[1] |
Mosier, A.R. (1998) Soil Processes and Global Change. Biology and Fertility of Soils, 27, 221-229. https://doi.org/10.1007/s003740050424 |
[2] |
Cicerone, R.J. and Oremland, R.S. (1988) Biogeochemical Aspects of Atmospheric Methane. Global Biogeochemical Cycles, 2, 299-327. |
[3] |
Deemer, B.R., Harrison, J.A., Li, S., Beaulieu, J.J., DelSontro, T., Barros, N., et al. (2016) Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis. BioScience, 66, 949-964. https://doi.org/10.1093/biosci/biw117 |
[4] |
Bastviken, D., Cole, J., Pace, M. and Tranvik, L. (2004) Methane Emissions from Lakes: Dependence of Lake Characteristics, Two Regional Assessments, and a Global Estimate: Lake Methane Emissions. Global Biogeochemical Cycles, 18, GB4009. https://doi.org/10.1029/2004gb002238 |
[5] |
Zhang, Y., Wang, F., Xia, W., Cao, W. and Jia, Z. (2021) Anaerobic Methane Oxidation Sustains Soil Organic Carbon Accumulation. Applied Soil Ecology, 167, Article ID: 104021. https://doi.org/10.1016/j.apsoil.2021.104021 |
[6] |
Martens, C.S. and Berner, R.A. (1974) Methane Production in the Interstitial Waters of Sulfate-Depleted Marine Sediments. Science, 185, 1167-1169. https://doi.org/10.1126/science.185.4157.1167 |
[7] |
Moratiel, R., Bravo, R., Saa, A., Tarquis, A.M. and Almorox, J. (2020) Estimation of Evapotranspiration by the Food and Agricultural Organization of the United Nations (FAO) Penman-Monteith Temperature (PMT) and Hargreaves-Samani (HS) Models under Temporal and Spatial Criteria—A Case Study in Duero Basin (Spain). Natural Hazards and Earth System Sciences, 20, 859-875. https://doi.org/10.5194/nhess-20-859-2020 |
[8] |
Segarra, K.E.A., Schubotz, F., Samarkin, V., Yoshinaga, M.Y., Hinrichs, K. and Joye, S.B. (2015) High Rates of Anaerobic Methane Oxidation in Freshwater Wetlands Reduce Potential Atmospheric Methane Emissions. Nature Communications, 6, Article No. 7477. https://doi.org/10.1038/ncomms8477 |
[9] |
Barnes, R.O. and Goldberg, E.D. (1976) Methane Production and Consumption in Anoxic Marine Sediments. Geology, 4, 297-300. https://doi.org/10.1130/0091-7613(1976)4<297:mpacia>2.0.co;2 |
[10] |
Murase, J. and Kimura, M. (1994) Methane Production and Its Fate in Paddy Fields. Soil Science and Plant Nutrition, 40, 505-514. https://doi.org/10.1080/00380768.1994.10413328 |
[11] |
Grossman, E.L., Cifuentes, L.A. and Cozzarelli, I.M. (2002) Anaerobic Methane Oxidation in a Landfill-Leachate Plume. Environmental Science & Technology, 36, 2436-2442. https://doi.org/10.1021/es015695y |
[12] |
Knittel, K., Lösekann, T., Boetius, A., Kort, R. and Amann, R. (2005) Diversity and Distribution of Methanotrophic Archaea at Cold Seeps. Applied and Environmental Microbiology, 71, 467-479. https://doi.org/10.1128/aem.71.1.467-479.2005 |
[13] |
Alperin, M.J. and Hoehler, T.M. (2009) Anaerobic Methane Oxidation by Archaea/sulfate-Reducing Bacteria Aggregates: 2. Isotopic Constraints. American Journal of Science, 309, 958-984. https://doi.org/10.2475/10.2009.02 |
[14] |
