[1] |
Maria, A.T.J., Bourgier, C., Martinaud, C., Borie, R., Rozier, P., Rivière, S., et al. (2020) De la fibrogenèse à la fibrose: Mécanismes physiopathologiques et présentations cliniques. La Revue de Médecine Interne, 41, 325-329. https://doi.org/10.1016/j.revmed.2020.01.002 |
[2] |
Piera-Velazquez, S., Mendoza, F. and Jimenez, S. (2016) Endothelial to Mesenchymal Transition (Endomt) in the Pathogenesis of Human Fibrotic Diseases. Journal of Clinical Medicine, 5, Article 45. https://doi.org/10.3390/jcm5040045 |
[3] |
Mack, M. (2018) Inflammation and Fibrosis. Matrix Biology, 68, 106-121. https://doi.org/10.1016/j.matbio.2017.11.010 |
[4] |
Meng, X., Nikolic-Paterson, D.J. and Lan, H.Y. (2014) Inflammatory Processes in Renal Fibrosis. Nature Reviews Nephrology, 10, 493-503. https://doi.org/10.1038/nrneph.2014.114 |
[5] |
Lafuse, W.P., Wozniak, D.J. and Rajaram, M.V.S. (2020) Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells, 10, Article 51. https://doi.org/10.3390/cells10010051 |
[6] |
Jha, J.C., Dai, A., Garzarella, J., Charlton, A., Urner, S., Østergaard, J.A., et al. (2022) Independent of Renox, NOX5 Promotes Renal Inflammation and Fibrosis in Diabetes by Activating Ros-Sensitive Pathways. Diabetes, 71, 1282-1298. https://doi.org/10.2337/db21-1079 |
[7] |
Schiopu, A. and Cotoi, O.S. (2013) S100A8 and S100A9: Damps at the Crossroads between Innate Immunity, Traditional Risk Factors, and Cardiovascular Disease. Mediators of Inflammation, 2013, 1-10. https://doi.org/10.1155/2013/828354 |
[8] |
Chen, B., Miller, A.L., Rebelatto, M., Brewah, Y., Rowe, D.C., Clarke, L., et al. (2015) S100A9 Induced Inflammatory Responses Are Mediated by Distinct Damage Associated Molecular Patterns (DAMP) Receptors in Vitro and in Vivo. PLOS ONE, 10, e0115828. https://doi.org/10.1371/journal.pone.0115828 |
[9] |
Zhong, A., Xu, W., Zhao, J., Xie, P., Jia, S., Sun, J., et al. (2016) S100A8 and S100A9 Are Induced by Decreased Hydration in the Epidermis and Promote Fibroblast Activation and Fibrosis in the Dermis. The American Journal of Pathology, 186, 109-122. https://doi.org/10.1016/j.ajpath.2015.09.005 |
[10] |
Moles, A., Murphy, L., Wilson, C.L., Chakraborty, J.B., Fox, C., Park, E.J., et al. (2014) A TLR2/S100A9/CXCL-2 Signaling Network Is Necessary for Neutrophil Recruitment in Acute and Chronic Liver Injury in the Mouse. Journal of Hepatology, 60, 782-791. https://doi.org/10.1016/j.jhep.2013.12.005 |
[11] |
Chen, H., Lunney, J.K., Cheng, L., Li, X., Cao, J., Zhu, M., et al. (2011) Porcine S100A8 and S100A9: Molecular Characterizations and Crucial Functions in Response to Haemophilus Parasuis Infection. Developmental & Comparative Immunology, 35, 490-500. https://doi.org/10.1016/j.dci.2010.11.017 |
[12] |
Tamulytė, R., Jankaitytė, E., Toleikis, Z., Smirnovas, V. and Jankunec, M. (2023) Pro-Inflammatory Protein S100A9 Alters Membrane Organization by Dispersing Ordered Domains. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1865, Article 184113. https://doi.org/10.1016/j.bbamem.2022.184113 |
[13] |
Fan, Z.P., Peng, M.L., Chen, Y.Y., Xia, Y.Z., Liu, C.Y., Zhao, K., et al. (2021) S100A9 Activates the Immunosuppressive Switch through the PI3K/Akt Pathway to Maintain the Immune Suppression Function of Testicular Macrophages. Frontiers in Immunology, 12, Article 743354. https://doi.org/10.3389/fimmu.2021.743354 |
