Nrf2靶向调控铁死亡在肺部疾病中的研究进展
Research Progress of Nrf2 Targeting Ferroptosis in Lung Diseases
DOI: 10.12677/jcpm.2024.34380, PDF, HTML, XML,    科研立项经费支持
作者: 汪 珍, 李 娜*:重庆医科大学附属第二医院呼吸内科,重庆
关键词: 铁死亡Nrf2肺部疾病Ferroptosis Nrf2 Lung Diseases
摘要: 铁死亡是近年来发现的一种独特的细胞死亡形式,其特征是铁依赖性的脂质过氧化。铁过载、膜磷脂中不受控制和压倒性的脂质过氧化、氧化应激与抗氧化调节失衡是铁死亡发生的重要条件。谷胱甘肽/谷胱甘肽过氧化物酶4 (GSH/GPX4)通路、ACSL4 (酰基辅酶A合成酶长链家族成员4)、FSP1 (铁死亡抑制蛋白1)-CoQ 10 (辅酶Q 10)-NAD(P)H通路、GCH1 (GTP环水解酶1)-BH 4 (四氢生物蝶呤)通路、线粒体内膜的DHODH (二氢乳清酸脱氢酶)-CoQ 10轴都可以调控细胞铁死亡,而核因子E2相关因子2 (Nrf2/NFE2L2)可以调控上述多种通路,目前已被证明在呼吸系统疾病治疗和铁死亡调节中起关键作用。在这篇综述中,我们将简要概述铁死亡的发生机制,并强调Nrf2调控铁死亡的机制。我们还强调了铁死亡和Nrf2在呼吸系统疾病过程中的作用,并为进一步呼吸系统疾病治疗过程中Nrf2与铁死亡之间的关系提供了理论依据。
Abstract: Ferroptosis is a unique form of cell death identified in recent years, characterized by iron-dependent lipid peroxidation. Iron overload, uncontrolled and overwhelming lipid peroxidation in membrane phospholipids, and an imbalance between oxidative stress and antioxidant regulation are important conditions for ferroptosis. The glutathione/glutathione peroxidase 4 (GSH/GPX4) pathway, ACSL4 (acyl-coenzyme A synthetase long-chain family member 4), FSP1 (iron death inhibitory protein 1)-CoQ 10 (coenzyme Q 10)-NAD(P)H pathway, GCH1 (GTP cycloheximide 1)-BH 4 (tetrahydrobiopterin) pathway, and the DHODH (dihydroorotate dehydrogenase)-CoQ 10 axis in the inner mitochondrial membrane all regulate cellular ferroptosis, while the nuclear factor erythroid 2-related factor 2 (Nrf2/NFE2L2) regulates many of the above pathways, which have now been shown to play a key role in respiratory disease therapy and iron death regulation. In this review, we provide a brief overview of the mechanisms by which ferroptosis occurs and emphasize the mechanisms by which Nrf2 regulates ferroptosis. We also emphasize the role of ferroptosis and Nrf2 in respiratory diseases and provide a theoretical rationale for the relationship between Nrf2 and ferroptosis during further respiratory disease therapy.
文章引用:汪珍, 李娜. Nrf2靶向调控铁死亡在肺部疾病中的研究进展[J]. 临床个性化医学, 2024, 3(4): 2672-2681. https://doi.org/10.12677/jcpm.2024.34380

1. 铁死亡概述

铁死亡是近年来发现的一种新型细胞死亡模式,被Dixon [1]在2012年研究erastin杀死具有RAS突变的癌细胞的机制时首次提出,其特征是大量的铁诱导的脂质氧化、增强的氧化应激和抗氧化防御的耗竭。故而铁死亡主要受铁稳态、脂质代谢和谷胱甘肽依赖性氧化还原平衡的调节。铁死亡的形态学特征与凋亡性细胞死亡不同。凋亡细胞的特征是膜起泡、细胞收缩、核碎裂和染色质浓缩,而铁死亡细胞则表现出典型的坏死形态,例如质膜不完整和细胞内内容物的释放,尤其是损伤相关分子模式(DAMP) [2],表现为线粒体体积减少、双层膜密度增加以及线粒体嵴减少或消失[3],最终导致质膜破裂;生化上,细胞内谷胱甘肽(GSH)耗竭,谷胱甘肽过氧化物酶4 (GPX4)活性降低,脂质过氧化物不能被GPX4催化的还原反应代谢,Fe2+以Fenton反应氧化脂质,产生大量ROS,促进铁死亡[4]

2. 铁死亡的发生机制

2.1. 铁代谢紊乱

铁过载在铁死亡过程中起着关键作用。在细胞内,铁通常结合在一个复合物中,例如血红素(由许多蛋白质组成的辅基,如血红蛋白)、铁硫簇(许多酶的辅助因子)和铁蛋白(一种专用的铁储存蛋白)。细胞内的少量铁没有以这种方式结合,称为不稳定铁池[5]。不稳定铁池主要由亚铁离子构成,二价铁(Fe2+)溶于水,具有高度反应活性,当不稳定铁池中的铁过量时,可通过芬顿反应与过氧化氢(H2O2)反应生成许多羟基自由基(HO∙)及活性氧(ROS),从而引起脂质过氧化,导致细胞死亡。由此可见,铁过载是铁死亡的关键驱动因素,参与铁摄取、储存、利用和外排的多种铁代谢调节因子可能会影响铁死亡的敏感性,维持铁平衡对于保护细胞免受铁死亡至关重要[6]。细胞铁摄取主要受转铁蛋白/转铁蛋白受体(TF/TFR)系统的调节,该系统已被证明在铁死亡中发挥作用[7]。铁蛋白自噬——一种NCOA4 (核受体共激活因子4)介导的溶酶体中铁蛋白自噬降解——已被证明通过从铁蛋白中释放游离铁来诱导铁死亡[7] [8]。此外,铁输出蛋白ferroportin (FPN)也被证明在体外调节细胞对铁死亡的敏感性[9]