Nauhaus, K., Treude, T., Boetius, A. and Krüger, M. (2004) Environmental Regulation of the Anaerobic Oxidation of Methane: A Comparison of ANME‐I and ANME‐II Communities. Environmental Microbiology, 7, 98-106. https://doi.org/10.1111/j.1462-2920.2004.00669.x |
[15] |
沈李东, 金靖昊, 刘心. 内陆湿地与水体甲烷厌氧氧化功能微生物研究进展[J]. 生态学报, 2022, 42(9): 3842-3855. |
[16] |
魏素珍. 甲烷氧化菌及其在环境治理中的应用[J]. 应用生态学报, 2012, 23(8): 2309-2318. |
[17] |
Krüger, M., Meyerdierks, A., Glöckner, F.O., Amann, R., Widdel, F., Kube, M., et al. (2003) A Conspicuous Nickel Protein in Microbial Mats That Oxidize Methane Anaerobically. Nature, 426, 878-881. https://doi.org/10.1038/nature02207 |
[18] |
Hoehler, T.M., Alperin, M.J., Albert, D.B. and Martens, C.S. (1994) Field and Laboratory Studies of Methane Oxidation in an Anoxic Marine Sediment: Evidence for a Methanogen‐Sulfate Reducer Consortium. Global Biogeochemical Cycles, 8, 451-463. https://doi.org/10.1029/94gb01800 |
[19] |
Scheller, S., Goenrich, M., Boecher, R., Thauer, R.K. and Jaun, B. (2010) The Key Nickel Enzyme of Methanogenesis Catalyses the Anaerobic Oxidation of Methane. Nature, 465, 606-608. https://doi.org/10.1038/nature09015 |
[20] |
Valentine, D.L. and Reeburgh, W.S. (2000) New Perspectives on Anaerobic Methane Oxidation. Environmental Microbiology, 2, 477-484. https://doi.org/10.1046/j.1462-2920.2000.00135.x |
[21] |
Moran, J.J., et al. (2008) Methyl Sulfides as Intermediates in the Anaerobic Oxidation of Methane. Environmental Microbiology, 10, 162-173. |
[22] |
Lessner, D.J., et al. (2006) An Unconventional Pathway for Reduction of CO2 to Methane in CO-Grown Methanosarcina acetivorans Revealed by Proteomics. Proceedings of the National Academy of Sciences of the United States of America, 103, 17921-17926. |
[23] |
Schreiber, L., Holler, T., Knittel, K., Meyerdierks, A. and Amann, R. (2010) Identification of the Dominant Sulfate‐reducing Bacterial Partner of Anaerobic Methanotrophs of the ANME‐2 Clade. Environmental Microbiology, 12, 2327-2340. https://doi.org/10.1111/j.1462-2920.2010.02275.x |
[24] |
Wankel, S.D., Adams, M.M., Johnston, D.T., Hansel, C.M., Joye, S.B. and Girguis, P.R. (2012) Anaerobic Methane Oxidation in Metalliferous Hydrothermal Sediments: Influence on Carbon Flux and Decoupling from Sulfate Reduction. Environmental Microbiology, 14, 2726-2740. https://doi.org/10.1111/j.1462-2920.2012.02825.x |
[25] |
Ian, M. (1977) Methane as a Carbon Source in Biological Denitrification. Journal (Water Pollution Control Federation), 49, 855-857. |
[26] |
Raghoebarsing, A.A., Pol, A., van de Pas-Schoonen, K.T., Smolders, A.J.P., Ettwig, K.F., Rijpstra, W.I.C., et al. (2006) A Microbial Consortium Couples Anaerobic Methane Oxidation to Denitrification. Nature, 440, 918-921. https://doi.org/10.1038/nature04617 |
[27] |
Li, X., Lai, D.Y.F. and Gao, D. (2020) Anaerobic Oxidation of Methane with Denitrification in Sediments of a Subtropical Estuary: Rates, Controlling Factors and Environmental Implications. Journal of Environmental Management, 273, Article ID: 111151. https://doi.org/10.1016/j.jenvman.2020.111151 |
[28] |
