数字骨科的研究进展
Advances in Digital Orthopedics Research
DOI: 10.12677/hjbm.2025.151028, PDF, HTML, XML,    科研立项经费支持
作者: 裴新赢, 王 健:新疆维吾尔自治区人民医院克拉玛依医院骨科中心,新疆 克拉玛依
关键词: 骨科远程医疗数字化人工智能机器学习机器人技术传感器技术智能植入物Orthopaedics Telemedicine Digitalization AI Machine-Learning Robotic Technology Sensor Technology Smart Implants
摘要: 物联网(IoT)、人工智能(AI)和传感器等技术和数字工具的进步正在从各个层面塑造骨科手术领域,从患者护理到研究和物流流程的便利化。尤其是2019新冠肺炎(Covid-19)大流行及其相关的接触限制,加速了远程医疗应用的开发和引入,以及传统面对面患者护理的数字替代方案。骨科手术中已经使用的数字应用包括远程医疗支持、在线视频咨询、使用可穿戴设备监测患者、智能设备、手术导航、机器人辅助手术,以及人工智能在医学图像处理、三维(3D)建模和模拟相关应用。此外,虚拟、增强和混合现实等沉浸式技术也更多应用于培训,还有康复和手术环境。因此,数字技术的进步可以提高骨科服务的可及性、效率和能力,促进更多数据驱动的个性化患者护理,加强患者的自我责任,并支持跨学科医疗保健提供者为患者提供最佳护理。
Abstract: Advances in technology and digital tools like the Internet of Things (IoT), artificial intelligence (AI), and sensors technology are shaping the field of orthopaedic surgery on all levels, from patient care to research and facilitation of logistic processes. Especially the Covid-19 pandemic, with the associated contact restrictions was an accelerator for the development and introduction of telemedical applications and digital alternatives to classical in-person patient care. Digital applications already used in orthopaedic surgery include telemedical support, online video consultations, monitoring of patients using wearables, smart devices, surgical navigation, robotic-assisted surgery, and applications of artificial intelligence in forms of medical image processing, three-dimensional (3D)-modelling, and simulations. In addition to that immersive technologies like virtual, augmented, and mixed reality are increasingly used in training but also rehabilitative and surgical settings. Digital advances can therefore increase the accessibility, efficiency and capabilities of orthopaedic services and facilitate more data-driven, personalized patient care, strengthening the selfresponsibility of patients and supporting interdisciplinary healthcare providers to offer for the optimal care for their patients.
文章引用:裴新赢, 王健. 数字骨科的研究进展[J]. 生物医学, 2025, 15(1): 244-257. https://doi.org/10.12677/hjbm.2025.151028

1. 引言

在过去的几年里,数字工具和应用程序在骨科手术领域迅速开发和实施,并开始在各个层面(临床和后勤流程、患者护理、研究和教育)塑造整个医学领域。过去几年蓬勃发展的技术和数字工具,如物联网(IoT)、下一代电信网络、人工智能(AI)、大数据分析、区块链技术和传感器。这些技术通过支持和放大人类的认知功能和决策的方式,极大改变了医疗保健提供的可能性[1]。其高度连接和相互关联,组合在一起,可以为数字生态系统的形成做出贡献。医疗保健系统中已经实施的数字应用程序包括电子健康记录、远程医疗解决方案、机器人辅助手术、三维(3D)建模、虚拟模拟和可视化。其使用用于提高骨科手术领域提供服务的质量(准确性和效率)、可及性和能力[2]。此外,数字工具可以提供更个性化和以患者为中心的医疗保健[3]。Al系统在骨科手术中的应用可以归因于基于导航、计算机引导和机器人辅助输入的新兴技术进步[4]。交互式虚拟3D成像(与机器人技术相结合)正在取代标准的二维(2D)成像模式,通过改善了术前规划和术中功能,从而改善了患者预后。这种类型的“数字医学”在脊柱手术中尤为明显,例如,基于图像的椎弓根螺钉放置,其中使用了包括术前规划软件在内的机器人引导系统。用于决策椎弓根螺钉的放置,特别是在严重脊柱畸形或解剖地标(先天性畸形、退化、肿瘤、创伤、修正手术)的患者中,从而减轻风险和并发症[5]