2.2. 脂质过氧化

脂质过氧化分三个步骤发生:起始、传播和终止[10]。亚铁离子通过芬顿反应产生的活性氧(ROS)可氧化细胞膜、质膜中多不饱和脂肪酸中的磷脂,从而引起脂质过氧化,生成脂质过氧化物质(PUFA-OOH),且如果形成的PLOOH并没有足够快地中和,它可以在不稳定铁存在下将过氧化传播到邻近PUFA-PL,最后,当繁殖不能再继续时,要么没有更多可用的脂质底物,要么当细胞抗氧化剂减少氧化的脂质时,就会发生终止[5]。脂质过氧化物通过分解代谢可产生具有毒性的4-羟基-2-壬烯醛或丙二醛[11],联合细胞膜、质膜上持续的氧化反应,从而破坏细胞膜的结构稳定性,攻击细胞DNA和蛋白质,导致铁死亡。脂质过氧化可分为非酶性脂质过氧化(自氧化)和酶性脂质过氧化[5],这是一种由自由基催化的反应。自氧化中的ROS启动多不饱和脂肪酸(PUFAs)的氧化,特别是花生四烯酸和肾上腺素,导致过氧化物的积累。酶促脂质过氧化受LOXs活性调控。脂氧合酶(LOXs)是一类含铁酶[12],可以直接氧化细胞膜和含PUFAs的脂质中的PUFAs,介导脂质过氧化产生过氧化氢。而脂质的不饱和程度决定了细胞对铁死亡的敏感性。

2.3. 氧化应激与抗氧化系统失衡

正常情况下,细胞氧化应激与抗氧化防御系统处于动态平衡中,抗氧化系统通过清除自由基或间接消耗诱导自由基生成的化合物,从而防止铁死亡,在防止过氧化损伤方面起着至关重要的作用。GSH (最丰富的还原剂)对铁硫簇生物发生至关重要,并作为各种酶的辅助因子,如谷胱甘肽过氧化物酶和转移酶System Xc、GSH合成和GPX4已被证明可以防止由多种氧化应激反应引发的细胞死亡。表征良好的系统Xc-GSH-GPX4轴作为GPX4依赖性机制,通过系统Xc介导的GSH合成清除磷脂过氧化物。此外,抑制系统Xc的任一组分(即SLC7A11或SLC3A2)通过破坏胱氨酸的摄取诱导铁死亡,从而限制GSH合成。在该通路中,GPX4是铁死亡的重要调节因子[1] [13]。其次,在2019年,FSP1依赖性代谢途径被证明可以通过GPX4非依赖性过程防止铁死亡。具体来说,两组同时报道FSP1通过降低质膜的CoQ 10水平来捕获脂质过氧自由基以抑制铁死亡[12] [14],这一过程独立于系统Xc-GSH-GPX4通路。第三,毛等人表明,位于线粒体内膜的DHODH可以通过减少辅酶Q形成泛醇(一种抑制铁死亡的抗氧化剂)来防止铁死亡[15]。最后,Liang等人最近确定了PL修饰酶MBOAT1和MBOAT2是新型性激素依赖性铁死亡抑制剂[16]。从机制上讲,作者表明MBOAT1/2通过重塑细胞PL来保护细胞免受独立于GPX4的铁死亡,从而提供新的铁死亡靶向治疗策略。

3. Nrf2在铁死亡中的重要作用

有趣的是,许多防止脂质过氧化和导致铁死亡的蛋白质和酶是Nrf2基因的靶标[17]。核因子红细胞2相关因子2 (NFE2L2,也称为Nrf2)是细胞抗氧化反应的关键转录因子,它通过与抗氧化反应元件(ARE)结合来促进下游基因的转录。大量研究表明,Nrf2在铁死亡的调节中发挥着极其重要的作用,因为它在铁、脂质和抗氧化损伤等方面具有多种功能。在正常生理条件下,Nrf2与细胞质中的Kelch样ECH相关蛋白1 (Keap1)结合,并通过泛素–蛋白酶体途径持续降解。在氧化应激下,Nrf2通过与细胞质抑制剂Keap1解离来介导解毒,然后转位到细胞核中,激活Nrf2转录基因并保护细胞免受氧化应激[18]。Nrf2的激活减少了铁的吸收,限制了ROS的产生并增强了细胞抗氧化能力[18]-[21]。因此,Nrf2可以抑制铁死亡。此外,GSH催化和调节依赖性亚基——谷氨酸半胱氨酸连接酶催化/谷氨酸半胱氨酸连接酶修饰子基、谷胱甘肽合成酶和SLC7A11——也是Nrf2的转录靶标。Keap1-Nrf2信号通路的激活促进系统xc-激活和GPX4表达,加速胱氨酸–谷氨酸转运,从而清除积累的脂质过氧化物并抑制铁死亡[22] [23]。Nrf2在呼吸系统疾病中通过多种通路调控细胞铁死亡,如通过SLC7A11调节铁过载,通过调节血红素加氧酶1 (HO-1)来调节脂质过氧化及抗氧化反应,从而影响呼吸系统疾病的发生发展。接下来,我们将主要概述非小细胞肺癌、COPD、肺纤维化、急性肺损伤四种疾病中,Nrf2通过影响细胞铁死亡对上述疾病的发生发展及治疗中的研究进展。

