[1] |
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042 |
[2] |
Wen, Q., Liu, J., Kang, R., Zhou, B. and Tang, D. (2019) The Release and Activity of HMGB1 in Ferroptosis. Biochemical and Biophysical Research Communications, 510, 278-283. https://doi.org/10.1016/j.bbrc.2019.01.090 |
[3] |
Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., et al. (2016) Ferroptosis: Process and Function. Cell Death & Differentiation, 23, 369-379. https://doi.org/10.1038/cdd.2015.158 |
[4] |
Friedmann Angeli, J.P., Schneider, M., Proneth, B., Tyurina, Y.Y., Tyurin, V.A., Hammond, V.J., et al. (2014) Inactivation of the Ferroptosis Regulator Gpx4 Triggers Acute Renal Failure in Mice. Nature Cell Biology, 16, 1180-1191. https://doi.org/10.1038/ncb3064 |
[5] |
Liang, D., Minikes, A.M. and Jiang, X. (2022) Ferroptosis at the Intersection of Lipid Metabolism and Cellular Signaling. Molecular Cell, 82, 2215-2227. https://doi.org/10.1016/j.molcel.2022.03.022 |
[6] |
Chen, X., Yu, C., Kang, R. and Tang, D. (2020) Iron Metabolism in Ferroptosis. Frontiers in Cell and Developmental Biology, 8, Article 590226. https://doi.org/10.3389/fcell.2020.590226 |
[7] |
Gao, M., Monian, P., Quadri, N., Ramasamy, R. and Jiang, X. (2015) Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular Cell, 59, 298-308. https://doi.org/10.1016/j.molcel.2015.06.011 |
[8] |
Gao, M., Monian, P., Pan, Q., Zhang, W., Xiang, J. and Jiang, X. (2016) Ferroptosis Is an Autophagic Cell Death Process. Cell Research, 26, 1021-1032. https://doi.org/10.1038/cr.2016.95 |
[9] |
Geng, N., Shi, B.J., Li, S.L., et al. (2018) Knockdown of Ferroportin Accelerates Erastin-Induced Ferroptosis in Neuroblastoma Cells. European Review for Medical and Pharmacological Sciences, 22, 3826-3836. |
[10] |
Yin, H., Xu, L. and Porter, N.A. (2011) Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chemical Reviews, 111, 5944-5972. https://doi.org/10.1021/cr200084z |
[11] |
Ayala, A., Muñoz, M.F. and Argüelles, S. (2014) Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity, 2014, 1-31. https://doi.org/10.1155/2014/360438 |
[12] |
Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., et al. (2019) FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature, 575, 693-698. https://doi.org/10.1038/s41586-019-1707-0 |
[13] |
Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by Gpx4. Cell, 156, 317-331. https://doi.org/10.1016/j.cell.2013.12.010 |
[14] |
Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H., et al. (2019) The Coq Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature, 575, 688-692. https://doi.org/10.1038/s41586-019-1705-2 |
[15] |
Mao, C., Liu, X., Zhang, Y., Lei, G., Yan, Y., Lee, H., et al. (2021) DHODH-Mediated Ferroptosis Defence Is a Targetable Vulnerability in Cancer. Nature, 593, 586-590. https://doi.org/10.1038/s41586-021-03539-7 |
[16] |
