S100A9在纤维化疾病中的研究进展
The Research Progress of S100A9 in Fibrotic Diseases
DOI: 10.12677/hjbm.2025.151023, PDF, HTML, XML,   
作者: 郑瑞萍, 张川西, 吴宜铃, 杨 洁:华北理工大学附属医院皮肤科,河北 唐山
关键词: S100A9纤维化炎症S100A9 Fibrosis Inflammation
摘要: 纤维化疾病是多种慢性疾病的终末阶段,其特点是组织中纤维结缔组织的过度积累,导致器官结构破坏和功能丧失。S100A9作为S100蛋白家族的重要成员,在多种炎症性疾病和癌症中的作用已被广泛研究,但其在纤维化疾病中的作用及机制尚未完全阐明。本文综述了S100A9在肺、肝、肾、心脏及皮肤等主要纤维化疾病中的研究进展,重点探讨其在细胞信号通路、免疫调节及炎症反应中的作用,旨在为纤维化疾病的诊断和治疗提供新的研究思路。
Abstract: Fibrosis is the terminal stage of various chronic diseases, characterized by excessive accumulation of fibrous connective tissue in tissues, leading to organ structural damage and loss of function. As an important member of the S100 protein family, the role of S100A9 in various inflammatory diseases and cancers has been widely studied, but its role and mechanism in fibrotic diseases have not been fully elucidated. This article reviews the research progress of S100A9 in major fibrotic diseases such as lung, liver, kidney, heart, and skin, with a focus on exploring its role in cellular signaling pathways, immune regulation, and inflammatory response, aiming to provide new research ideas for the diagnosis and treatment of fibrotic diseases.
文章引用:郑瑞萍, 张川西, 吴宜铃, 杨洁. S100A9在纤维化疾病中的研究进展[J]. 生物医学, 2025, 15(1): 198-206. https://doi.org/10.12677/hjbm.2025.151023

1. 引言

纤维化是多种慢性疾病的共同特征,包括特发性肺纤维化、肝硬化、硬皮病、心血管疾病(如动脉粥样硬化、心肌梗死)等。这些纤维化相关疾病影响着全球广泛人群,严重影响患者的生活质量,其主要表现为受累器官的功能障碍。

纤维化的发生机制主要包括纤维母细胞的异常活化、细胞外基质(ECM)和胶原的过度沉积[1]。此外,氧化损伤、慢性炎症以及关键信号通路的异常级联反应,在肌成纤维细胞的激活和纤维化状态的持续过程中发挥了重要作用[1] [2]。其中,炎症反应是纤维化疾病发生和发展的重要触发因素[3]。在炎症反应过程中,免疫细胞在靶器官(如肾脏、心脏)释放信号从而吸引更多的免疫细胞聚集,并产生炎症介质,从而导致受累器官的损害[4] [5]。此外,炎症反应还会通过增加活性氧(ROS)的生成,进一步促进(心脏、肾脏)成纤维细胞的增殖和基质金属蛋白酶的活化,最终导致心脏和肾脏等器官的间质纤维化[5] [6]。同时,炎症还会刺激成纤维细胞转化为肌成纤维细胞,进一步加速纤维化进程。

近年来,S100A9 (钙粒蛋白B或髓系相关蛋白-14,MRP-14)作为一种重要的炎症因子受到广泛关注。S100A9属于S100钙结合蛋白家族,是一种内源性损伤相关分子模式(DAMP)分子,在炎症和组织损伤中发挥重要作用[7]。研究表明,S100A9及其异二聚体是高级糖基化终产物受体(RAGE)和Toll样受体4 (TLR4)的重要配体[8]。S100A9释放后,可以促进炎症因子、趋化因子和纤维化标志物的表达,同时刺激成纤维细胞增殖,从而激活炎症反应和加速组织纤维化进程[9] [10]

因此,本综述旨在阐明S100A9的生物学效应及其在纤维化疾病中的作用机制。我们将重点讨论S100A9在调控炎症反应和加剧组织纤维化中的关键角色。这一研究有助于进一步理解纤维化疾病的发生机制,并为相关疾病的诊疗提供新的思路。

2. S100A9的生物学功能

S100A9是一种结合钙和锌的蛋白质,由114个氨基酸组成,分子量约为13 kDa。S100A9主要表达于免疫系统,包括脾脏、骨髓、淋巴结、肺和皮肤等组织[11],通常位于细胞质中,但在细胞内钙浓度升高的情况下,可以转移至细胞骨架和细胞膜,或被分泌到细胞外[12]

在生理条件下,S100A9的表达通常较低,主要存在于中性粒细胞、单核细胞和早期分化的巨噬细胞等免疫细胞中[13]。然而,在病理条件下,S100A9由多种细胞类型(如中性粒细胞、单核细胞、巨噬细胞、树突状细胞)分泌至细胞外[14]

S100A9在免疫调控中具有多重功能。例如它能够调控中性粒细胞的浸润、迁移和募集,同时刺激中性粒细胞的生成、激活和脱颗粒[15]。此外,S100A9还能刺激单核细胞的生成,调节单核细胞的浸润,并诱导单核细胞迁移[16]。S100A9还调控巨噬细胞的表型转化和浸润,增加巨噬细胞的募集,并诱导巨噬细胞迁移[17]。尽管S100A9在免疫细胞的功能调控中起着积极作用,但也有研究表明,S100A9能够抑制树突状细胞的分化,从而影响抗原呈递功能[18]