3.1. 肺恶性肿瘤

肺癌是发病率最高的恶性肿瘤,是全球癌症相关死亡的主要原因,吸烟是其主要的致病因素,铁死亡在肺癌中起着至关重要的作用[24],而非小细胞肺癌在肺癌中占有巨大比例,故我们主要阐述Nrf2通过调控铁死亡在非小细胞肺癌中的机制和应用。Nrf2是细胞保护反应的关键调节因子,主要作为控制多个防御基因表达的转录因子。大约三分之一的NSCLC患者携带Nrf2或其负调节因子kelch如ECH相关蛋白1 (KEAP1)突变[25]。在铁死亡激活剂的刺激或氧化刺激情况下,Nrf2与KEAP1解离,导致Nrf2蛋白稳定并易位到细胞核。Nrf2的激活通过上调各种靶基因,例如血红素加氧酶1 (HO-1) [26] [27]、SLC7A11 [28]、GPX4和超氧化物歧化酶2 (SOD2) [29]来负向调节肺癌细胞中的铁死亡。丝氨酸/苏氨酸激酶11 (STK11)和KEAP1共突变进一步增强了NFE2L2活性,从而诱导肺癌细胞中铁死亡保护基因的表达,例如硬脂酰辅酶A去饱和酶(SCD)和醛酮还原酶1 C家族1/2/3 (AKR1C1/2/3) [30]。这些数据对于进一步评估体内携带NEF2L2和KEAP突变的肺癌细胞的铁死亡敏感性可能很重要。

Nrf2的表达还受肺癌细胞中泛素特异性肽酶11 (USP11)和激活转录因子2 (ATF2)的调节。在机械上,去泛素酶USP11通过稳定H1299细胞中的Nrf2蛋白来抑制铁死亡细胞[31]。相比之下,USP11耗竭增加了对铁死亡诱导的敏感性,这有助于抑制肺癌细胞增殖[32]。ATF2通过上调A549细胞中的Nrf2显著抑制JQ1的铁死亡诱导作用[31]。在这方面,可以利用Nrf2的药理学抑制来增强肺癌治疗中的铁死亡。

有研究发现,银杏素使NRF2/HO-1轴失活,并由于其对Nrf2介导氧化还原反应的破坏而增加了ROS的形成,否则,铁死亡会被逆转[27],表明银杏仁蛋白在启动铁死亡中是必不可少的,从而加强了顺铂治疗的NSCLC的抗癌作用[27]

Li等人发现erastin和sorafenib都可以通过积累ROS和抑制Nrf2/xCT通路诱导顺铂耐药的NSCLC细胞发生铁死亡,表明erastin对化疗耐药有治疗作用。与体外事实一致,erastin和sorafenib也可以在体内抑制肿瘤生长[28]。此外,Liang等人新发现了一种erastin类似物PRLX93936,它可以与顺铂协同上调ROS、脂质过氧化和Fe2+水平。同时,它还下调GPX4和NRF2表达,协同诱导NSCLC细胞铁死亡。进一步的结果指出,Nrf2/Keap1通路参与了这一过程,对抗顺铂耐药至关重要。抑制KEAP1能够在NSCLC细胞中沉默时挽救Nrf2的影响[28]。Gai等人发现,当对乙酰氨基酚与erastin共同处理时,它会升高脂质过氧化物的水平并减弱谷胱甘肽。最后,对乙酰氨基酚使NSCLC细胞对铁死亡敏感,这种协同效应也在体内得到证实。此外,观察到Nrf2和血红素加氧酶-1表达急剧下降,这可能是解释对乙酰氨基酚诱导铁死亡具体机制的关键。然而,这种变化可以通过甲基巴多索酮逆转[26]

我们可以通过抑制Nrf2的活性来促进肿瘤细胞的铁死亡,从而阻止肿瘤的进展。目前对Nrf2靶向铁死亡在治疗肺癌中的研究有很多,并涉及了一些中草药物,这对非小细胞肺癌尤其是耐传统铂类多疗程化疗带来新的治疗前景。

3.2. COPD

COPD包括了慢性支气管炎及肺气肿,由于气道炎症和过量粘液的阻塞发生在肺(称为支气管和细支气管)的气道,导致气流减少。这最终导致输送到身体组织的氧气量减少。COPD是发达国家的主要死亡原因之一,对男性和女性都有影响。吸烟是大多数COPD的病因,占COPD相关死亡的80%~90% [33]。Masahiro Yoshida等人通过建立体内及体外模型证明了香烟烟雾诱导的COPD中铁死亡发挥了重要作用,而GPx4调节的脂质过氧化和NCOA4介导的铁蛋白自噬都参与其中[34]。这表明,铁死亡在COPD的发生进展中有着重要的作用。

目前已有多篇文献证明通过Nrf2的激活来抑制铁死亡,从而延缓COPD的进展。王莹等人通过建立WT C57BL/6和Nrf2基因敲除小鼠模型验证了H2S通过调节Nrf2-PPAR-铁蛋白自噬信号通路恢复氧化还原平衡和抑制铁死亡,缓解PM诱导的肺气肿和气道炎症[35]。刘向明等人证明二氢槲皮素(DHQ)以浓度依赖性方式增加Nrf2的水平,激活Nrf2依赖性信号通路在体内和体外显着逆转香烟烟雾诱导的铁死亡[36]。有研究发现,黄芩素抑制脂质过氧化、GPX4下调和Nrf2/HO-1通路过度激活;此外,黄芩素通过直接螯合铁来抑制铁死亡,从而缓解COPD,突出了其作为有效铁死亡抑制剂的潜力[37]

这些研究为COPD的控制与治疗提供了新的方向,我们可以通过激活Nrf2促进下游靶标的转录进而增强细胞抗铁死亡、抗氧化的能力,从而控制COPD气道炎症反应及减缓其功能下降,提高患者生活质量。

