[1] |
Djandja, O.S., Wang, Z., Chen, L., Qin, L., Wang, F., Xu, Y., et al. (2020) Progress in Hydrothermal Liquefaction of Algal Biomass and Hydrothermal Upgrading of the Subsequent Crude Bio-Oil: A Mini Review. Energy & Fuels, 34, 11723-11751. https://doi.org/10.1021/acs.energyfuels.0c01973 |
[2] |
Bassoli, S.C., da Fonseca, Y.A., Wandurraga, H.J.L., Baeta, B.E.L. and de Souza Amaral, M. (2023) Research Progress, Trends, and Future Prospects on Hydrothermal Liquefaction of Algae for Biocrude Production: A Bibliometric Analysis. Biomass Conversion and Biorefinery, 2, Article ID: 100819. https://doi.org/10.1007/s13399-023-03905-7 |
[3] |
Lu, J., Watson, J., Liu, Z. and Wu, Y. (2022) Elemental Migration and Transformation during Hydrothermal Liquefaction of Biomass. Journal of Hazardous Materials, 423, Article ID: 126961. https://doi.org/10.1016/j.jhazmat.2021.126961 |
[4] |
Watson, J., Wang, T., Si, B., Chen, W., Aierzhati, A. and Zhang, Y. (2020) Valorization of Hydrothermal Liquefaction Aqueous Phase: Pathways towards Commercial Viability. Progress in Energy and Combustion Science, 77, Article ID: 100819. https://doi.org/10.1016/j.pecs.2019.100819 |
[5] |
Mathimani, T. and Mallick, N. (2019) A Review on the Hydrothermal Processing of Microalgal Biomass to Bio-Oil—Knowledge Gaps and Recent Advances. Journal of Cleaner Production, 217, 69-84. https://doi.org/10.1016/j.jclepro.2019.01.129 |
[6] |
Sajjadi, B., Chen, W., Raman, A.A.A. and Ibrahim, S. (2018) Microalgae Lipid and Biomass for Biofuel Production: A Comprehensive Review on Lipid Enhancement Strategies and Their Effects on Fatty Acid Composition. Renewable and Sustainable Energy Reviews, 97, 200-232. https://doi.org/10.1016/j.rser.2018.07.050 |
[7] |
Gollakota, A.R.K., Kishore, N. and Gu, S. (2018) A Review on Hydrothermal Liquefaction of Biomass. Renewable and Sustainable Energy Reviews, 81, 1378-1392. https://doi.org/10.1016/j.rser.2017.05.178 |
[8] |
Hu, Y., Gong, M., Feng, S., Xu, C. and Bassi, A. (2019) A Review of Recent Developments of Pre-Treatment Technologies and Hydrothermal Liquefaction of Microalgae for Bio-Crude Oil Production. Renewable and Sustainable Energy Reviews, 101, 476-492. https://doi.org/10.1016/j.rser.2018.11.037 |
[9] |
Gu, Y., Zhang, X., Deal, B. and Han, L. (2019) Biological Systems for Treatment and Valorization of Wastewater Generated from Hydrothermal Liquefaction of Biomass and Systems Thinking: A Review. Bioresource Technology, 278, 329-345. https://doi.org/10.1016/j.biortech.2019.01.127 |
[10] |
Maddi, B., Panisko, E., Wietsma, T., Lemmon, T., Swita, M., Albrecht, K., et al. (2016) Quantitative Characterization of the Aqueous Fraction from Hydrothermal Liquefaction of Algae. Biomass and Bioenergy, 93, 122-130. https://doi.org/10.1016/j.biombioe.2016.07.010 |
[11] |
Zhao, B., Wang, Z., Liu, Z. and Yang, X. (2016) Two-Stage Upgrading of Hydrothermal Algae Biocrude to Kerosene-Range Biofuel. Green Chemistry, 18, 5254-5265. https://doi.org/10.1039/c6gc01413e |
[12] |
