溶性等特点的低分子量含碳化合物,已鉴定的VOCs种类繁多,包括氯甲烷、甲醛、乙醛、苯、甲苯、二甲苯、苯乙烯等有毒物质和致癌化合物[56]。它们的存在造成大气污染,严重威胁生态环境和人类健康。分子筛因其高吸附能力、优异的热稳定性和易于再生而被认为是VOCs的传统吸附剂之一。应用合成分子筛去除VOCs的研究成果较多,如表2所示。

Table 2. Different VOCs adsorption capacities of zeolite-based adsorbents

2. 分子筛基吸附剂对不同VOCs的吸附容量

吸附剂

VOCs

吸附容量(mg·g−1)

参考文献

HZSM-5

10.38

[57]

HZSM-5

甲苯

9.82

[57]

HZSM-5

间二甲苯

9.63

[57]

Y

丙酮

134

[58]

X

环己烷

117

[59]

X

136

[59]

X

异丙醇

141

[59]

CY

甲苯

116

[60]

由于分子筛内部有较强的静电场,吸附力包括分散力和静电力,对极性分子或易极化的不饱和烃和含苯基的分子有较强的吸附作用。Ren等[61]以粉煤灰为原料合成的单相亚微米分子筛Y在丙酮上具有良好的循环吸附稳定性,经过6次循环后仍可达到吸附容量的88.5%。通过对比X分子筛和活性炭对VOCs的吸附性能,发现X分子筛的吸附能力优于活性炭,具有更好的稳定性。为提高对VOCs的吸附能力,将金属氧化物纳米颗粒高效加载到分子筛上。采用动态和静态吸附实验研究了甲苯、异丙醇和丙酮的吸附Y@MxOy (M = Ni, Co, Cu, Mn)在干燥(RH = 0)和潮湿(RH = 50%)条件下。与原始NaY相比,Y@MxOy均匀分散的金属氧化物纳米颗粒显著提高了挥发性有机化合物的吸附能力,Y@CoO在RH = 50%时对异丙醇(189 mg/g)和丙酮(124 mg/g)表现出最佳的吸附性能,但Y@MnO2对甲苯的吸附能力最佳(50 mg/g) [62]

分子筛基催化剂具有稳定性好、可重复使用、制备成本低、环境友好等优点,正成为工业上常用的工业催化剂的良好替代品。分子筛催化剂的形貌(硅铝比、晶粒尺寸、结晶度)和表面酸度对催化剂的催化性能有很大影响。在石化工业中,分子筛被认为是很有前途的催化剂[63]。Fard等[64]以稻壳为主要催化剂合成了SAPO-34甲醇制烯烃分子筛,结果表明,SAPO-34分子筛在375℃下具有83.57%的高光烯烃选择性。同时应注意,温度升高会降低丙烯的选择性,促进焦炭的形成。

3.2.3. 其他气体

此外,分子筛也是具有潜力的SO2吸附剂。SO2是煤燃烧过程中形成的,是大气污染的来源之一,容易导致酸雨的形成,对人体健康危害很大。报道称,粉煤灰合成的分子筛吸附SO2表现出优异的再生性能,为后续研究提供了基础[65]。通过比较前驱体灰分、活性炭和商用分子筛对SO2的吸附性能,结果表明灰分分子筛具有较高的吸附能力[66]。汞是燃煤气体中的另一种主要污染物。Wang等[67]使用合成粉煤灰分子筛作为模拟气体中汞的吸附剂,在100℃下,除汞分子筛的浓度可保持在75%和60%以上,持续时间超过450 min (图5),证实了使用具有一定吸附能力的分子筛从煤基气体中除汞是可行的。