Deutzmann, J.S., Stief, P., Brandes, J. and Schink, B. (2014) Anaerobic Methane Oxidation Coupled to Denitrification Is the Dominant Methane Sink in a Deep Lake. Proceedings of the National Academy of Sciences, 111, 18273-18278. https://doi.org/10.1073/pnas.1411617111 |
[29] |
李金业, 陈庆锋. 黄河三角洲滨海湿地土壤微生物多样性及反硝化型甲烷厌氧氧化过程研究[D]: [硕士学位论文]. 济南: 齐鲁工业大学, 2021. |
[30] |
He, Z., Cai, C., Geng, S., Lou, L., Xu, X., Zheng, P., et al. (2013) Modelling a Nitrite-Dependent Anaerobic Methane Oxidation Process: Parameters Identification and Model Evaluation. Bioresource Technology, 147, 315-320. https://doi.org/10.1016/j.biortech.2013.08.001 |
[31] |
李佳萍, 楼菊青. 硫酸盐对反硝化型甲烷厌氧氧化过程影响研究[D]: [硕士学位论文]. 杭州: 浙江工商大学, 2020. |
[32] |
Ettwig, K.F., et al. (2010) Nitrite-Driven Anaerobic Methane Oxidation by Oxygenic Bacteria. Nature, 464, 543-548. |
[33] |
Hu, S., Zeng, R.J., Keller, J., Lant, P.A. and Yuan, Z. (2010) Effect of Nitrate and Nitrite on the Selection of Microorganisms in the Denitrifying Anaerobic Methane Oxidation Process. Environmental Microbiology Reports, 3, 315-319. https://doi.org/10.1111/j.1758-2229.2010.00227.x |
[34] |
Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., et al. (2013) Anaerobic Oxidation of Methane Coupled to Nitrate Reduction in a Novel Archaeal Lineage. Nature, 500, 567-570. https://doi.org/10.1038/nature12375 |
[35] |
Zhu, B. (2014) Microbial and Environmental Aspects of Anaerobic Oxidation of Methane. |
[36] |
Wu, M.L., Ettwig, K.F., Jetten, M.S.M., Strous, M., Keltjens, J.T. and Niftrik, L.V. (2011) A New Intra-Aerobic Metabolism in the Nitrite-Dependent Anaerobic Methane-Oxidizing Bacterium Candidatus “Methylomirabilis oxyfera”. Biochemical Society Transactions, 39, 243-248. https://doi.org/10.1042/bst0390243 |
[37] |
Wu, M.L., Alen, T.A., Donselaar, E.G., Strous, M., Jetten, M.S.M. and Niftrik, L. (2012) Co-Localization of Particulate Methane Monooxygenase and CD1 Nitrite Reductase in the Denitrifying Methanotroph “Candidatus methylomirabilis oxyfera”. FEMS Microbiology Letters, 334, 49-56. https://doi.org/10.1111/j.1574-6968.2012.02615.x |
[38] |
Bhattacharjee, A.S., Motlagh, A.M., Jetten, M.S.M. and Goel, R. (2016) Methane Dependent Denitrification—From Ecosystem to Laboratory-Scale Enrichment for Engineering Applications. Water Research, 99, 244-252. https://doi.org/10.1016/j.watres.2016.04.070 |
[39] |
Cheng, C., Shen, X., Xie, H., Hu, Z., Pavlostathis, S.G. and Zhang, J. (2019) Coupled Methane and Nitrous Oxide Biotransformation in Freshwater Wetland Sediment Microcosms. Science of the Total Environment, 648, 916-922. https://doi.org/10.1016/j.scitotenv.2018.08.185 |
[40] |
汪方圆, 张耀鸿. 不同电子受体驱动的湿地土壤甲烷厌氧氧化特征研究[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2021. |
[41] |
Zhang, Y., Wang, F. and Jia, Z. (2021) Electron Shuttles Facilitate Anaerobic Methane Oxidation Coupled to Nitrous Oxide Reduction in Paddy Soil. Soil Biology and Biochemistry, 153, Article ID: 108091. https://doi.org/10.1016/j.soilbio.2020.108091 |
[42] |
Crowe, S.A., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., et al. (2010) The Methane Cycle in Ferruginous Lake Matano. Geobiology, 9, 61-78. https://doi.org/10.1111/j.1472-4669.2010.00257.x |