3. S100A9参与纤维化的分子机制

3.1. S100A9在炎症反应中调控作用

在各种刺激下,S100A9水平显著升高,随后促进白细胞的活化和迁移,大量白细胞聚集到炎症损伤部位,继而分泌多种促炎因子、活性氧(ROS)和其他物质,从而引发炎症[19]。然而,近年来的研究表明,S100A9在某些病理状态下也可能具有抗炎作用。例如,在1型糖尿病(T1DM)中,S100A9通过调节免疫反应,表现出抗炎特性,从而减轻糖尿病相关的炎症反应,改善疾病进程[20]。同时,有研究表明,在银屑病和关节炎病变部位,S100A8/S100A9四聚体同样具有抗炎作用[21]。此外,研究发现,S100A8/A9通过与炎症信号通路相互作用,参与心肌纤维化、细胞凋亡以及自噬等重要生物过程的调节,从而加速心肌纤维化的进展[22]

3.2. S100A9在氧化应激中的作用

除了调控炎症,S100A9还在氧化应激中发挥重要作用。在代谢性疾病中,S100A9与肥胖和动脉粥样硬化密切相关。其与p53共同参与脂肪细胞的增大和炎症反应[23]。同时,在脓毒症性心肌病中,S100A9通过与ATP5相互作用,引起线粒体功能障碍和氧化应激,进而加剧心肌损伤[24]。此外,动物模型和细胞实验表明,特异性抑制S100A9可有效减轻氧化应激引起的病理变化[25]

3.3. S100A9的受体及信号通路

S100A9具有多种受体,其中Toll样受体4 (TLR4)和高级糖基化终产物受体(RAGE)是研究最广泛的两个受体。

3.3.1. TLR4受体

当S100A9与其经典受体TLR4结合后激活下游MyD88,进一步激活NF-κB和MAPK信号级联反应,诱导多种促炎因子(如IL-1β、TNF-α)的表达,从而加剧炎症反应和组织损伤[10] [26]-[28]。在肝纤维化中,S100A8/A9通过TLR4通路促进骨髓间充质基质细胞(BMSCs)和肝星状细胞(HSCs)的迁移,加速纤维化进程[26] [29]。在糖尿病肾病和梗阻性肾病中,S100A8/A9通过TLR4通路诱导肾小管上皮细胞的上皮-间质转化(EMT),进一步加剧肾间质纤维化[27] [28]。此外,在慢性气道疾病中,S100A9通过TLR4介导气道上皮细胞MUC5AC的过量产生,与中性粒细胞主导的气道炎症密切相关[30] [31]。这些研究一致表明,S100A9通过TLR4信号通路在炎症反应、细胞迁移、纤维化进展以及气道黏液分泌等病理过程中具有核心作用。

3.3.2. RAGE受体

S100A9另一个经典受体是RAGE,S100A9与细胞膜表面结合后,激活多种下游信号通路,如NF-κB和ERK1/2 MAPK,导致炎症因子(如IL-1β、IL-6和TNF-α)的表达增加,从而引发炎症反应[31]-[33]。在特发性肺纤维化(IPF)中,S100A9通过RAGE介导的信号通路不仅促进肺成纤维细胞的增殖,还诱导其分化为肌成纤维细胞并产生大量胶原蛋白,从而加剧纤维化进程[34]。此外,在多囊肾病和梗阻性肾病中,S100A9-RAGE轴通过激活NF-κB和ERK1/2通路调控炎症反应,诱导上皮–间质转化(EMT)并促进纤维化[28] [35]。值得注意的是,RAGE不仅在炎症过程中发挥关键作用,还可能通过调控F-肌动蛋白(F-actin)、ZO-1和闭合蛋白(occludin)诱导内皮功能障碍[28] [31]。这些研究表明,S100A9与RAGE之间的相互作用在多种炎症性和纤维化性疾病中具有关键作用。

4. S100A9的临床意义

4.1. S100A9与肾脏纤维化

肾纤维化是多种肾脏疾病(如急性肾损伤、糖尿病肾病和梗阻性肾病)的共同终末病理特征,其特征是肾小管上皮细胞损伤、和间质中胶原的过度沉积,其病因复杂多样,其中炎症反应参与了其发病机制。S100A9作为一种损伤相关分子模式(DAMP),在炎症环境中显著表达,并通过激活TLR4或RAGE信号通路介导促炎反应和纤维化进展[28] [36]。研究发现,S100A9可通过诱导肾小管上皮细胞的上皮–间质转化(EMT),导致肾小管上皮细胞丧失极性、细胞周期阻滞和不可逆损伤,最终加重肾间质纤维化[28]。此外,在糖尿病肾病中,S100A9在肾小管上皮细胞中的异常表达并通过TLR4/NF-κB信号通路促进EMT过程,并驱动纤维化的进展[27]。有趣的是,在缺血再灌注(I/R)引起的急性肾损伤中,S100A9不仅在损伤早期通过促进Ly6chi巨噬细胞浸润和炎症扩增加剧损伤,还在修复阶段通过影响巨噬细胞的极化(抑制M2型巨噬细胞)调控组织修复,从而导致纤维化和胶原沉积[36]。单细胞RNA测序进一步揭示,S100A9高表达的Ly6chi巨噬细胞是急性肾损伤炎症反应的早期驱动者,其浸润水平与肾损伤和纤维化的严重程度密切相关[37]