Liang, D., Feng, Y., Zandkarimi, F., Wang, H., Zhang, Z., Kim, J., et al. (2023) Ferroptosis Surveillance Independent of GPX4 and Differentially Regulated by Sex Hormones. Cell, 186, 2748-2764.e22. https://doi.org/10.1016/j.cell.2023.05.003 |
[17] |
Xu, W., Deng, H., Hu, S., Zhang, Y., Zheng, L., Liu, M., et al. (2021) Role of Ferroptosis in Lung Diseases. Journal of Inflammation Research, 14, 2079-2090. https://doi.org/10.2147/jir.s307081 |
[18] |
Sun, X., Niu, X., Chen, R., He, W., Chen, D., Kang, R., et al. (2016) Metallothionein-1G Facilitates Sorafenib Resistance through Inhibition of Ferroptosis. Hepatology, 64, 488-500. https://doi.org/10.1002/hep.28574 |
[19] |
Chen, G., Wei, J. and Lyu, X. (2018) Research Progress of Nuclear Factor-Erythroid 2 Related Factor 2 in Acute Lung Injury. Chinese Critical Care Medicine, 30, 270-274. |
[20] |
Dodson, M., Castro-Portuguez, R. and Zhang, D.D. (2019) NRF2 Plays a Critical Role in Mitigating Lipid Peroxidation and Ferroptosis. Redox Biology, 23, Article 101107. https://doi.org/10.1016/j.redox.2019.101107 |
[21] |
Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R., et al. (2015) Activation of the p62-Keap1-NRF2 Pathway Protects against Ferroptosis in Hepatocellular Carcinoma Cells. Hepatology, 63, 173-184. https://doi.org/10.1002/hep.28251 |
[22] |
Jiang, L., Kon, N., Li, T., Wang, S., Su, T., Hibshoosh, H., et al. (2015) Ferroptosis as a P53-Mediated Activity during Tumour Suppression. Nature, 520, 57-62. https://doi.org/10.1038/nature14344 |
[23] |
Chen, D., Tavana, O., Chu, B., Erber, L., Chen, Y., Baer, R., et al. (2017) NRF2 Is a Major Target of ARF in P53-Independent Tumor Suppression. Molecular Cell, 68, 224-232.e4. https://doi.org/10.1016/j.molcel.2017.09.009 |
[24] |
Wu, S., Zhu, C., Tang, D., Dou, Q.P., Shen, J. and Chen, X. (2021) The Role of Ferroptosis in Lung Cancer. Biomarker Research, 9, Article No. 82. https://doi.org/10.1186/s40364-021-00338-0 |
[25] |
Hayes, J.D. and McMahon, M. (2009) NRF2 and KEAP1 Mutations: Permanent Activation of an Adaptive Response in Cancer. Trends in Biochemical Sciences, 34, 176-188. https://doi.org/10.1016/j.tibs.2008.12.008 |
[26] |
Gai, C., Yu, M., Li, Z., Wang, Y., Ding, D., Zheng, J., et al. (2019) Acetaminophen Sensitizing Erastin-Induced Ferroptosis via Modulation of NRF2/Heme Oxygenase-1 Signaling Pathway in Non-Small-Cell Lung Cancer. Journal of Cellular Physiology, 235, 3329-3339. https://doi.org/10.1002/jcp.29221 |
[27] |
Lou, J., Zhao, L., Huang, Z., Chen, X., Xu, J., TAI, W.C., et al. (2021) Ginkgetin Derived from Ginkgo biloba Leaves Enhances the Therapeutic Effect of Cisplatin via Ferroptosis-Mediated Disruption of the Nrf2/HO-1 Axis in EGFR Wild-Type Non-Small-Cell Lung Cancer. Phytomedicine, 80, Article 153370. https://doi.org/10.1016/j.phymed.2020.153370 |
[28] |
Li, Y., Yan, H., Xu, X., Liu, H., Wu, C. and Zhao, L. (2019) Erastin/Sorafenib Induces Cisplatin‑Resistant Non‑Small Cell Lung Cancer Cell Ferroptosis through Inhibition of the Nrf2/xCT Pathway. Oncology Letters, 19, 323-333. https://doi.org/10.3892/ol.2019.11066 |