[43] |
Zehnder, A.J.B. and Brock, T.D. (1980) Anaerobic Methane Oxidation: Occurrence and Ecology. Applied and Environmental Microbiology, 39, 194-204. https://doi.org/10.1128/aem.39.1.194-204.1980 |
[44] |
Beal, E.J., House, C.H. and Orphan, V.J. (2009) Manganese-and Iron-Dependent Marine Methane Oxidation. Science, 325, 184-187. https://doi.org/10.1126/science.1169984 |
[45] |
王维奇. 闽江河口湿地甲烷厌氧氧化及其机制研究[D]: [博士学位论文]. 福州: 福建师范大学, 2014. |
[46] |
Luo, D., Meng, X., Zheng, N., Li, Y., Yao, H. and Chapman, S.J. (2021) The Anaerobic Oxidation of Methane in Paddy Soil by Ferric Iron and Nitrate, and the Microbial Communities Involved. Science of the Total Environment, 788, Article ID: 147773. https://doi.org/10.1016/j.scitotenv.2021.147773 |
[47] |
王子豪, 陈庆锋, 李金业, 等. 黄河三角洲盐沼湿地甲烷厌氧氧化潜力及微生物群落对铁锰输入的响应研究[J]. 环境科学学报, 2022, 42(10): 452-461. |
[48] |
李媛媛, 翟俊. 锰矿物驱动的甲烷厌氧氧化菌的富集及甲烷厌氧氧化过程研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2019. |
[49] |
Scheller, S., Yu, H., Chadwick, G.L., McGlynn, S.E. and Orphan, V.J. (2016) Artificial Electron Acceptors Decouple Archaeal Methane Oxidation from Sulfate Reduction. Science, 351, 703-707. https://doi.org/10.1126/science.aad7154 |
[50] |
Chang, Y., Cheng, T., Lai, W., Tsai, W., Sun, C., Lin, L., et al. (2011)Environmental Microbiology, 14, 895-908. https://doi.org/10.1111/j.1462-2920.2011.02658.x |
[51] |
Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S.G., et al. (2011) Geochemical Evidence for Iron‐mediated Anaerobic Oxidation of Methane. Limnology and Oceanography, 56, 1536-1544. https://doi.org/10.4319/lo.2011.56.4.1536 |
[52] |
Riedinger, N., Formolo, M.J., Lyons, T.W., Henkel, S., Beck, A. and Kasten, S. (2014) An Inorganic Geochemical Argument for Coupled Anaerobic Oxidation of Methane and Iron Reduction in Marine Sediments. Geobiology, 12, 172-181. https://doi.org/10.1111/gbi.12077 |
[53] |
Amos, R.T., Bekins, B.A., Cozzarelli, I.M., Voytek, M.A., Kirshtein, J.D., Jones, E.J.P., et al. (2012) Evidence for Iron‐mediated Anaerobic Methane Oxidation in a Crude Oil‐Contaminated Aquifer. Geobiology, 10, 506-517. https://doi.org/10.1111/j.1472-4669.2012.00341.x |
[54] |
Blodau, C. and Deppe, M. (2012) Humic Acid Addition Lowers Methane Release in Peats of the Mer Bleue Bog, Canada. Soil Biology and Biochemistry, 52, 96-98. https://doi.org/10.1016/j.soilbio.2012.04.023 |
[55] |
冯婕妮, 潘响亮, 何崭飞. 铁依赖型甲烷厌氧氧化微生物富集及其影响因素研究[D]: [硕士学位论文]. 杭州: 浙江工业大学, 2020. |
[56] |
Bai, Y., Wang, X., Wu, J., Lu, Y., Fu, L., Zhang, F., et al. (2019) Humic Substances as Electron Acceptors for Anaerobic Oxidation of Methane Driven by Anme-2d. Water Research, 164, Article ID: 114935. https://doi.org/10.1016/j.watres.2019.114935 |
[57] |
Valenzuela, E.I., Avendaño, K.A., Balagurusamy, N., Arriaga, S., Nieto-Delgado, C., Thalasso, F., et al. (2019) Electron Shuttling Mediated by Humic Substances Fuels Anaerobic Methane Oxidation and Carbon Burial in Wetland Sediments. Science of the Total Environment, 650, 2674-2684. https://doi.org/10.1016/j.scitotenv.2018.09.388 |