用催化纳米颗粒修饰分子筛基质是去除硫化氢等类似污染物的一种合适方法。研究了在分子筛ZSM-5和Y衬底上添加纳米磁铁矿的效果,比较了两种基质在高温下对硫化氢的去除效果,结果表明Y分子筛基体较高的孔隙率对污染物的去除能力起着重要作用,用磁铁矿纳米颗粒修饰孔隙可以提高其高温硫化氢去除效率[68]。最近的一些研究表明,了解其他分子筛和金属有机框架的灵活性将促成小分子的选择性分离和存储应用[69] [70]。然而,由于这些材料的小孔径和有限的表面积,其性能是相当有限的。通过对分子筛进行物理化学改性,可以改善这一性能。天然分子筛由于其合成的局限性、孔径小、结晶度不均匀、外来物质的存在等问题,在实际应用中仍面临许多挑战。相对而言,合成分子筛及其骨架已进行了大量气体吸附方面的实验。

Figure 5. Efficiency of Hg removal over No. 5 CFA and CFA zeolite samples C and G (Reaction conditions for Hg removal: 40 μg/m3 Hg and 300 ppm H2S, 10% H2, 20% CO in N2, 100˚C and SV = 4.5 × 104 h1) [67]

5. 5号CFA和CFA分子筛样品C和G的汞去除效率(去除汞的反应条件:40 μg/m3 Hg和300 ppm H2S,10% H2,20% CO溶于N2,100℃和SV = 4.5 × 104 h1) [67]

3.3. 在农业土壤中的应用

分子筛的加入对改善土壤的物理性质有积极作用,有助于去除重金属污染土壤。Ge等[71]利用磷酸盐改性氢焦(CLH)和基于矸石的Na-X分子筛对污染土壤中Cd和Pb的有效性和积累的协同效应得出结论,1% CLH + 1% Na-X分子筛处理对降低白菜根、茎和叶中这两种金属的浓度最有效,协同施用能更好地提高Cd和Pb的固定化和白菜产量。并利用香蕉皮基H3PO4改性碳氢(BPH)和煤矸石制备的Na-X分子筛(ZL),对矿区附近镉、铜、铅污染的农业土壤进行了协同修复。如图6所示,BPH和ZL协同应用的主要机制包括BPH通过沉淀、络合和π-π电子–供体–受体相互作用固定化有害金属离子。沉淀和络合阻塞了BPH表面的孔隙,阻止了磷基团和自由基的持续释放。此外,阳离子桥接的形成、土壤性质的增强以及这些修正的物理吸附也有利于土壤中有害金属离子的固定[72]。研究结果证明,分子筛在农业上的多向应用主要是由于其高孔隙率、离子交换能力和良好的比表面积。直接施用分子筛有利于提高土壤吸附能力,减少土壤酸化,提高养分利用效率。研究人员利用粉煤灰合成分子筛钾,用于小麦生长期的钾肥施用,结果表明分子筛钾对小麦生长没有抑制作用,与农业上最常用的钾肥KCl相比,分子筛钾对植物的养分释放效率更高[73]

Figure 6. Main mechanisms of soil heavy metal fixation by synergistic application of BPH and ZL [73]

6. BPH与ZL协同施用土壤重金属固定的主要机理[73]

4. 结论

低成本的前驱体或工业废料被用于分子筛的生产,这是一个可持续的过程。目前,分子筛大多采用水热法合成,绿色生产分子筛的途径正在被广泛探索。本文综述了利用工业固体废弃物制备分子筛材料的合成方法及其研究进展。然而,不同的方法都有一定的局限性,需要在未来进行适当地控制。利用固体废物制备分子筛还处于文献研究的发展阶段,分子筛的结晶机理及其应用尚未完全探索。另一方面,综述了用于环境工程部分,如水和废水处理,气体净化以及农业土壤修复的分子筛应用,虽然我们的讨论仅限于环境应用,但我们发现分子筛具有广泛的应用前景与环境应用潜力。

基金项目

江苏省研究生科研与实践创新计划项目(SJCX24_1999; KYCX24_3550),江苏省重点研发计划项目(BE2022767),国家重点研发计划项目(2022YFB3504200),国家自然科学基金项目(22302102),江苏省高等学校自然科学研究面上项目(22KJB610022)。