2019新冠肺炎疫情为加速使用和实施远程医疗形式的直接患者护理数字工具和应用程序做出了重大贡献[6]。由于严格的接触限制,从传统的面对面预约转为远程医疗应用程序和服务极其必要。Al应用程序以接触者跟踪和康复应用程序的形式使用,并用于预测个别医院和地区的疾病和资源预算。数字化将在各级医疗保健提供中发挥更多的作用,在骨科也是如此,因此了解数字化领域的当前发展非常重要。

以下概述介绍了骨科手术中数字化应用的目前发展,并将研究其未来应用以及潜在的局限性和危害。

2. 方法

作者根据临床经验,在评估了该领域领军人物已发表的研究后,定义了骨科和创伤外科数字化的关键,并总结为单独的主题领域[7]。随后,作者对该主题的当前文献进行了回顾和讨论。这些主题未在手稿中以任何重要性评级呈现。图1代表了本综述中讨论的骨科中使用的各种数字健康应用。

2.1. 远程医疗和远程健康

远程医疗是指运用电信技术以此提供医疗(诊断、治疗和后续护理)服务。另一方面,远程医疗还包括除医患关系之外的其他服务。远程医疗的核心在于在线视频咨询,包括数字临床检查、电子咨询和转诊系统。

2.1.1. 在线视频咨询(OVCs)

骨科患者可以使用OVCs进行远程评估,特别是慢性病患者[8]。OVCs在患者满意度和患者相关结果(PROMs)方面显示出其经济优势(例如,减少差旅成本)的可比性。视频咨询的有效性已被证明,在门诊设置的非急性条件的初步评估,包括病人的历史和数字评估的活动范围(RoM)以及功能评估。OVCs也可用于术后随访检查,包括伤口和RoM评估、康复访问和私人医患讨论[9]-[11]。研究表明,在应限制人际接触的情况下,如2019冠状病毒病大流行期间,OVCs发挥更大的作用。此外,对于来自医院访问受限的农村地区的非急性患者来说,OVCs是一个很好的替代品[12]

远程医疗(包括OVCs)和移动健康(mHealth)技术,如传感器、可穿戴设备和移动应用程序,结合了人工智能和ML算法进行数据分析,实现了术后远程患者监测,更有效地利用医疗保健资源,降低了与健康相关的成本,并改善了当前传统的术后干预措施[13]。这些技术在骨科术后环境中的应用可以为骨科医生提供远程、客观和定量的数据,用于帮助他们做出更(及时)明智的治疗决策,并持续监测患者的进展和康复结果[14]

然而,必须注意远程医疗的一些局限性。首先,特别针对老年人口,患者可能无法使用具有视频咨询兼容软件的设备,或者他们可能对使用所需技术感到不适应。此外,患者和医疗服务提供者都需要稳定可靠的互联网连接。这是一个潜在的问题,针对于被忽视的农村地区[15]。其次,数字患者遭遇更容易受到隐私和安全风险的影响。确保安全的平台和实践对于保护患者的机密性还有遵守医疗保健数据保护法规至关重要。此外,远程医疗存在监管障碍,以及对必要的硬件和软件、患者和数据安全、健康保险和报销缺乏监管[16]。此外,由于医生有可能需要提供跨越地理边界的医疗服务,因此必须建立多州执照[16]

2.1.2. 数字化骨科检查

OVCs的一个重要方面是对患者的临床检查,包括检查、触诊和功能检查。对患者病史的临床检查和概要对于启动进一步的诊断步骤至关重要。

检查仅限于视觉印象,因此可以通过数字媒体支持进行数据传输。数字环境中的感诊目前仍然仅限于患者的自我感诊。在此,审查人的指示非常重要。除此之外,医生和患者之间的持续沟通对于询问检查区域的感觉、疼痛或一致性的变化很重要。

多年来,触觉印象的数字传输一直是技术发展的主题[17]。远程触觉最近才成为一个独立的研究课题,作为触觉印象直接皮肤调解的技术先决条件,与通过手术器械在力反馈感中调解触觉和触觉印象形成对比,只有当“可穿戴”的概念作为人类感官和环境之间的中介技术[18]

数字设备可用于将临床发现和康复表现物化,并随后将个别患者与历史集体[19]-[21]进行比较。实时且无标记运动捕捉技术目前只能在简单的运动模式下工作,因为多轴运动只能以有限的精确度进行识别[22]