Leng, L., Zhang, W., Peng, H., Li, H., Jiang, S. and Huang, H. (2020) Nitrogen in Bio-Oil Produced from Hydrothermal Liquefaction of Biomass: A Review. Chemical Engineering Journal, 401, Article ID: 126030. https://doi.org/10.1016/j.cej.2020.126030 |
[13] |
Leng, L., Zhou, J., Li, T., Vlaskin, M., Zhan, H., Peng, H., et al. (2023) Nitrogen Heterocycles in Bio-Oil Produced from Hydrothermal Liquefaction of Biomass: A Review. Fuel, 335, Article ID: 126995. https://doi.org/10.1016/j.fuel.2022.126995 |
[14] |
Toor, S.S., Rosendahl, L. and Rudolf, A. (2011) Hydrothermal Liquefaction of Biomass: A Review of Subcritical Water Technologies. Energy, 36, 2328-2342. https://doi.org/10.1016/j.energy.2011.03.013 |
[15] |
Matricon, L., Roubaud, A., Haarlemmer, G. and Geantet, C. (2023) The Challenge of Nitrogen Compounds in Hydrothermal Liquefaction of Algae. The Journal of Supercritical Fluids, 196, Article ID: 105867. https://doi.org/10.1016/j.supflu.2023.105867 |
[16] |
Gu, X., Martinez-Fernandez, J.S., Pang, N., Fu, X. and Chen, S. (2020) Recent Development of Hydrothermal Liquefaction for Algal Biorefinery. Renewable and Sustainable Energy Reviews, 121, Article ID: 109707. https://doi.org/10.1016/j.rser.2020.109707 |
[17] |
Ağbulut, Ü., Sirohi, R., Lichtfouse, E., Chen, W., Len, C., Show, P.L., et al. (2023) Microalgae Bio-Oil Production by Pyrolysis and Hydrothermal Liquefaction: Mechanism and Characteristics. Bioresource Technology, 376, Article ID: 128860. https://doi.org/10.1016/j.biortech.2023.128860 |
[18] |
Körner, P. (2021) Hydrothermal Degradation of Amino Acids. ChemSusChem, 14, 4947-4957. https://doi.org/10.1002/cssc.202101487 |
[19] |
Ravber, M., Knez, Ž. and Škerget, M. (2015) Hydrothermal Degradation of Fats, Carbohydrates and Proteins in Sunflower Seeds after Treatment with Subcritical Water. Chemical and Biochemical Engineering Quarterly, 29, 351-355. https://doi.org/10.15255/cabeq.2015.2193 |
[20] |
刘慧慧. 环境型微藻水热液化及其氮元素演化规律研究[D]: [博士学位论文]. 武汉: 华中科技大学, 2021. |
[21] |
Martinez-Fernandez, J.S. and Chen, S. (2017) Sequential Hydrothermal Liquefaction Characterization and Nutrient Recovery Assessment. Algal Research, 25, 274-284. https://doi.org/10.1016/j.algal.2017.05.022 |
[22] |
袁松, 黄艳琴, 刘华财, 袁洪友, 庄修政, 阴秀丽, 吴创之. 低温水热预处理对高蛋白小球藻N分布和藻渣热解特性的影响[J]. 燃料化学学报, 2019, 47(1): 39-52. |
[23] |
Basar, I.A., Liu, H., Carrere, H., Trably, E. and Eskicioglu, C. (2021) A Review on Key Design and Operational Parameters to Optimize and Develop Hydrothermal Liquefaction of Biomass for Biorefinery Applications. Green Chemistry, 23, 1404-1446. https://doi.org/10.1039/d0gc04092d |
[24] |
Jatoi, A.S., Shah, A.A., Ahmed, J., Rehman, S., Sultan, S.H., Shah, A.K., et al. (2022) Hydrothermal Liquefaction of Lignocellulosic and Protein-Containing Biomass: A Comprehensive Review. Catalysts, 12, Article 1621. https://doi.org/10.3390/catal12121621 |
[25] |
Gai, C., Zhang, Y., Chen, W., Zhang, P. and Dong, Y. (2015) An Investigation of Reaction Pathways of Hydrothermal Liquefaction Using Chlorella pyrenoidosa and Spirulina platensis. Energy Conversion and Management, 96, 330-339. https://doi.org/10.1016/j.enconman.2015.02.056 |
[26] |