NOTES

*通讯作者。

参考文献

[1] Fletcher, R.E., Ling, S. and Slater, B. (2017) Violations of Löwenstein’s Rule in Zeolites. Chemical Science, 8, 7483-7491.
https://doi.org/10.1039/c7sc02531a
[2] Lakiss, L., Gilson, J., Valtchev, V., Mintova, S., Vicente, A., Vimont, A., et al. (2020) Zeolites in a Good Shape: Catalyst Forming by Extrusion Modifies Their Performances. Microporous and Mesoporous Materials, 299, Article 110114.
https://doi.org/10.1016/j.micromeso.2020.110114
[3] Baerlocher, C. and McCusker, L.B. (2014) Database of Zeolite Structures. Structure Commission of the International Zeolite Association (IZA-SC).
[4] Feng, W., Wan, Z., Daniels, J., Li, Z., Xiao, G., Yu, J., et al. (2018) Synthesis of High Quality Zeolites from Coal Fly Ash: Mobility of Hazardous Elements and Environmental Applications. Journal of Cleaner Production, 202, 390-400.
https://doi.org/10.1016/j.jclepro.2018.08.140
[5] Tauanov, Z., Azat, S. and Baibatyrova, A. (2020) A Mini-Review on Coal Fly Ash Properties, Utilization and Synthesis of Zeolites. International Journal of Coal Preparation and Utilization, 42, 1968-1990.
https://doi.org/10.1080/19392699.2020.1788545
[6] Li, J. and Wang, J. (2019) Comprehensive Utilization and Environmental Risks of Coal Gangue: A Review. Journal of Cleaner Production, 239, Article 117946.
https://doi.org/10.1016/j.jclepro.2019.117946
[7] Li, H., Zheng, F., Wang, J., Zhou, J., Huang, X., Chen, L., et al. (2020) Facile Preparation of Zeolite-Activated Carbon Composite from Coal Gangue with Enhanced Adsorption Performance. Chemical Engineering Journal, 390, Article 124513.
https://doi.org/10.1016/j.cej.2020.124513
[8] Li, H., Li, M., Zheng, F., Wang, J., Chen, L., Hu, P., et al. (2021) Efficient Removal of Water Pollutants by Hierarchical Porous Zeolite-Activated Carbon Prepared from Coal Gangue and Bamboo. Journal of Cleaner Production, 325, Article 129322.
https://doi.org/10.1016/j.jclepro.2021.129322
[9] Hamidi, R., Tai, L., Paglia, L., Scarsella, M., Damizia, M., De Filippis, P., et al. (2022) Hydrotreating of Oak Wood Bio-Crude Using Heterogeneous Hydrogen Producer over Y Zeolite Catalyst Synthesized from Rice Husk. Energy Conversion and Management, 255, Article 115348.
https://doi.org/10.1016/j.enconman.2022.115348
[10] Sriatun, S., Taslimah, T. and Suyati, L. (2018) Synthesis of Zeolite from Sugarcane Bagasse Ash Using Cetyltrimethylammonium Bromide as Structure Directing Agent. Indonesian Journal of Chemistry, 18, 159-165.
https://doi.org/10.22146/ijc.22197
[11] Qu, J., Zhang, J., Li, H. and Li, S. (2021) A High Value Utilization Process for Coal Gasification Slag: Preparation of High Modulus Sodium Silicate by Mechano-Chemical Synergistic Activation. Science of the Total Environment, 801, Article 149761.
https://doi.org/10.1016/j.scitotenv.2021.149761
[12] Ji, W., Zhang, S., Zhao, P., Zhang, S., Feng, N., Lan, L., et al. (2020) Green Synthesis Method and Application of Nap Zeolite Prepared by Coal Gasification Coarse Slag from Ningdong, China. Applied Sciences, 10, Article 2694.
https://doi.org/10.3390/app10082694
[13] Querol, X., Moreno, N., Umaña, J.C., Alastuey, A., Hernández, E., López-Soler, A., et al. (2002) Synthesis of Zeolites from Coal Fly Ash: An Overview. International Journal of Coal Geology, 50, 413-423.