3.3. 急性肺损伤

急性肺损伤/急性呼吸窘迫综合征(ALI/ARDS)是一种常见的呼吸系统危重疾病,ALI是ARDS的初级阶段[38],可以由多种原因引起,包括肺炎及脓毒症[39]、放疗、缺血与再灌注损伤[40]、急性胰腺炎[41]等。而其中肺炎及脓毒症是ALI/ARDS的主要致病因素。越来越多的研究表明,铁死亡积极参与许多类型急性肺损伤的病理生理过程。此外,Nrf2调节铁死亡在急性肺损伤已有许多研究。

有研究表明,Nrf2促进STAT3激活[42]。STAT3的过表达上调SLC7A11并抑制铁死亡,从而减轻肠缺血诱导的ALI [42]。此外,Nrf2通过调节toll样受体4 (TLR4)和Akt信号通路来调节小鼠肺上皮细胞的铁死亡。Nrf2的缺失上调TLR4,增加肠缺血再灌注诱导的Akt失活,从而导致细胞铁死亡,这些结果表明,Nrf2/TLR4/Akt轴在炎症相关的肺损伤中发挥作用,提示治疗肺损伤的潜在治疗靶点[43]。Hui等人通过建立肠缺血/再灌注诱导的急性肺损伤(IIR-ALI)模型发现Nrf2促进端粒酶逆转录酶TERT及SLC7A11的表达,降低细胞内ROS水平来缓解肠缺血/再灌注诱导的急性肺损伤(IIR-ALI)小鼠模型肺组织中的铁死亡[44],此外,Nrf2还可以通过调节HO-1来抑制铁死亡从而改善由肠缺血再灌注引起的ALI [45]

Nrf2可以通过多种途径调节ALI中的铁死亡。如促进STAT3和TERT的表达,上调SLC7A11、HO-1,此外,Nrf2还可以通过增加AKT的活性来下调TLR4并抑制铁死亡。铁死亡在ALI中起重要作用,抑制铁死亡可有效缓解ALI。

故而通过激活Nrf2的表达可以间接抑制ALI中的铁死亡,如p53细胞凋亡刺激蛋白(iASPP)的抑制剂可以通过Nrf2信号传导抑制小鼠铁死亡并减轻由肠道缺血再灌注引起的ALI [46]

有研究表明PX (panaxydol)可逆转LPS诱导的急性肺损伤的细胞活力降低,细胞死亡和Fe2+积累增加,处理组中Keap1的表达显著降低,Nrf2和HO-1的表达增加,这表明PX通过上调Keap1-Nrf2/HO-1通路来缓解ALI [47]。Obacunone被认为是一种强大的Nrf-2激动剂,Li等人证实了欧巴豆酮具有靶向铁死亡治疗LPS诱导的ALI的潜力。通过降低Fe2+和4-HNE含量以及上调GPX4和SLC7A11。其作用机制可能与抑制Nrf2泛素化蛋白酶体的降解,从而激活Nrf2有关[48]。体外实验表明,阿魏酸处理通过激活了Nrf2/HO-1信号传导减弱了LPS诱导的MLE-12细胞中铁死亡,从而为ALI治疗提供了一种新的方法[49]。此外,二甲基甲酰胺(DMF)促进Nrf2转位到细胞核中,抑制MLE-12细胞中铁死亡的发生,进而减轻海水淹死引起的ALI [50]。此外,衣康酸盐是炎性巨噬细胞的代谢产物,通过Nrf2途径抑制铁死亡并减轻脓毒症诱导的ALI [51]

目前已发现多种化合物及药物可以通过激活Nrf2抑制铁死亡的发生进而缓解急性肺损伤的进展恶化。这对急性肺损伤的控制及治疗有积极的意义。

3.4. 肺纤维化

肺纤维化(pulmonary fibrosis, PF)是一种慢性进行性的肺部疾病,主要影响肺间质,导致气体交换受损进而引起呼吸困难、生活质量受损,许多患者最终会出现呼吸衰竭和死亡。最常见的是特发性肺纤维化(IPF),特发性肺纤维化是一种普遍进展性疾病,预后较差。如果不治疗,预期寿命只有3~5年。

目前的发病机制是PF由异常的伤口愈合过程引起。各种诱因(通常是疾病依赖性诱因)引发了过度的炎症和纤维化反应。目前注册用于治疗IPF的抗纤维化药物尼达尼布和吡非尼酮虽能缓解疾病的进展,改善患者疾病症状及生活质量,但却不能逆转肺纤维化[52]

有相关研究证明,肺部的铁代谢紊乱与肺纤维化的发生和进展密切相关,肺纤维化的患者及使用肺部纤维化诱导剂(如博莱霉素)的小鼠模型的肺部组织切片都可以看到铁积累,而使用铁螯合剂可以改善肺纤维化小鼠模型的纤维化进展及肺功能下降[53],另外,组织学及肺泡灌洗液研究发现肺泡和间质间隙中含铁的巨噬细胞簇数量增加,驱动巨噬细胞产生活性氧,并导致DNA断裂、脂质过氧化和蛋白质的氧化损伤[54]。这些发现表明,氧化应激和铁代谢紊乱会产生正反馈,促进纤维化的进展[55]。Nrf2作为一种抗氧化的转录因子在延缓肺纤维化的进展中起到了重要作用,而这种作用与抗氧化应激及调节铁死亡密切相关。