[29] |
Ma, C., Lv, Q., Zhang, K., Tang, Y., Zhang, Y., Shen, Y., et al. (2020) NRF2-GPX4/SOD2 Axis Imparts Resistance to EGFR-Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer Cells. Acta Pharmacologica Sinica, 42, 613-623. https://doi.org/10.1038/s41401-020-0443-1 |
[30] |
Wohlhieter, C.A., Richards, A.L., Uddin, F., Hulton, C.H., Quintanal-Villalonga, À., Martin, A., et al. (2020) Concurrent Mutations in STK11 and KEAP1 Promote Ferroptosis Protection and SCD1 Dependence in Lung Cancer. Cell Reports, 33, Article 108444. https://doi.org/10.1016/j.celrep.2020.108444 |
[31] |
Wang, L., Chen, Y., Mi, Y., Qiao, J., Jin, H., Li, J., et al. (2021) ATF2 Inhibits Ani-Tumor Effects of BET Inhibitor in a Negative Feedback Manner by Attenuating Ferroptosis. Biochemical and Biophysical Research Communications, 558, 216-223. https://doi.org/10.1016/j.bbrc.2020.08.113 |
[32] |
Meng, C., Zhan, J., Chen, D., Shao, G., Zhang, H., Gu, W., et al. (2021) The Deubiquitinase USP11 Regulates Cell Proliferation and Ferroptotic Cell Death via Stabilization of NRF2 USP11 Deubiquitinates and Stabilizes Nrf2. Oncogene, 40, 1706-1720. https://doi.org/10.1038/s41388-021-01660-5 |
[33] |
Christenson, S.A., Smith, B.M., Bafadhel, M., et al. (2022) Chronic Obstructive Pulmonary Disease. The Lancet, 399, 2227-2242. https://doi.org/10.1016/S0140-6736(22)00470-6 |
[34] |
Yoshida, M., Minagawa, S., Araya, J., Sakamoto, T., Hara, H., Tsubouchi, K., et al. (2019) Involvement of Cigarette Smoke-Induced Epithelial Cell Ferroptosis in COPD Pathogenesis. Nature Communications, 10, Article No. 3145. https://doi.org/10.1038/s41467-019-10991-7 |
[35] |
Wang, Y., Liao, S., Pan, Z., Jiang, S., Fan, J., Yu, S., et al. (2022) Hydrogen Sulfide Alleviates Particulate Matter-Induced Emphysema and Airway Inflammation by Suppressing Ferroptosis. Free Radical Biology and Medicine, 186, 1-16. https://doi.org/10.1016/j.freeradbiomed.2022.04.014 |
[36] |
Liu, X., Ma, Y., Luo, L., Zong, D., Li, H., Zeng, Z., et al. (2022) Dihydroquercetin Suppresses Cigarette Smoke Induced Ferroptosis in the Pathogenesis of Chronic Obstructive Pulmonary Disease by Activating Nrf2-Mediated Pathway. Phytomedicine, 96, Article 153894. https://doi.org/10.1016/j.phymed.2021.153894 |
[37] |
Liu, L., Zhang, Y., Wang, L., Liu, Y., Chen, H., Hu, Q., et al. (2023) Scutellarein Alleviates Chronic Obstructive Pulmonary Disease through Inhibition of Ferroptosis by Chelating Iron and Interacting with Arachidonate 15-Lipoxygenase. Phytotherapy Research, 37, 4587-4606. https://doi.org/10.1002/ptr.7928 |
[38] |
Parekh, D., Dancer, R.C. and Thickett, D.R. (2011) Acute Lung Injury. Clinical Medicine, 11, 615-618. https://doi.org/10.7861/clinmedicine.11-6-615 |
[39] |
Kumar, V. (2020) Pulmonary Innate Immune Response Determines the Outcome of Inflammation during Pneumonia and Sepsis-Associated Acute Lung Injury. Frontiers in Immunology, 11, Article 1722. https://doi.org/10.3389/fimmu.2020.01722 |