https://doi.org/10.1016/s0166-5162(02)00124-6
[14] Belviso, C. (2018) State-of-the-Art Applications of Fly Ash from Coal and Biomass: A Focus on Zeolite Synthesis Processes and Issues. Progress in Energy and Combustion Science, 65, 109-135.
https://doi.org/10.1016/j.pecs.2017.10.004
[15] Lin, S., Jiang, X., Zhao, Y. and Yan, J. (2022) Zeolite Greenly Synthesized from Fly Ash and Its Resource Utilization: A Review. Science of the Total Environment, 851, Article 158182.
https://doi.org/10.1016/j.scitotenv.2022.158182
[16] Munawar, M.A., Khoja, A.H., Naqvi, S.R., Mehran, M.T., Hassan, M., Liaquat, R., et al. (2021) Challenges and Opportunities in Biomass Ash Management and Its Utilization in Novel Applications. Renewable and Sustainable Energy Reviews, 150, Article 111451.
https://doi.org/10.1016/j.rser.2021.111451
[17] Gao, S., Peng, H., Song, B., Zhang, J., Wu, W., Vaughan, J., et al. (2023) Synthesis of Zeolites from Low-Cost Feeds and Its Sustainable Environmental Applications. Journal of Environmental Chemical Engineering, 11, Article 108995.
https://doi.org/10.1016/j.jece.2022.108995
[18] Hollman, G.G., Steenbruggen, G. and Janssen-Jurkovičová, M. (1999) A Two-Step Process for the Synthesis of Zeolites from Coal Fly Ash. Fuel, 78, 1225-1230.
https://doi.org/10.1016/s0016-2361(99)00030-7
[19] Tanaka, H., Fujii, A., Fujimoto, S. and Tanaka, Y. (2008) Microwave-Assisted Two-Step Process for the Synthesis of a Single-Phase Na-A Zeolite from Coal Fly Ash. Advanced Powder Technology, 19, 83-94.
https://doi.org/10.1163/156855208x291783
[20] Molina, A. and Poole, C. (2004) A Comparative Study Using Two Methods to Produce Zeolites from Fly Ash. Minerals Engineering, 17, 167-173.
https://doi.org/10.1016/j.mineng.2003.10.025
[21] Zeng, X., Hu, X., Song, H., Xia, G., Shen, Z., Yu, R., et al. (2021) Microwave Synthesis of Zeolites and Their Related Applications. Microporous and Mesoporous Materials, 323, Article 111262.
https://doi.org/10.1016/j.micromeso.2021.111262
[22] Kim, J.K. and Lee, H.D. (2009) Effects of Step Change of Heating Source on Synthesis of Zeolite 4A from Coal Fly Ash. Journal of Industrial and Engineering Chemistry, 15, 736-742.
https://doi.org/10.1016/j.jiec.2009.09.055
[23] Boycheva, S., Marinov, I., Miteva, S. and Zgureva, D. (2020) Conversion of Coal Fly Ash into Nanozeolite Na-X by Applying Ultrasound Assisted Hydrothermal and Fusion-Hydrothermal Alkaline Activation. Sustainable Chemistry and Pharmacy, 15, Article 100217.
https://doi.org/10.1016/j.scp.2020.100217
[24] Zhou, J., Zheng, F., Li, H., Wang, J., Bu, N., Hu, P., et al. (2020) Optimization of Post-Treatment Variables to Produce Hierarchical Porous Zeolites from Coal Gangue to Enhance Adsorption Performance. Chemical Engineering Journal, 381, Article 122698.
https://doi.org/10.1016/j.cej.2019.122698
[25] Aldahri, T., Behin, J., Kazemian, H. and Rohani, S. (2016) Synthesis of Zeolite Na-P from Coal Fly Ash by Thermo-Sonochemical Treatment. Fuel, 182, 494-501.
https://doi.org/10.1016/j.fuel.2016.06.019