综上所述,S100A9通过多种机制在肾纤维化的发生和进展中发挥关键作用,包括诱导EMT、激活TLR4和RAGE信号通路以及调控巨噬细胞的炎症反应和极化。靶向抑制S100A8/A9的异常表达为肾纤维化的治疗提供了新的思路和潜在的治疗策略。

4.2. S100A9与心脏纤维化

心肌梗死(MI)是由冠状动脉血流减少或中断导致心肌严重缺血性坏死的病理状态[38] [39]。在MI的急性期,心肌细胞死亡通过DAMPs (如S100A9)的释放触发炎症级联反应[40]。研究表明,S100A9在MI后数小时内迅速升高,并通过激活Myd88/NFκB/NLRP3信号通路放大局部和全身的炎症反应[41] [42]。S100A9的高表达不仅刺激中性粒细胞和巨噬细胞浸润,还通过促进髓系细胞的生成,加剧了梗死区域的炎症[40] [43]。这一过程中,炎性细胞因子的持续释放和胶原蛋白沉积的启动为心肌纤维化奠定了基础[44]

在MI后的炎症阶段,S100A9通过上调Nur77促进炎性Ly6Chi单核细胞向修复性Ly6Clo巨噬细胞转化,从而在心肌修复中发挥一定的积极作用[45] [46]。然而,S100A9也被发现可激活TGF-β/p-smad3信号通路,诱导心肌成纤维细胞转化为肌成纤维细胞,进一步加速胶原蛋白沉积和纤维化[46]。此外,S100A9通过巨噬细胞–肌成纤维细胞转化(MMT)机制,直接参与心肌纤维化的进展[46]。这一双向调节作用表明,S100A9既是炎症反应的重要介质,也是纤维化发生和发展的关键分子。

在MI/R模型中,Li等[43]的研究发现,S100A9的表达水平与心肌损伤程度密切相关。S100A9基因敲除的小鼠显示出显著减小的梗死面积及改善的心功能,而S100A9过表达则加剧了心肌损伤[43]。这一现象可能与S100A9通过TLR4/ERK信号通路抑制线粒体功能恢复,促进炎症和心肌细胞死亡有关[43]。同时,S100A9对线粒体自噬的调控作用进一步放大了炎症信号,促进纤维化启动[45]。这些研究强调了S100A9在MI/R中促炎和促纤维化的核心作用。

4.3. S100A9与肝脏纤维化

S100A9在肝纤维化中的作用逐渐引起重视。研究发现,S100A9是一种参与炎症反应的钙结合蛋白,广泛表达于中性粒细胞、单核细胞及巨噬细胞中,是多种炎症性疾病的关键调节因子,在肝纤维化的发生与发展中具有重要作用。研究表明,S100A9在肝纤维化组织中的表达显著增加并与肝损伤及纤维化程度呈正相关[47]。通过激活TLR4信号通路,S100A9能够诱导巨噬细胞和肝星状细胞(HSCs)的活化,促进α-SMA和胶原蛋白等纤维化因子的分泌[29]。此外,中性粒细胞分泌的S100A8/A9在脂肪性肝病(NAFLD)相关的纤维化中显著增加,并通过重塑HSCs的微丝骨架,促进其向受损肝组织的迁移及向成纤维细胞样表型的转分化,从而加速纤维化进程[26]

S100A9还通过调控巨噬细胞的极化状态在肝纤维化中发挥重要作用。巨噬细胞的Ly6C^high表型倾向促炎,而Ly6C^low表型具有抗炎功能。研究发现,中脑星形胶质细胞来源的神经营养因子(MANF)通过与S100A8竞争性结合,抑制S100A8/A9异二聚体的形成,阻断TLR4信号通路,降低巨噬细胞Ly6C^high表型的比例,从而减轻肝纤维化[29]。尽管如此,S100A9的功能在某些病理条件下存在争议。例如,S100A9的缺失对慢性肝炎或肝细胞癌(HCC)的发展并未显示显著影响[48]。因此,进一步研究S100A9的组织特异性及其与其他促炎因子间的交互作用,将有助于全面理解其在肝纤维化中的作用,为靶向治疗提供新的策略。

4.4. S100A9与肺纤维化

近年来,研究发现钙结合蛋白S100A9不仅是特发性肺纤维化(IPF)的重要促纤维化因子,还可以作为IPF的潜在新型诊断生物标志物。既往研究发现,S100A9在特发性肺纤维化患者的血清、支气管肺泡灌洗液及肺组织中显著升高[49]-[51]。例如,急性加重期特发性肺纤维化患者的血清中S100A9水平明显高于疾病稳定期患者[52]。此外,S100A9与BALF中中性粒细胞百分比呈正相关,提示其可能通过促进中性粒细胞的浸润加剧炎症反应[51]