[40] |
Zhang, F., Li, Z., Xu, X., Hu, Y., Yao, J., Xu, W., et al. (2014) Protective Effects of Icariin-Mediated SIRT1/FOXO3 Signaling Pathway on Intestinal Ischemia/Reperfusion-Induced Acute Lung Injury. Molecular Medicine Reports, 11, 269-276. https://doi.org/10.3892/mmr.2014.2679 |
[41] |
Ge, P., Luo, Y., Okoye, C.S., Chen, H., Liu, J., Zhang, G., et al. (2020) Intestinal Barrier Damage, Systemic Inflammatory Response Syndrome, and Acute Lung Injury: A Troublesome Trio for Acute Pancreatitis. Biomedicine & Pharmacotherapy, 132, Article 110770. https://doi.org/10.1016/j.biopha.2020.110770 |
[42] |
Qiang, Z., Dong, H., Xia, Y., Chai, D., Hu, R. and Jiang, H. (2020) Nrf2 and STAT3 Alleviates Ferroptosis-Mediated IIR-ALI by Regulating SLC7A11. Oxidative Medicine and Cellular Longevity, 2020, 1-16. https://doi.org/10.1155/2020/5146982 |
[43] |
Yan, J., Li, J., Zhang, L., Sun, Y., Jiang, J., Huang, Y., et al. (2018) Nrf2 Protects against Acute Lung Injury and Inflammation by Modulating TLR4 and Akt Signaling. Free Radical Biology and Medicine, 121, 78-85. https://doi.org/10.1016/j.freeradbiomed.2018.04.557 |
[44] |
Dong, H., Xia, Y., Jin, S., Xue, C., Wang, Y., Hu, R., et al. (2021) Nrf2 Attenuates Ferroptosis-Mediated IIR-ALI by Modulating TERT and SLC7A11. Cell Death & Disease, 12, Article No. 1027. https://doi.org/10.1038/s41419-021-04307-1 |
[45] |
Luo, L., Huang, F., Zhong, S., Ding, R., Su, J. and Li, X. (2022) Astaxanthin Attenuates Ferroptosis via Keap1-Nrf2/HO-1 Signaling Pathways in LPS-Induced Acute Lung Injury. Life Sciences, 311, Article 121091. https://doi.org/10.1016/j.lfs.2022.121091 |
[46] |
Li, Y., Cao, Y., Xiao, J., Shang, J., Tan, Q., Ping, F., et al. (2020) Inhibitor of Apoptosis-Stimulating Protein of P53 Inhibits Ferroptosis and Alleviates Intestinal Ischemia/Reperfusion-Induced Acute Lung Injury. Cell Death & Differentiation, 27, 2635-2650. https://doi.org/10.1038/s41418-020-0528-x |
[47] |
Li, J., Lu, K., Sun, F., Tan, S., Zhang, X., Sheng, W., et al. (2021) Panaxydol Attenuates Ferroptosis against LPS-Induced Acute Lung Injury in Mice by Keap1-Nrf2/HO-1 Pathway. Journal of Translational Medicine, 19, Article No. 96. https://doi.org/10.1186/s12967-021-02745-1 |
[48] |
Li, J., Deng, S., Li, J., Li, L., Zhang, F., Zou, Y., et al. (2022) Obacunone Alleviates Ferroptosis during Lipopolysaccharide-Induced Acute Lung Injury by Upregulating Nrf2-Dependent Antioxidant Responses. Cellular & Molecular Biology Letters, 27, Article No. 29. https://doi.org/10.1186/s11658-022-00318-8 |
[49] |
Tang, X., Liu, J., Yao, S., Zheng, J., Gong, X. and Xiao, B. (2022) Ferulic Acid Alleviates Alveolar Epithelial Barrier Dysfunction in Sepsis-Induced Acute Lung Injury by Activating the Nrf2/HO-1 Pathway and Inhibiting Ferroptosis. Pharmaceutical Biology, 60, 2286-2294. https://doi.org/10.1080/13880209.2022.2147549 |