[26] Belviso, C. (2018) Ultrasonic vs Hydrothermal Method: Different Approaches to Convert Fly Ash into Zeolite. How They Affect the Stability of Synthetic Products over Time? Ultrasonics Sonochemistry, 43, 9-14.
https://doi.org/10.1016/j.ultsonch.2017.12.050
[27] Petrus, R. and Warchoł, J.K. (2005) Heavy Metal Removal by Clinoptilolite. An Equilibrium Study in Multi-Component Systems. Water Research, 39, 819-830.
https://doi.org/10.1016/j.watres.2004.12.003
[28] Kolay, P.K., Singh, D.N. and Murti, M.V.R. (2001) Synthesis of Zeolites from a Lagoon Ash. Fuel, 80, 739-745.
https://doi.org/10.1016/s0016-2361(00)00135-6
[29] Kolay, P. and Singh, D. (2000) Effect of Zeolitization on Compaction, Consolidation, and Permeation Characteristics of a Lagoon Ash. Journal of Testing and Evaluation, 28, 425-430.
https://doi.org/10.1520/jte12132j
[30] Lee, M., Yi, G., Ahn, B. and Roddick, F. (2000) Conversion of Coal Fly Ash into Zeolite and Heavy Metal Removal Characteristics of the Products. Korean Journal of Chemical Engineering, 17, 325-331.
https://doi.org/10.1007/bf02699048
[31] Ji, X., Zhang, M., Wang, Y., Song, Y., Ke, Y. and Wang, Y. (2015) Immobilization of Ammonium and Phosphate in Aqueous Solution by Zeolites Synthesized from Fly Ashes with Different Compositions. Journal of Industrial and Engineering Chemistry, 22, 1-7.
https://doi.org/10.1016/j.jiec.2014.06.017
[32] Prasad, B. and Kumar, H. (2015) Treatment of Acid Mine Drainage Using a Fly Ash Zeolite Column. Mine Water and the Environment, 35, 553-557.
https://doi.org/10.1007/s10230-015-0373-1
[33] Hossini Asl, S.M., Masomi, M. and Tajbakhsh, M. (2020) Hybrid Adaptive Neuro-Fuzzy Inference Systems for Forecasting Benzene, Toluene & M-Xylene Removal from Aqueous Solutions by HZSM-5 Nano-Zeolite Synthesized from Coal Fly Ash. Journal of Cleaner Production, 258, Article 120688.
https://doi.org/10.1016/j.jclepro.2020.120688
[34] Hosseini Hashemi, M.S., Eslami, F. and Karimzadeh, R. (2019) Organic Contaminants Removal from Industrial Wastewater by CTAB Treated Synthetic Zeolite Y. Journal of Environmental Management, 233, 785-792.
https://doi.org/10.1016/j.jenvman.2018.10.003
[35] Belachew, N. and Hinsene, H. (2021) Preparation of Zeolite 4A for Adsorptive Removal of Methylene Blue: Optimization, Kinetics, Isotherm, and Mechanism Study. Silicon, 14, 1629-1641.
https://doi.org/10.1007/s12633-020-00938-9
[36] Liu, Y., Liu, X., Lu, S., Zhao, B., Wang, Z., Xi, B., et al. (2020) Adsorption and Biodegradation of Sulfamethoxazole and Ofloxacin on Zeolite: Influence of Particle Diameter and Redox Potential. Chemical Engineering Journal, 384, Article 123346.
https://doi.org/10.1016/j.cej.2019.123346
[37] Sun, Y., Tang, J., Li, G., Hua, Y., Sun, Y., Hu, S., et al. (2022) Adsorption, Separation and Regeneration of Cation-Exchanged X Zeolites for LNG Purification: Li+, K+, Mg2+ and Ca2+. Microporous and Mesoporous Materials, 340, Article 112032.
https://doi.org/10.1016/j.micromeso.2022.112032
[38] Han, B., Butterly, C., Zhang, W., He, J. and Chen, D. (2021) Adsorbent Materials for Ammonium and Ammonia Removal: A Review. Journal of Cleaner Production, 283, Article 124611.
https://doi.org/10.1016/j.jclepro.2020.124611