除此之外,几项研究描述了肌肉骨骼系统功能检查的完全数字化替代方案[23]。大多数检查是经典功能测试的改变,患者可以在没有任何外部人类支持的情况下进行。为了支持这种引导自我检查,日常物品,如锡罐和毛巾,可用于施加力和指导方向[23]。这些物体可以帮助在检查过程中将力或引导运动施加到特定方向。插图可以支持检查的准备,因为它们可以直观地解释检查,并支持医生的口头指示[24]。然而,所描述的数字考试替代方案的有效性和可靠性尚未得到充分评估,在未来应优先作为研究对象[23]。一项样本数量有限的研究旨在将面对面的功能检查与在线视频咨询中的数字替代方案直接进行比较。研究结果显示,检查和ROM测试的一致性很高,但触诊和功能检查的数字结果不太一致[23]

2.1.3. 电子转诊和会诊系统

获得专家护理对于协调有效地诊断和患者治疗至关重要。传统上,转诊和专家咨询是通过电话或纸质方式进行的。由于不同医疗保健提供者之间的沟通和信息交换不完整、支离破碎或非结构化,以上方法都可能导致患者护理期间的不良事件和医疗错误。

为减少等待时间并改善获得专家护理的机会,引入了电子转诊和咨询系统[25]。除此之外,这些流程的数字化可以提高其质量和完整性。电子转诊和咨询可以加强临床医生之间的沟通和无缝信息/数据交换,从而提高患者的安全性。最后,电子转诊和咨询可以用于提高患者对转诊过程的体验和满意度[25] [26]

实施电子转诊系统的一个成功例子是Vula Mobile (Mafami Pty Ltd)应用程序,自2014年以来,该应用程序一直用于将患者转诊到急诊中心和门诊部门,提高了医疗保健系统内患者护理的质量和协调[27]。另一个例子是在安大略省[26]的肌肉骨骼护理模型中引入了电子转诊系统。与纸质转诊表相比,电子转诊表更可读、更完整,处理时间也更短[26]。除此之外,该系统具有资源效率,行政要求降到最低。

2.2. 传感器

传感器是一种可以检测物理环境(例如压力、温度、运动)变化的设备,这些变化被转换成人类可以读取的电子输出信号。因此,传感器是物理世界和数字世界之间的鸿沟。

传感器允许用于对不同患者的特定参数进行客观、连续和长期的监测。一项横断面调查研究发现,大多数参与者将使用基于家庭的自动数字测量系统进行术后随访;另一项研究发现,大多数人对于使用移动应用程序收集个人健康相关数据进行术后监测的接受度高[28] [29]。因此,总体而言,数据保护似乎不是一个大问题。

2.2.1. 可穿戴产品

传统上,骨科损伤预防是在使用运动学和动力学定量参数的生物力学评估的帮助下体现出来的,目的是识别有特定损伤风险的个人,并就预防高风险运动模式提供反馈[30] [31]。传感器可用于患者护理的不同领域,越来越多的患者在日常生活中使用可穿戴设备。骨科手术领域使用的可穿戴设备有智能手表、健身追踪器和运动以及压力传感器[32]。其他应用的例子是便携式传感器,如惯性测量单元(imu)、深度相机、红绿蓝(RGB)相机和肌电图(EMG) [30]。这一代融合了机器学习(ML)的大数据可以实现伤害风险分层。未来进一步的应用包括跌倒预防系统。这些系统包括使用与ML模型集成的可穿戴足压力传感器来检测步态分析中相位分布的不规则变化和不均匀负载分布,这可以通过应用程序发出警报,从而防止即将到来的跌倒和随后的伤害[33]

2.2.2. SMART设备

日益趋进的传感器技术与人工智能、大数据分析和机器学习等相互作用也使自我监测分析和报告技术(SMART)骨科设备得以发展[34] [35]。这些设备,如带嵌入式传感器的牙套、义肢和植入物,可以测量运动、力和姿势,旨在改善和提供个性化患者护理[36]。对于上肢,可穿戴传感器设置提供手术后患者康复结果的相关数据的功能已被证明,比如肱骨头骨折[37]。使用这种远程医疗技术在术后监测中是有利的,不仅能够覆盖更多的患者并降低成本,而且还特别适用于偏远地区的患者群体[38]