[50] |
Qiu, Y., Wan, B., Liu, G., Wu, Y., Chen, D., Lu, M., et al. (2020) Nrf2 Protects against Seawater Drowning-Induced Acute Lung Injury via Inhibiting Ferroptosis. Respiratory Research, 21, Article No. 232. https://doi.org/10.1186/s12931-020-01500-2 |
[51] |
He, R., Liu, B., Xiong, R., Geng, B., Meng, H., Lin, W., et al. (2022) Itaconate Inhibits Ferroptosis of Macrophage via Nrf2 Pathways against Sepsis-Induced Acute Lung Injury. Cell Death Discovery, 8, Article No. 43. https://doi.org/10.1038/s41420-021-00807-3 |
[52] |
Koudstaal, T., Funke-Chambour, M., Kreuter, M., Molyneaux, P.L. and Wijsenbeek, M.S. (2023) Pulmonary Fibrosis: From Pathogenesis to Clinical Decision-making. Trends in Molecular Medicine, 29, 1076-1087. https://doi.org/10.1016/j.molmed.2023.08.010 |
[53] |
Ali, M.K., Kim, R.Y., Brown, A.C., Donovan, C., Vanka, K.S., Mayall, J.R., et al. (2020) Critical Role for Iron Accumulation in the Pathogenesis of Fibrotic Lung Disease. The Journal of Pathology, 251, 49-62. https://doi.org/10.1002/path.5401 |
[54] |
Lee, J., Arisi, I., Puxeddu, E., Mramba, L.K., Amicosante, M., Swaisgood, C.M., et al. (2018) Bronchoalveolar Lavage (BAL) Cells in Idiopathic Pulmonary Fibrosis Express a Complex Pro-Inflammatory, Pro-Repair, Angiogenic Activation Pattern, Likely Associated with Macrophage Iron Accumulation. PLOS ONE, 13, e0194803. https://doi.org/10.1371/journal.pone.0194803 |
[55] |
Bargagli, E., Refini, R.M., d’Alessandro, M., Bergantini, L., Cameli, P., Vantaggiato, L., et al. (2020) Metabolic Dysregulation in Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences, 21, Article 5663. https://doi.org/10.3390/ijms21165663 |
[56] |
Sun, L., He, X., Kong, J., Yu, H. and Wang, Y. (2024) Menstrual Blood-Derived Stem Cells Exosomal Mir-Let-7 to Ameliorate Pulmonary Fibrosis through Inhibiting Ferroptosis by Sp3/HDAC2/Nrf2 Signaling Pathway. International Immunopharmacology, 126, Article 111316. https://doi.org/10.1016/j.intimp.2023.111316 |
[57] |
Li, X., Duan, L., Yuan, S., Zhuang, X., Qiao, T. and He, J. (2019) Ferroptosis Inhibitor Alleviates Radiation-Induced Lung Fibrosis (RILF) via Down-Regulation of TGF-β1. Journal of Inflammation, 16, Article No. 11. https://doi.org/10.1186/s12950-019-0216-0 |
[58] |
Song, C., Feng, M., Li, L., Wang, P., Lu, X. and Lu, Y. (2023) Tripterygium Wilfordii Hook.f. Ameliorates Paraquat-Induced Lung Injury by Reducing Oxidative Stress and Ferroptosis via Nrf2/HO-1 Pathway. Ecotoxicology and Environmental Safety, 252, Article 114575. https://doi.org/10.1016/j.ecoenv.2023.114575 |
[59] |
El-Horany, H.E., Atef, M.M., Abdel Ghafar, M.T., Fouda, M.H., Nasef, N.A., Hegab, I.I., et al. (2023) Empagliflozin Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Rats by Modulating Sesn2/AMPK/Nrf2 Signaling and Targeting Ferroptosis and Autophagy. International Journal of Molecular Sciences, 24, Article 9481. https://doi.org/10.3390/ijms24119481 |