除了在疾病诊断和预后中的作用,S100A9还通过一系列促纤维化的机制参与了IPF的病理进程。在纤维化肺组织中,S100A9主要由中性粒细胞和巨噬细胞分泌,其水平在炎症区和纤维化区显著升高[32] [53]。S100A9通过与晚期糖基化终产物受体(RAGE)结合,激活ERK1/2-MAPK和NF-κB信号通路,促进肺成纤维细胞的增殖、分化以及胶原蛋白的过度沉积[32]。此外,S100A9还通过诱导内皮–间质转化(EndMT)加速纤维化的进程[8]

动物实验进一步验证了S100A9的致病作用。在博莱霉素(BLM)诱导的肺纤维化小鼠模型中,使用S100A9抑制剂(如Paquinimod)显著减轻了肺纤维化程度,减少了胶原蛋白沉积和炎症细胞浸润,并改善了肺功能[34]。这些结果表明,S100A9在肺纤维化中发挥了关键的促纤维化作用,同时也为靶向S100A9的治疗策略提供了新的方向。

4.5. S100A9与皮肤纤维化

在皮肤纤维化疾病中,S100A9也发挥了重要作用。研究表明,S100A9在博来霉素诱导的小鼠皮肤纤维化模型中高表达,而且通过激活ERK1/2 MAPK和NF-κB信号通路,诱导α-SMA和促纤维化因子的上调,加重皮肤纤维化[33] [54]。S100A9还通过调控免疫细胞功能促进纤维化进程,例如诱导巨噬细胞M2极化,以增强成纤维细胞活化和细胞外基质沉积。此外,角质形成细胞的异常分化也会引发S100A9及其相关促纤维化因子的分泌,从而间接加剧纤维化。靶向S100A9的药物Paquinimod通过抑制其与RAGE和TLR4的结合,可有效减少巨噬细胞M2极化及促纤维化基因的表达,从而显著缓解实验模型中的皮肤纤维化[55]。此外,S100A9在皮肤屏障功能受损和纤维化之间的联系中发挥了双重作用。S100A9的上调导致水合作用下降,并通过RAGE和TLR4途径激活成纤维细胞,进一步加重纤维化。其在创伤愈合和瘢痕形成中也发挥重要作用,部分机制涉及创伤愈合相关基因的选择性剪接调控[9] [56]

5. S100A9作为治疗靶点的临床应用前景

S100A9作为一种与损伤相关的分子模式蛋白,广泛参与多种疾病的免疫反应和纤维化进程。近年来,针对S100A9的研究逐步深入,其抑制剂已被应用于系统性硬化症等疾病的临床试验阶段。由于S100A9在纤维化疾病中的高表达,其作为治疗靶点的潜力受到了广泛关注。研究表明,S100A9抑制剂如Paquinimod在系统性硬化症II期临床试验中显示出良好的疗效和安全性[57]。此外,特发性肺纤维化(IPF)患者血清和肺泡灌洗液中S100A9水平显著升高,与患者的不良预后密切相关,这进一步支持了S100A9作为治疗靶点的潜力[58]。在动物模型中,Paquinimod通过抑制S100A9的活性,能够有效减轻肺部和肾脏等器官的纤维化。比如,在IPF小鼠模型中,Paquinimod不仅减轻了肺纤维化,还减少了炎症细胞的浸润,并抑制了内皮–间充质转化(EMT)过程[58]。此外,在糖尿病肾病小鼠模型中,S100A8/A9的异常表达通过TLR4/NF-κB信号通路加速EMT过程,进而促进肾间质纤维化,而Paquinimod通过干扰S100A8/A9的表达显著抑制了这一病理变化[27]。这些研究结果表明,S100A9抑制剂在多种纤维化相关疾病中表现出良好的抗纤维化作用,并通过调节关键信号通路减轻疾病进程,为未来开发基于S100A9的治疗策略提供了坚实的理论基础和实验依据。

尽管目前这些抑制剂尚未广泛应用于其他纤维化疾病的临床试验,但其在多种动物模型中的成功应用突显了其未来的治疗潜力和临床应用前景。

6. 结语

综上所述,S100A9在多种器官纤维化中发挥了关键作用,其机制涉及炎症反应的启动与维持、成纤维细胞活化及细胞外基质沉积。作为一种重要的DAMP分子,S100A9通过TLR4、RAGE及相关信号通路在炎症与纤维化之间架起了桥梁。针对S100A9的异常表达,靶向抑制为肾、心、肝、肺及皮肤纤维化的治疗提供了新的思路。然而,S100A9在不同病理条件下的组织特异性作用及与其他信号分子的交互仍需深入探讨,以进一步明确其作为治疗靶点的有效性与安全性。这将为开发创新的抗纤维化策略开辟新方向。