[14] |
Averill, M.M., Barnhart, S., Becker, L., Li, X., Heinecke, J.W., LeBoeuf, R.C., et al. (2011) S100A9 Differentially Modifies Phenotypic States of Neutrophils, Macrophages, and Dendritic Cells. Circulation, 123, 1216-1226. https://doi.org/10.1161/circulationaha.110.985523 |
[15] |
Simard, J., Girard, D. and Tessier, P.A. (2010) Induction of Neutrophil Degranulation by S100A9 via a MAPK-Dependent Mechanism. Journal of Leukocyte Biology, 87, 905-914. https://doi.org/10.1189/jlb.1009676 |
[16] |
Chi, Z., Hayasaka, Y., Zhang, X., Cui, H. and Hayasaka, S. (2007) S100a9-Positive Granulocytes and Monocytes in Lipopolysaccharide-Induced Anterior Ocular Inflammation. Experimental Eye Research, 84, 254-265. https://doi.org/10.1016/j.exer.2006.09.016 |
[17] |
Zhou, Y., Wu, M., Xu, L., Cheng, J., Shen, J., Yang, T., et al. (2021) Bmal1 Regulates Macrophage Polarize through Glycolytic Pathway in Alcoholic Liver Disease. Frontiers in Pharmacology, 12, Article 640521. https://doi.org/10.3389/fphar.2021.640521 |
[18] |
Cheng, P., Corzo, C.A., Luetteke, N., Yu, B., Nagaraj, S., Bui, M.M., et al. (2008) Inhibition of Dendritic Cell Differentiation and Accumulation of Myeloid-Derived Suppressor Cells in Cancer Is Regulated by S100A9 Protein. The Journal of Experimental Medicine, 205, 2235-2249. https://doi.org/10.1084/jem.20080132 |
[19] |
Mihaila, A.C., Ciortan, L., Macarie, R.D., Vadana, M., Cecoltan, S., Preda, M.B., et al. (2021) Transcriptional Profiling and Functional Analysis of N1/N2 Neutrophils Reveal an Immunomodulatory Effect of S100A9-Blockade on the Pro-Inflammatory N1 Subpopulation. Frontiers in Immunology, 12, Article 708770. https://doi.org/10.3389/fimmu.2021.708770 |
[20] |
Ursino, G., Lucibello, G., Teixeira, P.D.S., Höfler, A., Veyrat-Durebex, C., Odouard, S., et al. (2024) S100A9 Exerts Insulin-Independent Antidiabetic and Anti-Inflammatory Effects. Science Advances, 10, eadj4686. https://doi.org/10.1126/sciadv.adj4686 |
[21] |
Vogl, T., Stratis, A., Wixler, V., Völler, T., Thurainayagam, S., Jorch, S.K., et al. (2018) Autoinhibitory Regulation of S100A8/S100A9 Alarmin Activity Locally Restricts Sterile Inflammation. Journal of Clinical Investigation, 128, 1852-1866. https://doi.org/10.1172/jci89867 |
[22] |
Xu, Y., Wang, Y., Ning, K. and Bao, Y. (2024) Unraveling the Mechanisms of S100A8/A9 in Myocardial Injury and Dysfunction. Current Issues in Molecular Biology, 46, 9707-9720. https://doi.org/10.3390/cimb46090577 |
[23] |
Agra, R.M., Fernández-Trasancos, Á., Sierra, J., González-Juanatey, J.R. and Eiras, S. (2014) Differential Association of S100A9, an Inflammatory Marker, and P53, a Cell Cycle Marker, Expression with Epicardial Adipocyte Size in Patients with Cardiovascular Disease. Inflammation, 37, 1504-1512. https://doi.org/10.1007/s10753-014-9876-3 |
[24] |
Pei, H., Qu, J., Chen, J., Zhao, G. and Lu, Z. (2024) S100A9 as a Key Myocardial Injury Factor Interacting with ATP5 Exacerbates Mitochondrial Dysfunction and Oxidative Stress in Sepsis-Induced Cardiomyopathy. Journal of Inflammation Research, 17, 4483-4503. https://doi.org/10.2147/jir.s457340 |
[25] |