2.2.3. SMART植入物

SMART设备在骨科中的一个特殊用途是智能植入物(SI),它可用于评估骨折愈合和检测全关节置换术中的无菌性松动、假体周围感染和其他肌肉骨骼系统感染[39]-[41]。评估骨折愈合阶段对于为患者提供适当的术后计划(关于RoM允许量和负重限制)以及早期发现骨不连至关重要[42]。AO骨折监护仪已被引入临床前研究,在10只动物身上使用锁定加压钢板(LCP)桥接胫骨缺损[43]。植入式数据记录仪(附在钢板上)收集各种骨折愈合参数,这些参数无线传输到患者的智能手机上,从而允许治疗医生远程评估。除了骨折护理外,SI已被证明可以检测全髋关节置换术(THA)中植入物松动和骨整合,在实验环境中检测机械声波并将其传输到外部线圈[44]。在全膝关节置换术(TKA)中,基于应变计的胫骨组件负荷传感器可用于了解术中生物力学,以确定对齐和植入物大小,并计划术后护理和康复方案[36] [45]。有几项研究一直在研究脊柱融合手术,在融合棒上使用应变传感器来监测脊柱融合的进展。然而,这些系统尚未商业化[46] [47]。另一个应用是附着在植入物上的基于微机电系统(MEMS)的传感器,它可以在生物膜形成之前检测细菌的存在,检测特定的细菌化合物[48]。其他传感器技术可以通过检测ph值变化、氧水平和温度来检测活动性感染,因此也允许监测抗生素治疗[49]

2.3. 机器人

骨科手术中的机器人技术可分为两类:触觉系统和主动系统。触觉导航系统分为被动式、协同式、外科医生引导式、和沿着计划的轨迹运动,使用“虚拟固定装置”来改善结果。例如,定量TKA手术是在先进的软组织实时平衡下进行的,并使用导航系统来可视化、计划和控制所有切割步骤及其对软组织的影响[50]

主动机器人系统是完全自动化的,基于术前计划,在没有外科医生干预的情况下进行[51] [52]。一个应用是股骨假体在无水泥THA中的规划。然而,这些程序仍然与延长的操作时间(技术复杂性,设置时间等)有关[52]

在未来,“远程操纵”的主控制、从机器人系统可能在骨科手术中发挥重要作用。这些系统通过向外科医生提供信息(3D手术场)的控制台将外科医生从患者身上分离出来,然后外科医生使用主控制器过滤、缩放并将外科医生的手的运动转化为机械臂(输出),这对微创手术中的震颤减少有重要帮助[53]。这种类型的系统可以应用,特别是在远程,难以到达的地方,如微创关节镜手术。然而,这类系统的主要障碍之一是没有触觉反馈通道来提供力或位置信息或潜在的增强信息,如计划的轨迹[51]。这种类型的机器人系统可以在最小的手术通道、避免关键解剖结构、提高对齐精度、减少外科医生在人体工程学方面的工作量以及减少辐射暴露方面彻底改变骨科手术,并最终改善患者的预后。然而,必须注意的是,将机器人集成到临床和手术工作流程中可能需要额外的时间和资源,这可能会导致手术效率在最初的学习曲线中暂时下降,因为外科医生和医护人员需要专门的培训才能有效地操作骨科机器人[54] [55]

2.4. 人工智能

人工智能(AI)是指通过计算机系统执行通常需要人类智能的任务,如视觉感知、语音识别和决策[56]。在过去的几年里,使用人工智能的应用极大地塑造了医疗保健系统。

2.4.1. 成像

在骨科成像是至关重要的检测和分类的骨折和肌肉骨骼疾病的诊断。因此,影像学对于治疗方案的确定、术中控制、术后结果的监测以及潜在并发症的发现都非常重要。然而,图像的评价和解释是高度主观的,依赖于包括个人经验和能力在内的许多因素。

使用二维平面x光片和三维成像方式,如计算机断层扫描(CT)、磁共振成像(MRI)以及核和分子成像,已经成为骨科手术的常规检查。随着数字技术的进步,这些成像模式与AI、机器学习和深度学习(DL)的结合应用越来越多[57]-[59]

使用这些集成技术可以提高检测肌肉骨骼系统病理的效率和准确性。各种研究表明,与临床医生相比,平面2D x线片上的DL在检测和分类骨折方面具有相当的准确性[60]。同样,与训练有素的放射科医生相比,一些ML和AI技术在检测和分期髋关节和膝关节骨关节炎方面表现优越[61]。此外,ml训练的AI程序在二维x线片上检测假体松动方面优于经验丰富的骨科医生,并能识别出令人满意的假体类型[61]。使用ml系统自动检测脊柱病变也显示出良好的特异性和敏感性[61]