参考文献

[1] Maria, A.T.J., Bourgier, C., Martinaud, C., Borie, R., Rozier, P., Rivière, S., et al. (2020) De la fibrogenèse à la fibrose: Mécanismes physiopathologiques et présentations cliniques. La Revue de Médecine Interne, 41, 325-329.
https://doi.org/10.1016/j.revmed.2020.01.002
[2] Piera-Velazquez, S., Mendoza, F. and Jimenez, S. (2016) Endothelial to Mesenchymal Transition (Endomt) in the Pathogenesis of Human Fibrotic Diseases. Journal of Clinical Medicine, 5, Article 45.
https://doi.org/10.3390/jcm5040045
[3] Mack, M. (2018) Inflammation and Fibrosis. Matrix Biology, 68, 106-121.
https://doi.org/10.1016/j.matbio.2017.11.010
[4] Meng, X., Nikolic-Paterson, D.J. and Lan, H.Y. (2014) Inflammatory Processes in Renal Fibrosis. Nature Reviews Nephrology, 10, 493-503.
https://doi.org/10.1038/nrneph.2014.114
[5] Lafuse, W.P., Wozniak, D.J. and Rajaram, M.V.S. (2020) Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells, 10, Article 51.
https://doi.org/10.3390/cells10010051
[6] Jha, J.C., Dai, A., Garzarella, J., Charlton, A., Urner, S., Østergaard, J.A., et al. (2022) Independent of Renox, NOX5 Promotes Renal Inflammation and Fibrosis in Diabetes by Activating Ros-Sensitive Pathways. Diabetes, 71, 1282-1298.
https://doi.org/10.2337/db21-1079
[7] Schiopu, A. and Cotoi, O.S. (2013) S100A8 and S100A9: Damps at the Crossroads between Innate Immunity, Traditional Risk Factors, and Cardiovascular Disease. Mediators of Inflammation, 2013, 1-10.
https://doi.org/10.1155/2013/828354
[8] Chen, B., Miller, A.L., Rebelatto, M., Brewah, Y., Rowe, D.C., Clarke, L., et al. (2015) S100A9 Induced Inflammatory Responses Are Mediated by Distinct Damage Associated Molecular Patterns (DAMP) Receptors in Vitro and in Vivo. PLOS ONE, 10, e0115828.
https://doi.org/10.1371/journal.pone.0115828
[9] Zhong, A., Xu, W., Zhao, J., Xie, P., Jia, S., Sun, J., et al. (2016) S100A8 and S100A9 Are Induced by Decreased Hydration in the Epidermis and Promote Fibroblast Activation and Fibrosis in the Dermis. The American Journal of Pathology, 186, 109-122.
https://doi.org/10.1016/j.ajpath.2015.09.005
[10] Moles, A., Murphy, L., Wilson, C.L., Chakraborty, J.B., Fox, C., Park, E.J., et al. (2014) A TLR2/S100A9/CXCL-2 Signaling Network Is Necessary for Neutrophil Recruitment in Acute and Chronic Liver Injury in the Mouse. Journal of Hepatology, 60, 782-791.
https://doi.org/10.1016/j.jhep.2013.12.005
[11] Chen, H., Lunney, J.K., Cheng, L., Li, X., Cao, J., Zhu, M., et al. (2011) Porcine S100A8 and S100A9: Molecular Characterizations and Crucial Functions in Response to Haemophilus Parasuis Infection. Developmental & Comparative Immunology, 35, 490-500.
https://doi.org/10.1016/j.dci.2010.11.017
[12] Tamulytė, R., Jankaitytė, E., Toleikis, Z., Smirnovas, V. and Jankunec, M. (2023) Pro-Inflammatory Protein S100A9 Alters Membrane Organization by Dispersing Ordered Domains. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1865, Article 184113.
https://doi.org/10.1016/j.bbamem.2022.184113
[13] Fan, Z.P., Peng, M.L., Chen, Y.Y., Xia, Y.Z., Liu, C.Y., Zhao, K., et al. (2021) S100A9 Activates the Immunosuppressive Switch through the PI3K/Akt Pathway to Maintain the Immune Suppression Function of Testicular Macrophages. Frontiers in Immunology, 12, Article 743354.
https://doi.org/10.3389/fimmu.2021.743354
[14] Averill, M.M., Barnhart, S., Becker, L., Li, X., Heinecke, J.W., LeBoeuf, R.C., et al. (2011) S100A9 Differentially Modifies Phenotypic States of Neutrophils, Macrophages, and Dendritic Cells. Circulation, 123, 1216-1226.
https://doi.org/10.1161/circulationaha.110.985523
[15] Simard, J., Girard, D. and Tessier, P.A. (2010) Induction of Neutrophil Degranulation by S100A9 via a MAPK-Dependent Mechanism. Journal of Leukocyte Biology, 87, 905-914.
https://doi.org/10.1189/jlb.1009676
[16] Chi, Z., Hayasaka, Y., Zhang, X., Cui, H. and Hayasaka, S. (2007) S100a9-Positive Granulocytes and Monocytes in Lipopolysaccharide-Induced Anterior Ocular Inflammation. Experimental Eye Research, 84, 254-265.