Liu, H., Basar, I.A., Lyczko, N., Nzihou, A. and Eskicioglu, C. (2022) Incorporating Hydrothermal Liquefaction into Wastewater Treatment—Part I: Process Optimization for Energy Recovery and Evaluation of Product Distribution. Chemical Engineering Journal, 449, Article ID: 137838. https://doi.org/10.1016/j.cej.2022.137838 |
[27] |
Liu, H., Lyczko, N., Nzihou, A. and Eskicioglu, C. (2023) Incorporating Hydrothermal Liquefaction into Wastewater Treatment—Part II: Characterization, Environmental Impacts, and Potential Applications of Hydrochar. Journal of Cleaner Production, 383, Article ID: 135398. https://doi.org/10.1016/j.jclepro.2022.135398 |
[28] |
Zhang, C., Tang, X., Sheng, L. and Yang, X. (2016) Enhancing the Performance of Co-Hydrothermal Liquefaction for Mixed Algae Strains by the Maillard Reaction. Green Chemistry, 18, 2542-2553. https://doi.org/10.1039/c5gc02953h |
[29] |
Sheehan, J.D. and Savage, P.E. (2020) Reaction Pathways and Kinetics of Tryptophan in Hot, Compressed Water. Chemical Engineering Journal, 390, Article ID: 124600. https://doi.org/10.1016/j.cej.2020.124600 |
[30] |
Tressl, R., Rewicki, D., Helak, B. and Kamperschroer, H. (1985) Formation of Pyrrolidines and Piperidines on Heating L-Proline with Reducing Sugars. Journal of Agricultural and Food Chemistry, 33, 924-928. https://doi.org/10.1021/jf00065a037 |
[31] |
Sohn, M. and Ho, C. (1995) Ammonia Generation during Thermal Degradation of Amino Acids. Journal of Agricultural and Food Chemistry, 43, 3001-3003. https://doi.org/10.1021/jf00060a001 |
[32] |
Li, J. and Brill, T.B. (2003) Spectroscopy of Hydrothermal Reactions 25: Kinetics of the Decarboxylation of Protein Amino Acids and the Effect of Side Chains on Hydrothermal Stability. The Journal of Physical Chemistry A, 107, 5987-5992. https://doi.org/10.1021/jp0224766 |
[33] |
Samanmulya, T., Farobie, O. and Matsumura, Y. (2017) Gasification Characteristics of Histidine and 4-Methylimidazole under Supercritical Water Conditions. Biomass Conversion and Biorefinery, 7, 487-494. https://doi.org/10.1007/s13399-017-0242-1 |
[34] |
Powell, T., Bowra, S. and Cooper, H.J. (2017) Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications. Journal of the American Society for Mass Spectrometry, 28, 1775-1786. https://doi.org/10.1007/s13361-017-1676-1 |
[35] |
Sheng, L., Wang, X. and Yang, X. (2018) Prediction Model of Biocrude Yield and Nitrogen Heterocyclic Compounds Analysis by Hydrothermal Liquefaction of Microalgae with Model Compounds. Bioresource Technology, 247, 14-20. https://doi.org/10.1016/j.biortech.2017.08.011 |
[36] |
Fan, Y., Hornung, U., Dahmen, N. and Kruse, A. (2018) Hydrothermal Liquefaction of Protein-Containing Biomass: Study of Model Compounds for Maillard Reactions. Biomass Conversion and Biorefinery, 8, 909-923. https://doi.org/10.1007/s13399-018-0340-8 |
[37] |
Qiu, Y., Aierzhati, A., Cheng, J., Guo, H., Yang, W. and Zhang, Y. (2019) Biocrude Oil Production through the Maillard Reaction between Leucine and Glucose during Hydrothermal Liquefaction. Energy & Fuels, 33, 8758-8765. https://doi.org/10.1021/acs.energyfuels.9b01875 |
[38] |