[39] Huang, J., Kankanamge, N.R., Chow, C., Welsh, D.T., Li, T. and Teasdale, P.R. (2018) Removing Ammonium from Water and Wastewater Using Cost-Effective Adsorbents: A Review. Journal of Environmental Sciences, 63, 174-197.
https://doi.org/10.1016/j.jes.2017.09.009
[40] Liu, Y., Yan, C., Zhao, J., Zhang, Z., Wang, H., Zhou, S., et al. (2018) Synthesis of Zeolite P1 from Fly Ash under Solvent-Free Conditions for Ammonium Removal from Water. Journal of Cleaner Production, 202, 11-22.
https://doi.org/10.1016/j.jclepro.2018.08.128
[41] Chen, J., Yang, R., Zhang, Z. and Wu, D. (2022) Removal of Fluoride from Water Using Aluminum Hydroxide-Loaded Zeolite Synthesized from Coal Fly Ash. Journal of Hazardous Materials, 421, Article 126817.
https://doi.org/10.1016/j.jhazmat.2021.126817
[42] Munthali, M.W., Johan, E., Aono, H. and Matsue, N. (2015) Cs+and Sr2+ Adsorption Selectivity of Zeolites in Relation to Radioactive Decontamination. Journal of Asian Ceramic Societies, 3, 245-250.
https://doi.org/10.1016/j.jascer.2015.04.002
[43] Long, H., Wu, P. and Zhu, N. (2013) Evaluation of Cs+ Removal from Aqueous Solution by Adsorption on Ethylamine-Modified Montmorillonite. Chemical Engineering Journal, 225, 237-244.
https://doi.org/10.1016/j.cej.2013.03.088
[44] Lonin, A.Y., Levenets, V.V., Omelnik, O.P. and Shchur, A.O. (2022) Removal of a Mixture of Cs, Sr and Co Cations from an Aqueous Solution Using Composite Sorbents Based on Natural and Synthetic Zeolites. Journal of Radioanalytical and Nuclear Chemistry, 331, 5517-5523.
https://doi.org/10.1007/s10967-022-08637-y
[45] Falyouna, O., Eljamal, O., Maamoun, I., Tahara, A. and Sugihara, Y. (2020) Magnetic Zeolite Synthesis for Efficient Removal of Cesium in a Lab-Scale Continuous Treatment System. Journal of Colloid and Interface Science, 571, 66-79.
https://doi.org/10.1016/j.jcis.2020.03.028
[46] Liang, J., Li, J., Li, X., Liu, K., Wu, L. and Shan, G. (2020) The Sorption Behavior of Cha-Type Zeolite for Removing Radioactive Strontium from Aqueous Solutions. Separation and Purification Technology, 230, Article 115874.
https://doi.org/10.1016/j.seppur.2019.115874
[47] Zhou, Y., Zhang, J., Wang, L., Cui, X., Liu, X., Wong, S.S., et al. (2021) Self-Assembled Iron-Containing Mordenite Monolith for Carbon Dioxide Sieving. Science, 373, 315-320.
https://doi.org/10.1126/science.aax5776
[48] Fu, D., Park, Y. and Davis, M.E. (2021) Zinc Containing Small‐Pore Zeolites for Capture of Low Concentration Carbon Dioxide. Angewandte Chemie International Edition, 61, e202112916.
https://doi.org/10.1002/anie.202112916
[49] De Aquino, T.F., Estevam, S.T., Viola, V.O., Marques, C.R.M., Zancan, F.L., Vasconcelos, L.B., et al. (2020) CO2 Adsorption Capacity of Zeolites Synthesized from Coal Fly Ashes. Fuel, 276, Article 118143.
https://doi.org/10.1016/j.fuel.2020.118143
[50] Kongnoo, A., Tontisirin, S., Worathanakul, P. and Phalakornkule, C. (2017) Surface Characteristics and CO2 Adsorption Capacities of Acid-Activated Zeolite 13X Prepared from Palm Oil Mill Fly Ash. Fuel, 193, 385-394.
https://doi.org/10.1016/j.fuel.2016.12.087
[51] Khairul, M.A., Zanganeh, J. and Moghtaderi, B. (2019) The Composition, Recycling and Utilisation of Bayer Red Mud. Resources, Conservation and Recycling, 141, 483-498.