https://doi.org/10.1016/j.exer.2006.09.016
[17] Zhou, Y., Wu, M., Xu, L., Cheng, J., Shen, J., Yang, T., et al. (2021) Bmal1 Regulates Macrophage Polarize through Glycolytic Pathway in Alcoholic Liver Disease. Frontiers in Pharmacology, 12, Article 640521.
https://doi.org/10.3389/fphar.2021.640521
[18] Cheng, P., Corzo, C.A., Luetteke, N., Yu, B., Nagaraj, S., Bui, M.M., et al. (2008) Inhibition of Dendritic Cell Differentiation and Accumulation of Myeloid-Derived Suppressor Cells in Cancer Is Regulated by S100A9 Protein. The Journal of Experimental Medicine, 205, 2235-2249.
https://doi.org/10.1084/jem.20080132
[19] Mihaila, A.C., Ciortan, L., Macarie, R.D., Vadana, M., Cecoltan, S., Preda, M.B., et al. (2021) Transcriptional Profiling and Functional Analysis of N1/N2 Neutrophils Reveal an Immunomodulatory Effect of S100A9-Blockade on the Pro-Inflammatory N1 Subpopulation. Frontiers in Immunology, 12, Article 708770.
https://doi.org/10.3389/fimmu.2021.708770
[20] Ursino, G., Lucibello, G., Teixeira, P.D.S., Höfler, A., Veyrat-Durebex, C., Odouard, S., et al. (2024) S100A9 Exerts Insulin-Independent Antidiabetic and Anti-Inflammatory Effects. Science Advances, 10, eadj4686.
https://doi.org/10.1126/sciadv.adj4686
[21] Vogl, T., Stratis, A., Wixler, V., Völler, T., Thurainayagam, S., Jorch, S.K., et al. (2018) Autoinhibitory Regulation of S100A8/S100A9 Alarmin Activity Locally Restricts Sterile Inflammation. Journal of Clinical Investigation, 128, 1852-1866.
https://doi.org/10.1172/jci89867
[22] Xu, Y., Wang, Y., Ning, K. and Bao, Y. (2024) Unraveling the Mechanisms of S100A8/A9 in Myocardial Injury and Dysfunction. Current Issues in Molecular Biology, 46, 9707-9720.
https://doi.org/10.3390/cimb46090577
[23] Agra, R.M., Fernández-Trasancos, Á., Sierra, J., González-Juanatey, J.R. and Eiras, S. (2014) Differential Association of S100A9, an Inflammatory Marker, and P53, a Cell Cycle Marker, Expression with Epicardial Adipocyte Size in Patients with Cardiovascular Disease. Inflammation, 37, 1504-1512.
https://doi.org/10.1007/s10753-014-9876-3
[24] Pei, H., Qu, J., Chen, J., Zhao, G. and Lu, Z. (2024) S100A9 as a Key Myocardial Injury Factor Interacting with ATP5 Exacerbates Mitochondrial Dysfunction and Oxidative Stress in Sepsis-Induced Cardiomyopathy. Journal of Inflammation Research, 17, 4483-4503.
https://doi.org/10.2147/jir.s457340
[25] Pan, X., Yang, L., Wang, S., Liu, Y., Yue, L. and Chen, S. (2023) Semaglutide Ameliorates Obesity-Induced Cardiac Inflammation and Oxidative Stress Mediated via Reduction of Neutrophil Cxcl2, S100A8, and S100A9 Expression. Molecular and Cellular Biochemistry, 479, 1133-1147.
https://doi.org/10.1007/s11010-023-04784-2
[26] Chang, N., Liu, Y., Li, W., Ma, Y., Zhou, X., Zhao, X., et al. (2024) Neutrophil-Secreted S100A8/A9 Participates in Fatty Liver Injury and Fibrosis by Promoting Myofibroblast Migration. Journal of Molecular Medicine, 102, 1117-1133.
https://doi.org/10.1007/s00109-024-02469-x
[27] Du, L., Chen, Y., Shi, J., Yu, X., Zhou, J., Wang, X., et al. (2023) Inhibition of S100A8/A9 Ameliorates Renal Interstitial Fibrosis in Diabetic Nephropathy. Metabolism, 144, Article 155376.
https://doi.org/10.1016/j.metabol.2022.155376
[28] Tammaro, A., Florquin, S., Brok, M., Claessen, N., Butter, L.M., Teske, G.J.D., et al. (2018) S100A8/A9 Promotes Parenchymal Damage and Renal Fibrosis in Obstructive Nephropathy. Clinical and Experimental Immunology, 193, 361-375.
https://doi.org/10.1111/cei.13154
[29] Hou, C., Wang, D., Zhao, M., Ballar, P., Zhang, X., Mei, Q., et al. (2023) MANF Brakes TLR4 Signaling by Competitively Binding S100A8 with S100A9 to Regulate Macrophage Phenotypes in Hepatic Fibrosis. Acta Pharmaceutica Sinica B, 13, 4234-4252.
https://doi.org/10.1016/j.apsb.2023.07.027
[30] Kang, J.H., Hwang, S.M. and Chung, I.Y. (2014) S100A8, S100A9 and S100A12 Activate Airway Epithelial Cells to Produce MUC5AC via Extracellular Signal-Regulated Kinase and Nuclear Factor-κB Pathways. Immunology, 144, 79-90.