Pan, X., Yang, L., Wang, S., Liu, Y., Yue, L. and Chen, S. (2023) Semaglutide Ameliorates Obesity-Induced Cardiac Inflammation and Oxidative Stress Mediated via Reduction of Neutrophil Cxcl2, S100A8, and S100A9 Expression. Molecular and Cellular Biochemistry, 479, 1133-1147. https://doi.org/10.1007/s11010-023-04784-2 |
[26] |
Chang, N., Liu, Y., Li, W., Ma, Y., Zhou, X., Zhao, X., et al. (2024) Neutrophil-Secreted S100A8/A9 Participates in Fatty Liver Injury and Fibrosis by Promoting Myofibroblast Migration. Journal of Molecular Medicine, 102, 1117-1133. https://doi.org/10.1007/s00109-024-02469-x |
[27] |
Du, L., Chen, Y., Shi, J., Yu, X., Zhou, J., Wang, X., et al. (2023) Inhibition of S100A8/A9 Ameliorates Renal Interstitial Fibrosis in Diabetic Nephropathy. Metabolism, 144, Article 155376. https://doi.org/10.1016/j.metabol.2022.155376 |
[28] |
Tammaro, A., Florquin, S., Brok, M., Claessen, N., Butter, L.M., Teske, G.J.D., et al. (2018) S100A8/A9 Promotes Parenchymal Damage and Renal Fibrosis in Obstructive Nephropathy. Clinical and Experimental Immunology, 193, 361-375. https://doi.org/10.1111/cei.13154 |
[29] |
Hou, C., Wang, D., Zhao, M., Ballar, P., Zhang, X., Mei, Q., et al. (2023) MANF Brakes TLR4 Signaling by Competitively Binding S100A8 with S100A9 to Regulate Macrophage Phenotypes in Hepatic Fibrosis. Acta Pharmaceutica Sinica B, 13, 4234-4252. https://doi.org/10.1016/j.apsb.2023.07.027 |
[30] |
Kang, J.H., Hwang, S.M. and Chung, I.Y. (2014) S100A8, S100A9 and S100A12 Activate Airway Epithelial Cells to Produce MUC5AC via Extracellular Signal-Regulated Kinase and Nuclear Factor-κB Pathways. Immunology, 144, 79-90. https://doi.org/10.1111/imm.12352 |
[31] |
Halayko, A.J. and Ghavami, S. (2009) S100A8/A9: A Mediator of Severe Asthma Pathogenesis and Morbidity? Canadian Journal of Physiology and Pharmacology, 87, 743-755. https://doi.org/10.1139/y09-054 |
[32] |
Xu, X., Chen, H., Zhu, X., Ma, Y., Liu, Q., Xue, Y., et al. (2013) S100A9 Promotes Human Lung Fibroblast Cells Activation through Receptor for Advanced Glycation End-Product-Mediated Extracellular-Regulated Kinase 1/2, Mitogen-Activated Protein-Kinase and Nuclear Factor-κB-Dependent Pathways. Clinical and Experimental Immunology, 173, 523-535. https://doi.org/10.1111/cei.12139 |
[33] |
Xu, X., et al. (2018) S100A9 Aggravates Bleomycin-Induced Dermal Fibrosis in Mice via Activation of ERK1/2 MAPK and NF-κB Pathways. Iranian Journal of Basic Medical Sciences, 21, 194-201. |
[34] |
Araki, K., Kinoshita, R., Tomonobu, N., Gohara, Y., Tomida, S., Takahashi, Y., et al. (2020) The Heterodimer S100A8/A9 Is a Potent Therapeutic Target for Idiopathic Pulmonary Fibrosis. Journal of Molecular Medicine, 99, 131-145. https://doi.org/10.1007/s00109-020-02001-x |
[35] |
Park, E.Y., Seo, M.J. and Park, J.H. (2010) Effects of Specific Genes Activating RAGE on Polycystic Kidney Disease. American Journal of Nephrology, 32, 169-178. https://doi.org/10.1159/000315859 |
[36] |
Dessing, M.C., Tammaro, A., Pulskens, W.P., Teske, G.J., Butter, L.M., Claessen, N., et al. (2015) The Calcium-Binding Protein Complex S100A8/A9 Has a Crucial Role in Controlling Macrophage-Mediated Renal Repair Following Ischemia/Reperfusion. Kidney International, 87, 85-94. https://doi.org/10.1038/ki.2014.216 |