Sun等人通过建立肺纤维化体内小鼠模型及体外细胞模型发现月经血源性干细胞外泌体miR-let-7通过Sp3/HDAC2/Nrf2信号通路抑制铁死亡改善肺纤维化,MenSCs衍生的外泌体可以将miR-let-7传递到MLE-12细胞中以抑制Sp3的表达,从而减弱Sp3对HDAC2的募集作用,解除HDAC2对Nrf2的脱乙酰限制,并增强Nrf2通路。这些变化进一步降低了铁死亡,并延迟了PF中氧化损伤和肺上皮细胞凋亡的病理过程[56]。Li等人发现铁死亡抑制剂liproxstatin-1可以降低辐射诱导肺纤维化(RILF)的活性氧及炎性因子水平,上调Nrf2、HO-1和NQO1的蛋白质及mRNA水平。通过激活Nrf2通路下调TGF-β1来缓解辐射诱导的肺纤维化,为RILF提供了新的治疗靶点[57]。此外,百草枯(PQ)中毒可诱发急性肺损伤和纤维化,死亡率极高。Song等人发现,雷公藤在小鼠模型中可以减轻PQ诱导的肺损伤和纤维化。进一步研究发现雷公藤降低了肺氧化应激,表现在雷公藤处理组MDA、GSH和ROS水平降低,超氧化物歧化酶(SOD)水平、铁浓度增加。PQ暴露后GPX4表达降低,以及PQ诱导的Nrf2和HO-1过表达的缓解。证明了雷公藤可能通过调节铁死亡而对PQ诱导的肺损伤和纤维化治疗有一定的潜力[58]。Empagliflozin (EMPA)是一种钠–葡萄糖协同转运蛋白2 (SGLT2)抑制剂,在PF中具有保护潜力。最近的研究发现EMPA通过增强自噬和调节sestrin2/腺苷单磷酸活化蛋白激酶(AMPK)/核因子红细胞2相关因子2 (Nrf2)/血红素加氧酶1信号传导来防止BLM诱导的PF相关细胞应激[59]

以上发现表明,Nrf2通过Nrf2/HO-1、Nrf2/GPX4等通路来抑制肺纤维化中氧化应激及铁死亡,从而缓解肺纤维化的进展,故而找到靶向Nrf2的激活剂对肺纤维化的治疗有广阔的前景。

4. 小结与展望

转录因子核因子红系2相关因子2 (Nrf2)是细胞抗氧化反应的关键调节因子,控制抗氧化应激和亲电应激的基因表达。Nrf2是抗铁蛋白基因的重要转录调节因子,其靶基因可防止脂质过氧化和游离铁的积累。其在呼吸系统疾病中发挥了不可磨灭的作用。在非小细胞肺恶性肿瘤中,Nrf2可通过上调靶基因血红素加氧酶1 (HO-1)、SLC7A11、GPX4和超氧化物歧化酶2 (SOD2)来抑制肿瘤细胞铁死亡,我们可以通过抑制Nrf2及下游基因的表达来控制肿瘤进展;在COPD、肺纤维化、急性肺损伤等炎症性疾病中,我们则可以通过激活Nrf2-PPAR-铁蛋白自噬信号、Nrf2/HO-1、Nrf2/SLC7A11/GPX4等通路从而控制上述疾病中的氧化应激及炎症反应,延缓疾病的发生进展。

目前,已有多种药物通过靶向Nrf2来调控铁死亡,然而,这些药物的临床应用仍面临挑战,需要进一步的研究来优化药物的疗效和安全性。随着对Nrf2在铁死亡调控机制中的深入研究,我们有望开发出更多有效的药物来干预肺部疾病的发生和发展。同时,通过多组学和系统生物学的方法,我们可以更全面地理解Nrf2在肺部疾病中的作用网络,为个性化治疗和精准医疗提供新的策略。