https://doi.org/10.1111/imm.12352
[31] Halayko, A.J. and Ghavami, S. (2009) S100A8/A9: A Mediator of Severe Asthma Pathogenesis and Morbidity? Canadian Journal of Physiology and Pharmacology, 87, 743-755.
https://doi.org/10.1139/y09-054
[32] Xu, X., Chen, H., Zhu, X., Ma, Y., Liu, Q., Xue, Y., et al. (2013) S100A9 Promotes Human Lung Fibroblast Cells Activation through Receptor for Advanced Glycation End-Product-Mediated Extracellular-Regulated Kinase 1/2, Mitogen-Activated Protein-Kinase and Nuclear Factor-κB-Dependent Pathways. Clinical and Experimental Immunology, 173, 523-535.
https://doi.org/10.1111/cei.12139
[33] Xu, X., et al. (2018) S100A9 Aggravates Bleomycin-Induced Dermal Fibrosis in Mice via Activation of ERK1/2 MAPK and NF-κB Pathways. Iranian Journal of Basic Medical Sciences, 21, 194-201.
[34] Araki, K., Kinoshita, R., Tomonobu, N., Gohara, Y., Tomida, S., Takahashi, Y., et al. (2020) The Heterodimer S100A8/A9 Is a Potent Therapeutic Target for Idiopathic Pulmonary Fibrosis. Journal of Molecular Medicine, 99, 131-145.
https://doi.org/10.1007/s00109-020-02001-x
[35] Park, E.Y., Seo, M.J. and Park, J.H. (2010) Effects of Specific Genes Activating RAGE on Polycystic Kidney Disease. American Journal of Nephrology, 32, 169-178.
https://doi.org/10.1159/000315859
[36] Dessing, M.C., Tammaro, A., Pulskens, W.P., Teske, G.J., Butter, L.M., Claessen, N., et al. (2015) The Calcium-Binding Protein Complex S100A8/A9 Has a Crucial Role in Controlling Macrophage-Mediated Renal Repair Following Ischemia/Reperfusion. Kidney International, 87, 85-94.
https://doi.org/10.1038/ki.2014.216
[37] Yao, W., Chen, Y., Li, Z., Ji, J., You, A., Jin, S., et al. (2022) Single Cell RNA Sequencing Identifies a Unique Inflammatory Macrophage Subset as a Druggable Target for Alleviating Acute Kidney Injury. Advanced Science, 9, Article 2103675.
https://doi.org/10.1002/advs.202103675
[38] Liu, J., Chen, X., Zeng, L., Zhang, L., Wang, F., Peng, C., et al. (2024) Targeting S100A9 Prevents Β-Adrenergic Activation-Induced Cardiac Injury. Inflammation, 47, 789-806.
https://doi.org/10.1007/s10753-023-01944-w
[39] Shen, S., Zhang, M., Wang, X., Liu, Q., Su, H., Sun, B., et al. (2024) Single-Cell RNA Sequencing Reveals S100A9HI Macrophages Promote the Transition from Acute Inflammation to Fibrotic Remodeling after Myocardial Ischemia-Reperfusion. Theranostics, 14, 1241-1259.
https://doi.org/10.7150/thno.91180
[40] Boyd, J.H., Kan, B., Roberts, H., Wang, Y. and Walley, K.R. (2008) S100A8 and S100A9 Mediate Endotoxin-Induced Cardiomyocyte Dysfunction via the Receptor for Advanced Glycation End Products. Circulation Research, 102, 1239-1246.
https://doi.org/10.1161/circresaha.107.167544
[41] Marinković, G., Grauen Larsen, H., Yndigegn, T., Szabo, I.A., Mares, R.G., de Camp, L., et al. (2019) Inhibition of Pro-Inflammatory Myeloid Cell Responses by Short-Term S100A9 Blockade Improves Cardiac Function after Myocardial Infarction. European Heart Journal, 40, 2713-2723.
https://doi.org/10.1093/eurheartj/ehz461
[42] Marinković, G., Koenis, D.S., de Camp, L., Jablonowski, R., Graber, N., de Waard, V., et al. (2020) S100A9 Links Inflammation and Repair in Myocardial Infarction. Circulation Research, 127, 664-676.
https://doi.org/10.1161/circresaha.120.315865
[43] Müller, I., Vogl, T., Kühl, U., Krannich, A., Banks, A., Trippel, T., et al. (2020) Serum Alarmin S100A8/S100A9 Levels and Its Potential Role as Biomarker in Myocarditis. ESC Heart Failure, 7, 1442-1451.
https://doi.org/10.1002/ehf2.12760
[44] Sun, Y., Wang, Z., Wang, C., Tang, Z. and Zhao, H. (2021) Psycho-Cardiology Therapeutic Effects of Shuangxinfang in Rats with Depression-Behavior Post Acute Myocardial Infarction: Focus on Protein S100A9 from Proteomics. Biomedicine & Pharmacotherapy, 144, Article 112303.
https://doi.org/10.1016/j.biopha.2021.112303