[37] |
Yao, W., Chen, Y., Li, Z., Ji, J., You, A., Jin, S., et al. (2022) Single Cell RNA Sequencing Identifies a Unique Inflammatory Macrophage Subset as a Druggable Target for Alleviating Acute Kidney Injury. Advanced Science, 9, Article 2103675. https://doi.org/10.1002/advs.202103675 |
[38] |
Liu, J., Chen, X., Zeng, L., Zhang, L., Wang, F., Peng, C., et al. (2024) Targeting S100A9 Prevents Β-Adrenergic Activation-Induced Cardiac Injury. Inflammation, 47, 789-806. https://doi.org/10.1007/s10753-023-01944-w |
[39] |
Shen, S., Zhang, M., Wang, X., Liu, Q., Su, H., Sun, B., et al. (2024) Single-Cell RNA Sequencing Reveals S100A9HI Macrophages Promote the Transition from Acute Inflammation to Fibrotic Remodeling after Myocardial Ischemia-Reperfusion. Theranostics, 14, 1241-1259. https://doi.org/10.7150/thno.91180 |
[40] |
Boyd, J.H., Kan, B., Roberts, H., Wang, Y. and Walley, K.R. (2008) S100A8 and S100A9 Mediate Endotoxin-Induced Cardiomyocyte Dysfunction via the Receptor for Advanced Glycation End Products. Circulation Research, 102, 1239-1246. https://doi.org/10.1161/circresaha.107.167544 |
[41] |
Marinković, G., Grauen Larsen, H., Yndigegn, T., Szabo, I.A., Mares, R.G., de Camp, L., et al. (2019) Inhibition of Pro-Inflammatory Myeloid Cell Responses by Short-Term S100A9 Blockade Improves Cardiac Function after Myocardial Infarction. European Heart Journal, 40, 2713-2723. https://doi.org/10.1093/eurheartj/ehz461 |
[42] |
Marinković, G., Koenis, D.S., de Camp, L., Jablonowski, R., Graber, N., de Waard, V., et al. (2020) S100A9 Links Inflammation and Repair in Myocardial Infarction. Circulation Research, 127, 664-676. https://doi.org/10.1161/circresaha.120.315865 |
[43] |
Müller, I., Vogl, T., Kühl, U., Krannich, A., Banks, A., Trippel, T., et al. (2020) Serum Alarmin S100A8/S100A9 Levels and Its Potential Role as Biomarker in Myocarditis. ESC Heart Failure, 7, 1442-1451. https://doi.org/10.1002/ehf2.12760 |
[44] |
Sun, Y., Wang, Z., Wang, C., Tang, Z. and Zhao, H. (2021) Psycho-Cardiology Therapeutic Effects of Shuangxinfang in Rats with Depression-Behavior Post Acute Myocardial Infarction: Focus on Protein S100A9 from Proteomics. Biomedicine & Pharmacotherapy, 144, Article 112303. https://doi.org/10.1016/j.biopha.2021.112303 |
[45] |
Chalise, U., Becirovic-Agic, M., Daseke, M.J., Konfrst, S.R., Rodriguez-Paar, J.R., Feng, D., et al. (2022) S100A9 Is a Functional Effector of Infarct Wall Thinning after Myocardial Infarction. American Journal of Physiology-Heart and Circulatory Physiology, 322, H145-H155. https://doi.org/10.1152/ajpheart.00475.2021 |
[46] |
Feng, L., Li, G., An, J., Liu, C., Zhu, X., Xu, Y., et al. (2022) Exercise Training Protects against Heart Failure via Expansion of Myeloid-Derived Suppressor Cells through Regulating IL-10/STAT3/S100A9 Pathway. Circulation: Heart Failure, 15, e008550. https://doi.org/10.1161/circheartfailure.121.008550 |
[47] |
Meng, L., Wang, J., Chen, H., Zhu, J., Kong, F., Chen, G., et al. (2024) LncRNA MEG9 Promotes Inflammation and Liver Fibrosis through S100A9 in Biliary Atresia. Journal of Pediatric Surgery, 60, Article 161633. https://doi.org/10.1016/j.jpedsurg.2024.07.018 |
[48] |