基金项目

重庆市自然科学基金面上项目(CSTB2022NSCQ-M SX0127)。

NOTES

*通讯作者。

参考文献

[1] Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072.
https://doi.org/10.1016/j.cell.2012.03.042
[2] Wen, Q., Liu, J., Kang, R., Zhou, B. and Tang, D. (2019) The Release and Activity of HMGB1 in Ferroptosis. Biochemical and Biophysical Research Communications, 510, 278-283.
https://doi.org/10.1016/j.bbrc.2019.01.090
[3] Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., et al. (2016) Ferroptosis: Process and Function. Cell Death & Differentiation, 23, 369-379.
https://doi.org/10.1038/cdd.2015.158
[4] Friedmann Angeli, J.P., Schneider, M., Proneth, B., Tyurina, Y.Y., Tyurin, V.A., Hammond, V.J., et al. (2014) Inactivation of the Ferroptosis Regulator Gpx4 Triggers Acute Renal Failure in Mice. Nature Cell Biology, 16, 1180-1191.
https://doi.org/10.1038/ncb3064
[5] Liang, D., Minikes, A.M. and Jiang, X. (2022) Ferroptosis at the Intersection of Lipid Metabolism and Cellular Signaling. Molecular Cell, 82, 2215-2227.
https://doi.org/10.1016/j.molcel.2022.03.022
[6] Chen, X., Yu, C., Kang, R. and Tang, D. (2020) Iron Metabolism in Ferroptosis. Frontiers in Cell and Developmental Biology, 8, Article 590226.
https://doi.org/10.3389/fcell.2020.590226
[7] Gao, M., Monian, P., Quadri, N., Ramasamy, R. and Jiang, X. (2015) Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular Cell, 59, 298-308.
https://doi.org/10.1016/j.molcel.2015.06.011
[8] Gao, M., Monian, P., Pan, Q., Zhang, W., Xiang, J. and Jiang, X. (2016) Ferroptosis Is an Autophagic Cell Death Process. Cell Research, 26, 1021-1032.
https://doi.org/10.1038/cr.2016.95
[9] Geng, N., Shi, B.J., Li, S.L., et al. (2018) Knockdown of Ferroportin Accelerates Erastin-Induced Ferroptosis in Neuroblastoma Cells. European Review for Medical and Pharmacological Sciences, 22, 3826-3836.
[10] Yin, H., Xu, L. and Porter, N.A. (2011) Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chemical Reviews, 111, 5944-5972.
https://doi.org/10.1021/cr200084z
[11] Ayala, A., Muñoz, M.F. and Argüelles, S. (2014) Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity, 2014, 1-31.
https://doi.org/10.1155/2014/360438
[12] Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I., et al. (2019) FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature, 575, 693-698.
https://doi.org/10.1038/s41586-019-1707-0
[13] Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by Gpx4. Cell, 156, 317-331.
https://doi.org/10.1016/j.cell.2013.12.010
[14] Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H., et al. (2019) The Coq Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature, 575, 688-692.
https://doi.org/10.1038/s41586-019-1705-2
[15] Mao, C., Liu, X., Zhang, Y., Lei, G., Yan, Y., Lee, H., et al. (2021) DHODH-Mediated Ferroptosis Defence Is a Targetable Vulnerability in Cancer. Nature, 593, 586-590.
https://doi.org/10.1038/s41586-021-03539-7
[16] Liang, D., Feng, Y., Zandkarimi, F., Wang, H., Zhang, Z., Kim, J., et al. (2023) Ferroptosis Surveillance Independent of GPX4 and Differentially Regulated by Sex Hormones. Cell, 186, 2748-2764.e22.
https://doi.org/10.1016/j.cell.2023.05.003
[17] Xu, W., Deng, H., Hu, S., Zhang, Y., Zheng, L., Liu, M., et al. (2021) Role of Ferroptosis in Lung Diseases. Journal of Inflammation Research, 14, 2079-2090.
https://doi.org/10.2147/jir.s307081
[18] Sun, X., Niu, X., Chen, R., He, W., Chen, D., Kang, R., et al. (2016) Metallothionein-1G Facilitates Sorafenib Resistance through Inhibition of Ferroptosis. Hepatology, 64, 488-500.
https://doi.org/10.1002/hep.28574
[19] Chen, G., Wei, J. and Lyu, X. (2018) Research Progress of Nuclear Factor-Erythroid 2 Related Factor 2 in Acute Lung Injury. Chinese Critical Care Medicine, 30, 270-274.
[20] Dodson, M., Castro-Portuguez, R. and Zhang, D.D. (2019) NRF2 Plays a Critical Role in Mitigating Lipid Peroxidation and Ferroptosis. Redox Biology, 23, Article 101107.
https://doi.org/10.1016/j.redox.2019.101107
[21] Sun, X., Ou, Z., Chen, R., Niu, X., Chen, D., Kang, R., et al. (2015) Activation of the p62-Keap1-NRF2 Pathway Protects against Ferroptosis in Hepatocellular Carcinoma Cells. Hepatology, 63, 173-184.
https://doi.org/10.1002/hep.28251
[22] Jiang, L., Kon, N., Li, T., Wang, S., Su, T., Hibshoosh, H., et al. (2015) Ferroptosis as a P53-Mediated Activity during Tumour Suppression. Nature, 520, 57-62.
https://doi.org/10.1038/nature14344
[23] Chen, D., Tavana, O., Chu, B., Erber, L., Chen, Y., Baer, R., et al. (2017) NRF2 Is a Major Target of ARF in P53-Independent Tumor Suppression. Molecular Cell, 68, 224-232.e4.
https://doi.org/10.1016/j.molcel.2017.09.009
[24] Wu, S., Zhu, C., Tang, D., Dou, Q.P., Shen, J. and Chen, X. (2021) The Role of Ferroptosis in Lung Cancer. Biomarker Research, 9, Article No. 82.
https://doi.org/10.1186/s40364-021-00338-0