https://doi.org/10.1016/j.resconrec.2018.11.006
[52] Sharma, H. and Dhir, A. (2020) Capture of Carbon Dioxide Using Solid Carbonaceous and Non-Carbonaceous Adsorbents: A Review. Environmental Chemistry Letters, 19, 851-873.
https://doi.org/10.1007/s10311-020-01118-2
[53] Chen, C., Park, D. and Ahn, W. (2014) CO2 Capture Using Zeolite 13X Prepared from Bentonite. Applied Surface Science, 292, 63-67.
https://doi.org/10.1016/j.apsusc.2013.11.064
[54] Lozinska, M.M., Miller, D.N., Brandani, S. and Wright, P.A. (2020) Hiding Extra-Framework Cations in Zeolites L and Y by Internal Ion Exchange and Its Effect on CO2 Adsorption. Journal of Materials Chemistry A, 8, 3280-3292.
https://doi.org/10.1039/c9ta09783j
[55] Min, J.G., Kemp, K.C. and Hong, S.B. (2017) Zeolites ZSM-25 and PST-20: Selective Carbon Dioxide Adsorbents at High Pressures. The Journal of Physical Chemistry C, 121, 3404-3409.
https://doi.org/10.1021/acs.jpcc.6b11582
[56] Muir, B., Sobczyk, M. and Bajda, T. (2021) Fundamental Features of Mesoporous Functional Materials Influencing the Efficiency of Removal of VOCs from Aqueous Systems: A Review. Science of The Total Environment, 784, Article 147121.
https://doi.org/10.1016/j.scitotenv.2021.147121
[57] Li, G., Li, M., Zhang, X., Cao, P., Jiang, H., Luo, J., et al. (2022) Hydrothermal Synthesis of Zeolites-Calcium Silicate Hydrate Composite from Coal Fly Ash with Co-Activation of Ca(OH)2-NaOH for Aqueous Heavy Metals Removal. International Journal of Mining Science and Technology, 32, 563-573.
https://doi.org/10.1016/j.ijmst.2022.03.001
[58] Ren, X., Liu, S., Qu, R., Xiao, L., Hu, P., Song, H., et al. (2020) Synthesis and Characterization of Single-Phase Submicron Zeolite Y from Coal Fly Ash and Its Potential Application for Acetone Adsorption. Microporous and Mesoporous Materials, 295, Article 109940.
https://doi.org/10.1016/j.micromeso.2019.109940
[59] Zhu, T., Zhang, X., Han, Y., Liu, T., Wang, B. and Zhang, Z. (2019) Preparation of Zeolite X by the Aluminum Residue from Coal Fly Ash for the Adsorption of Volatile Organic Compounds. Frontiers in Chemistry, 7, Article 341.
https://doi.org/10.3389/fchem.2019.00341
[60] Xu, J., Yin, T., Li, Y., Liu, N., Shi, L. and Meng, X. (2024) Synthesis of High Hydrophobicity USY Zeolite with Excellent VOCs Adsorption Performance under Humid Condition: Combined Strategy of High Temperature Steam and Acid Treatment. Separation and Purification Technology, 329, Article 124914.
https://doi.org/10.1016/j.seppur.2023.124914
[61] Ren, X., Liu, S., Qu, R., Xiao, L., Hu, P., Song, H., et al. (2020) Synthesis and Characterization of Single-Phase Submicron Zeolite Y from Coal Fly Ash and Its Potential Application for Acetone Adsorption. Microporous and Mesoporous Materials, 295, Article 109940.
https://doi.org/10.1016/j.micromeso.2019.109940
[62] Yin, T., Meng, X., Wang, S., Yao, X., Liu, N. and Shi, L. (2022) Study on the Adsorption of Low-Concentration VOCs on Zeolite Composites Based on Chemisorption of Metal-Oxides under Dry and Wet Conditions. Separation and Purification Technology, 280, Article 119634.
https://doi.org/10.1016/j.seppur.2021.119634