除此之外,CT或核磁共振成像可用于三维重建患者的个体解剖结构,这允许生产患者特定的植入物和开发预先定义的切割指南。这也向骨科手术领域更加个性化的治疗迈出了重要的一步。这些个性化植入物是使用数字印刷技术制造的。

针对患者的植入技术旨在缩短手术时间并改善患者的治疗效果。患者特异性植入技术已经用于THA和TKA以及矫正性截骨术。然而,它在肩关节置换术和踝关节手术中也得到了普及[62]。但必须指出的是,目前缺乏评估个性化骨科植入物临床疗效的长期研究,在完全支持广泛应用患者特异性植入物技术之前,还需要进行长期研究。

然而,重要的是要注意,AI算法受到所提供的训练数据质量的影响,并且容易受到各自数据中存在的偏差的影响。因此,AI做出的预测,特别是对于小队列,可能是次优的,因为它们在临床数据集中的代表性不足。这可能会使医疗保健结果的差异永久化并加剧[63]。此外,在使用AI技术时,也存在对患者数据和隐私安全的担忧[64]。最后,一些AI模型的“黑箱”性质阻碍了它们的可解释性,使得医疗保健专业人员难以理解特定人工智能生成建议背后的基本原理[63]

2.4.2. 规划工具

三维成像(即CT)和数字化术前计划工具可以增强手术入路的执行,包括骨折治疗中的复位和固定。例如,与传统的2D方法相比,骨盆骨折的数字化计划手术显示出更好的结果[65]。数字计划工具也可用于长骨固定、关节成形术、脊柱畸形矫正手术和创伤后畸形矫正手术[66]

在膝关节和髋关节置换术中,基于人工智能的计划软件已被证明优于制造商的软件,并且外科医生进行的术中纠正较少[67]。最终,一些研究表明,基于放射学成像,使用AI和ML方法预测出的骨病理结果具有极高的准确性,可以用于一般骨折治疗、关节成形术和脊柱畸形矫正,并用于辅助手术计划,以减少短期和长期并发症[61] [68]

2.4.3. 后勤流程和临床工作流程

在危及生命的(骨科)紧急情况下,正确的临床评估、目标医院的选择和患者的运输方式至关重要[69]。以上临床前方面都可以通过数字工具和应用程序进行优化,目的在于更快地分配资源和早期适当评估临床情况。评估和结果评分可作为启动院外治疗的决策辅助工具,根据情况选择合适的医院,以及与创伤中心进行自动化和改进的沟通[70]。已经实施了不同的评分系统,以促进临床前决策支持[71] [72]。通过实时遥测和急救服务部门与医院之间的自动数据处理,可以优化信息流;此外,医院的能力可以通过自动化系统转化为控制中心,以确保最佳的患者分诊和分配[70] [73]

基于机器学习的系统用于无创预测即将发生的并发症和现场治疗或目标创伤中心立即采取行动的适应症,已被证明可以获得与“原始”经验相似或更好的结果[71] [72]

大约8%的重大(骨科)创伤死亡被认为是可以预防的[74]。在复苏过程中,通过视觉和听觉显示连接计算机生成的刺激可以增强创伤护理专业人员的互动,并尽可能减少错误的遗漏和误解[74]。先前的研究已经显示了预测损伤模式的有效工具。概率图形模型结合CT-3D重建和创伤受害者的重要参数,根据穿透性损伤的位置预测结果,已被证明是提高穿透性损伤患者治疗的时间效率和安全性的有效工具[75]。几种AI算法可用于根据特定患者参数检测动脉损伤[76]。复苏室内语音分析可用于复苏阶段的数据收集和分类(例如,患者到达、初级调查、次级调查) [77]。机器学习工具和人工神经网络(ANN)已被用于开发多种系统,如智能手机应用程序和集成分类器,作为预测出血或输血需求的决策工具,包括大规模输血协议[72] [78] [79]。此外,AI已被证明在临床环境中对出血严重程度和生存能力评分(HISS)具有更好的分类准确性,并且可以用作评分本身的辅助评分[80]

在其他机器学习算法和网络中,基于人工智能的创伤援助计算机程序已被证明有助于预测紧急干预的需求[81]-[83]