[25] Hayes, J.D. and McMahon, M. (2009) NRF2 and KEAP1 Mutations: Permanent Activation of an Adaptive Response in Cancer. Trends in Biochemical Sciences, 34, 176-188.
https://doi.org/10.1016/j.tibs.2008.12.008
[26] Gai, C., Yu, M., Li, Z., Wang, Y., Ding, D., Zheng, J., et al. (2019) Acetaminophen Sensitizing Erastin-Induced Ferroptosis via Modulation of NRF2/Heme Oxygenase-1 Signaling Pathway in Non-Small-Cell Lung Cancer. Journal of Cellular Physiology, 235, 3329-3339.
https://doi.org/10.1002/jcp.29221
[27] Lou, J., Zhao, L., Huang, Z., Chen, X., Xu, J., TAI, W.C., et al. (2021) Ginkgetin Derived from Ginkgo biloba Leaves Enhances the Therapeutic Effect of Cisplatin via Ferroptosis-Mediated Disruption of the Nrf2/HO-1 Axis in EGFR Wild-Type Non-Small-Cell Lung Cancer. Phytomedicine, 80, Article 153370.
https://doi.org/10.1016/j.phymed.2020.153370
[28] Li, Y., Yan, H., Xu, X., Liu, H., Wu, C. and Zhao, L. (2019) Erastin/Sorafenib Induces Cisplatin‑Resistant Non‑Small Cell Lung Cancer Cell Ferroptosis through Inhibition of the Nrf2/xCT Pathway. Oncology Letters, 19, 323-333.
https://doi.org/10.3892/ol.2019.11066
[29] Ma, C., Lv, Q., Zhang, K., Tang, Y., Zhang, Y., Shen, Y., et al. (2020) NRF2-GPX4/SOD2 Axis Imparts Resistance to EGFR-Tyrosine Kinase Inhibitors in Non-Small-Cell Lung Cancer Cells. Acta Pharmacologica Sinica, 42, 613-623.
https://doi.org/10.1038/s41401-020-0443-1
[30] Wohlhieter, C.A., Richards, A.L., Uddin, F., Hulton, C.H., Quintanal-Villalonga, À., Martin, A., et al. (2020) Concurrent Mutations in STK11 and KEAP1 Promote Ferroptosis Protection and SCD1 Dependence in Lung Cancer. Cell Reports, 33, Article 108444.
https://doi.org/10.1016/j.celrep.2020.108444
[31] Wang, L., Chen, Y., Mi, Y., Qiao, J., Jin, H., Li, J., et al. (2021) ATF2 Inhibits Ani-Tumor Effects of BET Inhibitor in a Negative Feedback Manner by Attenuating Ferroptosis. Biochemical and Biophysical Research Communications, 558, 216-223.
https://doi.org/10.1016/j.bbrc.2020.08.113
[32] Meng, C., Zhan, J., Chen, D., Shao, G., Zhang, H., Gu, W., et al. (2021) The Deubiquitinase USP11 Regulates Cell Proliferation and Ferroptotic Cell Death via Stabilization of NRF2 USP11 Deubiquitinates and Stabilizes Nrf2. Oncogene, 40, 1706-1720.
https://doi.org/10.1038/s41388-021-01660-5
[33] Christenson, S.A., Smith, B.M., Bafadhel, M., et al. (2022) Chronic Obstructive Pulmonary Disease. The Lancet, 399, 2227-2242.
https://doi.org/10.1016/S0140-6736(22)00470-6
[34] Yoshida, M., Minagawa, S., Araya, J., Sakamoto, T., Hara, H., Tsubouchi, K., et al. (2019) Involvement of Cigarette Smoke-Induced Epithelial Cell Ferroptosis in COPD Pathogenesis. Nature Communications, 10, Article No. 3145.
https://doi.org/10.1038/s41467-019-10991-7
[35] Wang, Y., Liao, S., Pan, Z., Jiang, S., Fan, J., Yu, S., et al. (2022) Hydrogen Sulfide Alleviates Particulate Matter-Induced Emphysema and Airway Inflammation by Suppressing Ferroptosis. Free Radical Biology and Medicine, 186, 1-16.
https://doi.org/10.1016/j.freeradbiomed.2022.04.014
[36] Liu, X., Ma, Y., Luo, L., Zong, D., Li, H., Zeng, Z., et al. (2022) Dihydroquercetin Suppresses Cigarette Smoke Induced Ferroptosis in the Pathogenesis of Chronic Obstructive Pulmonary Disease by Activating Nrf2-Mediated Pathway. Phytomedicine, 96, Article 153894.
https://doi.org/10.1016/j.phymed.2021.153894
[37] Liu, L., Zhang, Y., Wang, L., Liu, Y., Chen, H., Hu, Q., et al. (2023) Scutellarein Alleviates Chronic Obstructive Pulmonary Disease through Inhibition of Ferroptosis by Chelating Iron and Interacting with Arachidonate 15-Lipoxygenase. Phytotherapy Research, 37, 4587-4606.
https://doi.org/10.1002/ptr.7928
[38] Parekh, D., Dancer, R.C. and Thickett, D.R. (2011) Acute Lung Injury. Clinical Medicine, 11, 615-618.
https://doi.org/10.7861/clinmedicine.11-6-615
[39] Kumar, V. (2020) Pulmonary Innate Immune Response Determines the Outcome of Inflammation during Pneumonia and Sepsis-Associated Acute Lung Injury. Frontiers in Immunology, 11, Article 1722.
https://doi.org/10.3389/fimmu.2020.01722
[40] Zhang, F., Li, Z., Xu, X., Hu, Y., Yao, J., Xu, W., et al. (2014) Protective Effects of Icariin-Mediated SIRT1/FOXO3 Signaling Pathway on Intestinal Ischemia/Reperfusion-Induced Acute Lung Injury. Molecular Medicine Reports, 11, 269-276.
https://doi.org/10.3892/mmr.2014.2679
[41] Ge, P., Luo, Y., Okoye, C.S., Chen, H., Liu, J., Zhang, G., et al. (2020) Intestinal Barrier Damage, Systemic Inflammatory Response Syndrome, and Acute Lung Injury: A Troublesome Trio for Acute Pancreatitis. Biomedicine & Pharmacotherapy, 132, Article 110770.
https://doi.org/10.1016/j.biopha.2020.110770
[42] Qiang, Z., Dong, H., Xia, Y., Chai, D., Hu, R. and Jiang, H. (2020) Nrf2 and STAT3 Alleviates Ferroptosis-Mediated IIR-ALI by Regulating SLC7A11. Oxidative Medicine and Cellular Longevity, 2020, 1-16.
https://doi.org/10.1155/2020/5146982