[63] Sharbini Kamaluddin, H., Gong, X., Ma, P., Narasimharao, K., Dutta Chowdhury, A. and Mokhtar, M. (2022) Influence of Zeolite ZSM-5 Synthesis Protocols and Physicochemical Properties in the Methanol-to-Olefin Process. Materials Today Chemistry, 26, Article 101061.
https://doi.org/10.1016/j.mtchem.2022.101061
[64] Mahdavi Fard, A., Askari, S., Afshar Ebrahimi, A. and Heydarinasab, A. (2022) Green Synthesis of SAPO-34 Molecular Sieve Using Rice Husk Ash as a Silica Source: Evaluation of Synthesis and Catalytic Performance Parameters in Methanol-to-Olefin Reaction. Microporous and Mesoporous Materials, 341, Article 112037.
https://doi.org/10.1016/j.micromeso.2022.112037
[65] Czuma, N., Zarębska, K. and Baran, P. (2016) Analysis of the Influence of Fusion Synthesis Parameters on the SO2 Sorption Properties of Zeolites Produced Out of Fly Ash. E3S Web of Conferences, 10, Article 00010.
https://doi.org/10.1051/e3sconf/20161000010
[66] Pedrolo, D.R.S., de Menezes Quines, L.K., de Souza, G. and Marcilio, N.R. (2017) Synthesis of Zeolites from Brazilian Coal Ash and Its Application in SO2 Adsorption. Journal of Environmental Chemical Engineering, 5, 4788-4794.
https://doi.org/10.1016/j.jece.2017.09.015
[67] Wang, J., Li, D., Ju, F., Han, L., Chang, L. and Bao, W. (2015) Supercritical Hydrothermal Synthesis of Zeolites from Coal Fly Ash for Mercury Removal from Coal Derived Gas. Fuel Processing Technology, 136, 96-105.
https://doi.org/10.1016/j.fuproc.2014.10.020
[68] Jafari, M.J., Zendehdel, R., Rafieepour, A., Nakhaei Pour, M., Irvani, H. and Khodakarim, S. (2019) Comparison of Y and ZSM-5 Zeolite Modified with Magnetite Nanoparticles in Removal of Hydrogen Sulfide from Air. International Journal of Environmental Science and Technology, 17, 187-194.
https://doi.org/10.1007/s13762-019-02348-w
[69] Kumar, S., Bera, R., Das, N. and Koh, J. (2020) Chitosan-Based Zeolite-Y and ZSM-5 Porous Biocomposites for H2 and CO2 Storage. Carbohydrate Polymers, 232, Article 115808.
https://doi.org/10.1016/j.carbpol.2019.115808
[70] Bezverkhyy, I., Pujol, Q., Dirand, C., Herbst, F., Macaud, M. and Bellat, J. (2020) D2 and H2 Adsorption Capacity and Selectivity in CHA Zeolites: Effect of Si/Al Ratio, Cationic Composition and Temperature. Microporous and Mesoporous Materials, 302, Article 110217.
https://doi.org/10.1016/j.micromeso.2020.110217
[71] Ge, Q., Tian, Q., Wang, S. and Zhu, F. (2022) Synergistic Effects of Phosphoric Acid Modified Hydrochar and Coal Gangue-Based Zeolite on Bioavailability and Accumulation of Cadmium and Lead in Contaminated Soil. Chinese Journal of Chemical Engineering, 46, 150-160.
https://doi.org/10.1016/j.cjche.2021.03.029
[72] Ge, Q., Tian, Q., Hou, R. and Wang, S. (2022) Combing Phosphorus-Modified Hydrochar and Zeolite Prepared from Coal Gangue for Highly Effective Immobilization of Heavy Metals in Coal-Mining Contaminated Soil. Chemosphere, 291, Article 132835.
https://doi.org/10.1016/j.chemosphere.2021.132835
[73] Flores, C.G., Schneider, H., Marcilio, N.R., Ferret, L. and Oliveira, J.C.P. (2017) Potassic Zeolites from Brazilian Coal Ash for Use as a Fertilizer in Agriculture. Waste Management, 70, 263-271.
https://doi.org/10.1016/j.wasman.2017.08.039

Baidu
map