一些机器学习和ANN系统已被证明具有比既定结果分数更高的准确性[84] [85]。WATSON创伤路径探索者(IBM)是一种机器学习预测工具,已经过验证,并显示出在早期死亡率方面优于TRISS。此外,该应用程序可以比其他现有的生理评分系统更准确地预测败血症和SIRS [86]。大数据系统、机器学习和ANN可以促进多重创伤患者在急性环境下的决策,并有可能进一步改进或取代现有的评分系统,并可能为严重损伤患者的个性化医疗奠定基础。

数字工具在骨科门诊部门也得到了发展,特别是在2019冠状病毒病期间。为了优化资源分配,已经实施了远程医疗平台,用于将患者分类到专业提供者,并区分慢性疾病和紧急情况[7]。使用AI技术的聊天机器人对于将患者分类到正确的提供者非常有用,可以缓解人员短缺[7]

除此之外,整形外科正在从被称为混合手术室的数字增强手术室中获利。混合型手术室是无菌环境,将传统手术室与先进的成像系统(CT或MRI)结合在一起。这允许在手术过程中对患者进行实时3D成像,而无需改变位置。这意味着诊断和治疗过程可以同时进行。一般来说,混合手术室由外科医生和放射科医生组成的多学科团队管理。这为执行复杂的、图像引导的、常规的和微创的手术提供了可能性。在骨科手术中,应用包括脊柱和骨盆手术[87]。术中使用3D成像提高了手术过程的准确性(例如,螺钉放置),并且可以在早期发现操作错误。这反过来又可以降低翻修手术的发生率[88]。然而,必须注意的是,混合手术室内工作人员的辐射暴露可能很高,通过坚持辐射防护措施来避免过度辐射暴露是很重要的[89]

2.5. 沉浸式技术——虚拟、增强和混合现实

沉浸式技术的发展和进步有可能改变骨科医疗保健的提供[90]。它可以分为三种类型的沉浸式技术:虚拟现实、增强现实和混合现实。在虚拟现实中,用户沉浸在一个模拟的三维计算机生成的环境中。这意味着在真实世界完全隐藏的同时,创建了真实环境的全数字模拟。虚拟现实应用涉及一个头戴式显示器和两个手持设备,用于将用户置于模拟环境中,并传达视觉和物理信息反馈。一般来说,可以定义三种形式的虚拟现实应用:非交互式模拟器、具有视觉反馈的交互式模拟器和具有触觉反馈的交互式模拟器[91]。在增强现实中,虚拟物体被叠加到现实世界上。这意味着,现实世界不是创造一个完全合成的数字环境,而是辅以数字感官输入。混合现实将虚拟物体连接到现实世界中。这意味着现实世界和数字世界是混合的,物理对象和数字对象共存,实时交互。

2.5.1. 沉浸式技术和外科培训

沉浸式技术的使用可以成为医学教育的丰富工具,尤其是在外科领域。在过去的几年中,西方医疗保健系统和医疗保健的提供发生了巨大的变化,这不仅包括更复杂的手术技术,更多地关注行政和其他非临床任务和工作时间限制,而且对患者安全的敏感度和兴趣更高,对手术结果的期望也更高[92] [93]。所有这些发展都增加了对外科院系居民的需求,并阻碍了手术培训和手术技术在手术室的实践。沉浸式技术可能被用作外科培训的合格替代方案,因为它允许无限制和患者安全的手术过程和手术技术实践。在住院医师培训中实施沉浸式技术可以作为现实世界外科培训的可行替代方案。这种方法在住院医生接触患者和手术室的频率较低的时候尤其有吸引力,例如在Covid-19大流行期间[94]

最近的研究表明,在住院医师培训中使用虚拟现实工具有可能提高外科技能并将其转化为手术室[85]。此外,虚拟现实还允许在培训期间对不同参数进行标准化和客观的评估,包括手术技术的准确性或不同手术步骤所需的时间[96]

特别是在关节镜的实践中使用虚拟现实技术已经引起了人们极大的兴趣,并成为近年来研究的热点。关节镜模拟器不仅可以呈现3D解剖,模拟手术工具和病理,还可以模拟包括软骨损伤或出血在内的真实事件。除此之外,还可以分析受训者的表现,并提出改进建议[97]。先前的研究可以表明,虚拟现实模拟器训练可以提高住院医生的关节镜基本技能,减少手术次数[98]。Walbron等人调查了虚拟现实关节镜训练对107名第一年住院医生关节镜技能的影响,发现在相机对准和路径轨迹方面有显著改善[99]