[43] Yan, J., Li, J., Zhang, L., Sun, Y., Jiang, J., Huang, Y., et al. (2018) Nrf2 Protects against Acute Lung Injury and Inflammation by Modulating TLR4 and Akt Signaling. Free Radical Biology and Medicine, 121, 78-85.
https://doi.org/10.1016/j.freeradbiomed.2018.04.557
[44] Dong, H., Xia, Y., Jin, S., Xue, C., Wang, Y., Hu, R., et al. (2021) Nrf2 Attenuates Ferroptosis-Mediated IIR-ALI by Modulating TERT and SLC7A11. Cell Death & Disease, 12, Article No. 1027.
https://doi.org/10.1038/s41419-021-04307-1
[45] Luo, L., Huang, F., Zhong, S., Ding, R., Su, J. and Li, X. (2022) Astaxanthin Attenuates Ferroptosis via Keap1-Nrf2/HO-1 Signaling Pathways in LPS-Induced Acute Lung Injury. Life Sciences, 311, Article 121091.
https://doi.org/10.1016/j.lfs.2022.121091
[46] Li, Y., Cao, Y., Xiao, J., Shang, J., Tan, Q., Ping, F., et al. (2020) Inhibitor of Apoptosis-Stimulating Protein of P53 Inhibits Ferroptosis and Alleviates Intestinal Ischemia/Reperfusion-Induced Acute Lung Injury. Cell Death & Differentiation, 27, 2635-2650.
https://doi.org/10.1038/s41418-020-0528-x
[47] Li, J., Lu, K., Sun, F., Tan, S., Zhang, X., Sheng, W., et al. (2021) Panaxydol Attenuates Ferroptosis against LPS-Induced Acute Lung Injury in Mice by Keap1-Nrf2/HO-1 Pathway. Journal of Translational Medicine, 19, Article No. 96.
https://doi.org/10.1186/s12967-021-02745-1
[48] Li, J., Deng, S., Li, J., Li, L., Zhang, F., Zou, Y., et al. (2022) Obacunone Alleviates Ferroptosis during Lipopolysaccharide-Induced Acute Lung Injury by Upregulating Nrf2-Dependent Antioxidant Responses. Cellular & Molecular Biology Letters, 27, Article No. 29.
https://doi.org/10.1186/s11658-022-00318-8
[49] Tang, X., Liu, J., Yao, S., Zheng, J., Gong, X. and Xiao, B. (2022) Ferulic Acid Alleviates Alveolar Epithelial Barrier Dysfunction in Sepsis-Induced Acute Lung Injury by Activating the Nrf2/HO-1 Pathway and Inhibiting Ferroptosis. Pharmaceutical Biology, 60, 2286-2294.
https://doi.org/10.1080/13880209.2022.2147549
[50] Qiu, Y., Wan, B., Liu, G., Wu, Y., Chen, D., Lu, M., et al. (2020) Nrf2 Protects against Seawater Drowning-Induced Acute Lung Injury via Inhibiting Ferroptosis. Respiratory Research, 21, Article No. 232.
https://doi.org/10.1186/s12931-020-01500-2
[51] He, R., Liu, B., Xiong, R., Geng, B., Meng, H., Lin, W., et al. (2022) Itaconate Inhibits Ferroptosis of Macrophage via Nrf2 Pathways against Sepsis-Induced Acute Lung Injury. Cell Death Discovery, 8, Article No. 43.
https://doi.org/10.1038/s41420-021-00807-3
[52] Koudstaal, T., Funke-Chambour, M., Kreuter, M., Molyneaux, P.L. and Wijsenbeek, M.S. (2023) Pulmonary Fibrosis: From Pathogenesis to Clinical Decision-making. Trends in Molecular Medicine, 29, 1076-1087.
https://doi.org/10.1016/j.molmed.2023.08.010
[53] Ali, M.K., Kim, R.Y., Brown, A.C., Donovan, C., Vanka, K.S., Mayall, J.R., et al. (2020) Critical Role for Iron Accumulation in the Pathogenesis of Fibrotic Lung Disease. The Journal of Pathology, 251, 49-62.
https://doi.org/10.1002/path.5401
[54] Lee, J., Arisi, I., Puxeddu, E., Mramba, L.K., Amicosante, M., Swaisgood, C.M., et al. (2018) Bronchoalveolar Lavage (BAL) Cells in Idiopathic Pulmonary Fibrosis Express a Complex Pro-Inflammatory, Pro-Repair, Angiogenic Activation Pattern, Likely Associated with Macrophage Iron Accumulation. PLOS ONE, 13, e0194803.
https://doi.org/10.1371/journal.pone.0194803
[55] Bargagli, E., Refini, R.M., d’Alessandro, M., Bergantini, L., Cameli, P., Vantaggiato, L., et al. (2020) Metabolic Dysregulation in Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences, 21, Article 5663.
https://doi.org/10.3390/ijms21165663
[56] Sun, L., He, X., Kong, J., Yu, H. and Wang, Y. (2024) Menstrual Blood-Derived Stem Cells Exosomal Mir-Let-7 to Ameliorate Pulmonary Fibrosis through Inhibiting Ferroptosis by Sp3/HDAC2/Nrf2 Signaling Pathway. International Immunopharmacology, 126, Article 111316.
https://doi.org/10.1016/j.intimp.2023.111316
[57] Li, X., Duan, L., Yuan, S., Zhuang, X., Qiao, T. and He, J. (2019) Ferroptosis Inhibitor Alleviates Radiation-Induced Lung Fibrosis (RILF) via Down-Regulation of TGF-β1. Journal of Inflammation, 16, Article No. 11.
https://doi.org/10.1186/s12950-019-0216-0
[58] Song, C., Feng, M., Li, L., Wang, P., Lu, X. and Lu, Y. (2023) Tripterygium Wilfordii Hook.f. Ameliorates Paraquat-Induced Lung Injury by Reducing Oxidative Stress and Ferroptosis via Nrf2/HO-1 Pathway. Ecotoxicology and Environmental Safety, 252, Article 114575.
https://doi.org/10.1016/j.ecoenv.2023.114575
[59] El-Horany, H.E., Atef, M.M., Abdel Ghafar, M.T., Fouda, M.H., Nasef, N.A., Hegab, I.I., et al. (2023) Empagliflozin Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Rats by Modulating Sesn2/AMPK/Nrf2 Signaling and Targeting Ferroptosis and Autophagy. International Journal of Molecular Sciences, 24, Article 9481.
https://doi.org/10.3390/ijms24119481

Baidu
map