[45] Chalise, U., Becirovic-Agic, M., Daseke, M.J., Konfrst, S.R., Rodriguez-Paar, J.R., Feng, D., et al. (2022) S100A9 Is a Functional Effector of Infarct Wall Thinning after Myocardial Infarction. American Journal of Physiology-Heart and Circulatory Physiology, 322, H145-H155.
https://doi.org/10.1152/ajpheart.00475.2021
[46] Feng, L., Li, G., An, J., Liu, C., Zhu, X., Xu, Y., et al. (2022) Exercise Training Protects against Heart Failure via Expansion of Myeloid-Derived Suppressor Cells through Regulating IL-10/STAT3/S100A9 Pathway. Circulation: Heart Failure, 15, e008550.
https://doi.org/10.1161/circheartfailure.121.008550
[47] Meng, L., Wang, J., Chen, H., Zhu, J., Kong, F., Chen, G., et al. (2024) LncRNA MEG9 Promotes Inflammation and Liver Fibrosis through S100A9 in Biliary Atresia. Journal of Pediatric Surgery, 60, Article 161633.
https://doi.org/10.1016/j.jpedsurg.2024.07.018
[48] de Ponti, A., Wiechert, L., Stojanovic, A., Longerich, T., Marhenke, S., Hogg, N., et al. (2014) Chronic Liver Inflammation and Hepatocellular Carcinogenesis Are Independent of S100A9. International Journal of Cancer, 136, 2458-2463.
https://doi.org/10.1002/ijc.29282
[49] Bouloukaki, I., Michelakis, S., Tsitoura, E., Vasarmidi, E., Koutoulaki, C., Tzanakis, N., et al. (2024) KL‑6, ET‑1 and S100A9 Levels in Patients with Idiopathic Pulmonary Fibrosis and Obstructive Sleep Apnea. Experimental and Therapeutic Medicine, 29, Article No. 16.
https://doi.org/10.3892/etm.2024.12766
[50] Yamashita, M., Utsumi, Y., Nagashima, H., Nitanai, H. and Yamauchi, K. (2021) S100A9/CD163 Expression Profiles in Classical Monocytes as Biomarkers to Discriminate Idiopathic Pulmonary Fibrosis from Idiopathic Nonspecific Interstitial Pneumonia. Scientific Reports, 11, Article No. 12135.
https://doi.org/10.1038/s41598-021-91407-9
[51] Lee, J., Kim, M.K., Kim, M., Lee, S.J., Park, S., Chang, H.S., et al. (2024) S100 Calcium-Binding Protein A9, a Potential Novel Diagnostic Biomarker for Idiopathic Pulmonary Fibrosis. Journal of Korean Medical Science, 39, e13.
https://doi.org/10.3346/jkms.2024.39.e13
[52] Tanaka, K., Enomoto, N., Hozumi, H., Isayama, T., Naoi, H., Aono, Y., et al. (2021) Serum S100A8 and S100A9 as Prognostic Biomarkers in Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Respiratory Investigation, 59, 827-836.
https://doi.org/10.1016/j.resinv.2021.05.008
[53] Bargagli, E., Olivieri, C., Cintorino, M., Refini, R.M., Bianchi, N., Prasse, A., et al. (2010) Calgranulin B (S100A9/MRP14): A Key Molecule in Idiopathic Pulmonary Fibrosis? Inflammation, 34, 85-91.
https://doi.org/10.1007/s10753-010-9210-7
[54] Nikitorowicz-Buniak, J., Shiwen, X., Denton, C.P., Abraham, D. and Stratton, R. (2014) Abnormally Differentiating Keratinocytes in the Epidermis of Systemic Sclerosis Patients Show Enhanced Secretion of CCN2 and S100A9. Journal of Investigative Dermatology, 134, 2693-2702.
https://doi.org/10.1038/jid.2014.253
[55] Stenström, M., Nyhlén, H.C., Törngren, M., Liberg, D., Sparre, B., Tuvesson, H., et al. (2016) Paquinimod Reduces Skin Fibrosis in Tight Skin 1 Mice, an Experimental Model of Systemic Sclerosis. Journal of Dermatological Science, 83, 52-59.
https://doi.org/10.1016/j.jdermsci.2016.04.006
[56] Zhu, Z., Ni, S., Zhang, J., Yuan, Y., Bai, Y., Yin, X., et al. (2023) Genome-Wide Analysis of Dysregulated RNA-Binding Proteins and Alternative Splicing Genes in Keloid. Frontiers in Genetics, 14, Article 1118999.
https://doi.org/10.3389/fgene.2023.1118999
[57] Hesselstrand, R., Distler, J.H.W., Riemekasten, G., Wuttge, D.M., Törngren, M., Nyhlén, H.C., et al. (2021) An Open-Label Study to Evaluate Biomarkers and Safety in Systemic Sclerosis Patients Treated with Paquinimod. Arthritis Research & Therapy, 23, Article 204.
https://doi.org/10.1186/s13075-021-02573-0
[58] Miura, S., Iwamoto, H., Namba, M., Yamaguchi, K., Sakamoto, S., Horimasu, Y., et al. (2024) High S100A9 Level Predicts Poor Survival, and the S100A9 Inhibitor Paquinimod Is a Candidate for Treating Idiopathic Pulmonary Fibrosis. BMJ Open Respiratory Research, 11, e001803.
https://doi.org/10.1136/bmjresp-2023-001803

Baidu
map