Zhao, B., Wang, X. and Yang, X. (2015) Co-Pyrolysis Characteristics of Microalgae Isochrysis and Chlorella: Kinetics, Biocrude Yield and Interaction. Bioresource Technology, 198, 332-339. https://doi.org/10.1016/j.biortech.2015.09.021 |
[39] |
Jarvis, J.M., Sudasinghe, N.M., Albrecht, K.O., Schmidt, A.J., Hallen, R.T., Anderson, D.B., et al. (2016) Impact of Iron Porphyrin Complexes When Hydroprocessing Algal HTL Biocrude. Fuel, 182, 411-418. https://doi.org/10.1016/j.fuel.2016.05.107 |
[40] |
Changi, S., Brown, T.M. and Savage, P.E. (2012) Reaction Kinetics and Pathways for Phytol in High-Temperature Water. Chemical Engineering Journal, 189, 336-345. https://doi.org/10.1016/j.cej.2012.02.021 |
[41] |
Jiang, J., Serago, J.J., Torres, K., Rapp, E. and Savage, P.E. (2020) Fate of Iron during Hydrothermal Liquefaction of Hemin. The Journal of Supercritical Fluids, 157, Article ID: 104705. https://doi.org/10.1016/j.supflu.2019.104705 |
[42] |
Zhuang, X., Huang, Y., Song, Y., Zhan, H., Yin, X. and Wu, C. (2017) The Transformation Pathways of Nitrogen in Sewage Sludge during Hydrothermal Treatment. Bioresource Technology, 245, 463-470. https://doi.org/10.1016/j.biortech.2017.08.195 |
[43] |
Leng, L., Xu, S., Liu, R., Yu, T., Zhuo, X., Leng, S., et al. (2020) Nitrogen Containing Functional Groups of Biochar: An Overview. Bioresource Technology, 298, Article ID: 122286. https://doi.org/10.1016/j.biortech.2019.122286 |
[44] |
Taghipour, A., Hornung, U., Ramirez, J.A., Brown, R.J. and Rainey, T.J. (2021) Aqueous Phase Recycling in Catalytic Hydrothermal Liquefaction for Algal Biomass and the Effect on Elemental Accumulation and Energy Efficiency. Journal of Cleaner Production, 289, Article ID: 125582. https://doi.org/10.1016/j.jclepro.2020.125582 |
[45] |
Leng, L., Li, J., Wen, Z. and Zhou, W. (2018) Use of Microalgae to Recycle Nutrients in Aqueous Phase Derived from Hydrothermal Liquefaction Process. Bioresource Technology, 256, 529-542. https://doi.org/10.1016/j.biortech.2018.01.121 |
[46] |
高传瑞, 田纯焱, 李志合, 易维明, 袁巧霞, 付鹏, 张玉春, 李治宇. 生物原油炼制: 副产物内循环及水热自催化[J]. 化工进展, 2021, 40(10): 5348-5359. |
[47] |
Biller, P., Madsen, R.B., Klemmer, M., Becker, J., Iversen, B.B. and Glasius, M. (2016) Effect of Hydrothermal Liquefaction Aqueous Phase Recycling on Bio-Crude Yields and Composition. Bioresource Technology, 220, 190-199. https://doi.org/10.1016/j.biortech.2016.08.053 |
[48] |
Hu, Y., Feng, S., Yuan, Z., Xu, C. and Bassi, A. (2017) Investigation of Aqueous Phase Recycling for Improving Bio-Crude Oil Yield in Hydrothermal Liquefaction of Algae. Bioresource Technology, 239, 151-159. https://doi.org/10.1016/j.biortech.2017.05.033 |
[49] |
Leng, S., Leng, L., Chen, L., Chen, J., Chen, J. and Zhou, W. (2020) The Effect of Aqueous Phase Recirculation on Hydrothermal Liquefaction/carbonization of Biomass: A Review. Bioresource Technology, 318, Article ID: 124081. https://doi.org/10.1016/j.biortech.2020.124081 |
[50] |
Bao, T., Shao, Y., Zhang, H. and Zhu, J. (2022) Nitrogen Distribution in the Products from the Hydrothermal Liquefaction of Chlorella Sp. and Spirulina Sp. Frontiers of Chemical Science and Engineering, 16, 985-995. https://doi.org/10.1007/s11705-021-2126-y |