de Ponti, A., Wiechert, L., Stojanovic, A., Longerich, T., Marhenke, S., Hogg, N., et al. (2014) Chronic Liver Inflammation and Hepatocellular Carcinogenesis Are Independent of S100A9. International Journal of Cancer, 136, 2458-2463. https://doi.org/10.1002/ijc.29282 |
[49] |
Bouloukaki, I., Michelakis, S., Tsitoura, E., Vasarmidi, E., Koutoulaki, C., Tzanakis, N., et al. (2024) KL‑6, ET‑1 and S100A9 Levels in Patients with Idiopathic Pulmonary Fibrosis and Obstructive Sleep Apnea. Experimental and Therapeutic Medicine, 29, Article No. 16. https://doi.org/10.3892/etm.2024.12766 |
[50] |
Yamashita, M., Utsumi, Y., Nagashima, H., Nitanai, H. and Yamauchi, K. (2021) S100A9/CD163 Expression Profiles in Classical Monocytes as Biomarkers to Discriminate Idiopathic Pulmonary Fibrosis from Idiopathic Nonspecific Interstitial Pneumonia. Scientific Reports, 11, Article No. 12135. https://doi.org/10.1038/s41598-021-91407-9 |
[51] |
Lee, J., Kim, M.K., Kim, M., Lee, S.J., Park, S., Chang, H.S., et al. (2024) S100 Calcium-Binding Protein A9, a Potential Novel Diagnostic Biomarker for Idiopathic Pulmonary Fibrosis. Journal of Korean Medical Science, 39, e13. https://doi.org/10.3346/jkms.2024.39.e13 |
[52] |
Tanaka, K., Enomoto, N., Hozumi, H., Isayama, T., Naoi, H., Aono, Y., et al. (2021) Serum S100A8 and S100A9 as Prognostic Biomarkers in Acute Exacerbation of Idiopathic Pulmonary Fibrosis. Respiratory Investigation, 59, 827-836. https://doi.org/10.1016/j.resinv.2021.05.008 |
[53] |
Bargagli, E., Olivieri, C., Cintorino, M., Refini, R.M., Bianchi, N., Prasse, A., et al. (2010) Calgranulin B (S100A9/MRP14): A Key Molecule in Idiopathic Pulmonary Fibrosis? Inflammation, 34, 85-91. https://doi.org/10.1007/s10753-010-9210-7 |
[54] |
Nikitorowicz-Buniak, J., Shiwen, X., Denton, C.P., Abraham, D. and Stratton, R. (2014) Abnormally Differentiating Keratinocytes in the Epidermis of Systemic Sclerosis Patients Show Enhanced Secretion of CCN2 and S100A9. Journal of Investigative Dermatology, 134, 2693-2702. https://doi.org/10.1038/jid.2014.253 |
[55] |
Stenström, M., Nyhlén, H.C., Törngren, M., Liberg, D., Sparre, B., Tuvesson, H., et al. (2016) Paquinimod Reduces Skin Fibrosis in Tight Skin 1 Mice, an Experimental Model of Systemic Sclerosis. Journal of Dermatological Science, 83, 52-59. https://doi.org/10.1016/j.jdermsci.2016.04.006 |
[56] |
Zhu, Z., Ni, S., Zhang, J., Yuan, Y., Bai, Y., Yin, X., et al. (2023) Genome-Wide Analysis of Dysregulated RNA-Binding Proteins and Alternative Splicing Genes in Keloid. Frontiers in Genetics, 14, Article 1118999. https://doi.org/10.3389/fgene.2023.1118999 |
[57] |
Hesselstrand, R., Distler, J.H.W., Riemekasten, G., Wuttge, D.M., Törngren, M., Nyhlén, H.C., et al. (2021) An Open-Label Study to Evaluate Biomarkers and Safety in Systemic Sclerosis Patients Treated with Paquinimod. Arthritis Research & Therapy, 23, Article 204. https://doi.org/10.1186/s13075-021-02573-0 |
[58] |
Miura, S., Iwamoto, H., Namba, M., Yamaguchi, K., Sakamoto, S., Horimasu, Y., et al. (2024) High S100A9 Level Predicts Poor Survival, and the S100A9 Inhibitor Paquinimod Is a Candidate for Treating Idiopathic Pulmonary Fibrosis. BMJ Open Respiratory Research, 11, e001803. https://doi.org/10.1136/bmjresp-2023-001803 |