虚拟现实应用于骨科外科住院医师培训的其他可能性包括髓内钉和椎弓根螺钉置入、关节成形术和骨折固定的实践。研究表明,与骨科住院医师教育中的传统学习方法相比,沉浸式虚拟现实在技术和非技术技能的中介方面表现更好[100]

然而,将虚拟现实全面、结构化地实施到骨科住院医师教育项目中,仍存在一些障碍。在住院医师项目中,关于结构化的互补虚拟现实培训的经验和研究非常有限。此外,与VR和AR硬件相关的高成本可能会减少对这些技术的普遍访问。

增强现实工具,例如HoloLens (微软),可以被医学生和专业人士用来查看3D解剖模型,并理解复杂的程序和过程[90]。一些研究也描述了增强现实在关节成形术领域的应用,作为计算机辅助手术的补充。在这里,通过使用术前CT扫描或术中地标,可以将视觉覆盖投影到现实世界上。目前在关节置换术中使用增强现实技术的证据仍然有限,缺乏临床研究。然而,在临床前环境中,增强现实技术的使用提高了手术的准确性和可重复性,并有助于减少辐射暴露。

2.5.2. 虚拟患者环境

沉浸式技术还可用于为患者康复和围手术期物理治疗提供虚拟患者环境[7]。应用这些技术可以促进更加个性化和以患者为中心的康复。物理治疗和康复措施可以在不需要旅行的情况下远程执行,并允许对患者进行持续监测。在Gumaa等人的一项系统综述和荟萃分析中,传统康复和虚拟现实康复在功能和疼痛方面显示了几种骨科诊断的可比结果[101]

3. 讨论

在过去的十年中,数字化工具在骨科手术领域的使用迅速增加。过去的研究表明,数字技术的使用可以提高医疗服务的可及性、效率和能力,并引起医生及时和积极地干预[102]。特别是骨科的数字护理可以提供更多数据驱动的个性化护理,并可以根据医学原理和数据分析模型帮助医生提供辅助诊断功能,从而促进从预防到康复的更高效和有效的诊断和治疗决策。骨科数字医学及其临床转化的研究正在迅速发展[103]。这可以形成更加个性化和个性化医疗的基础,加强患者的自我责任,并支持跨学科医疗保健提供者为患者提供最佳护理。影响数字技术成功实施和整合到临床常规的挑战包括缺乏基于证据的数字健康标准,以及可能减少的隐私、报销法规、许可和数据治理法规[104] [105]。除此之外,需要注意的是,人为因素以及从医生和患者的角度对技术和数字化转型的接受和信任,大概会在医疗保健系统中实施数字应用方面发挥重要作用。因此,对于卫生社区来说,将潜在的伦理、政治、人类和法律挑战作为进一步讨论的主题也将非常重要。

基金项目

新疆维吾尔自治区自然科学基金(2021D01A23);新疆维吾尔自治区天山英才青年科技拔尖人才项目(2022TSYCJC0010);克拉玛依市骨干科技创新人才项目。

参考文献

[1] Junaid, S.B., Imam, A.A., Balogun, A.O., De Silva, L.C., Surakat, Y.A., Kumar, G., et al. (2022) Recent Advancements in Emerging Technologies for Healthcare Management Systems: A Survey. Healthcare, 10, Article 1940.
https://doi.org/10.3390/healthcare10101940
[2] Li, Z. (2023) Digital Orthopedics: The Future Developments of Orthopedic Surgery. Journal of Personalized Medicine, 13, Article 292.
https://doi.org/10.3390/jpm13020292
[3] Bini, S.A. (2018) Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care? The Journal of Arthroplasty, 33, 2358-2361.
https://doi.org/10.1016/j.arth.2018.02.067
[4] Trentzsch, H., Osterhoff, G., Heller, R., Nienaber, U. and Lazarovici, M. (2020) Herausforderungen der Digitalisierung in der Traumaversorgung. Der Unfallchirurg, 123, 843-848.
https://doi.org/10.1007/s00113-020-00859-7
[5] Lieberman, I.H., Kisinde, S. and Hesselbacher, S. (2020) Robotic-Assisted Pedicle Screw Placement during Spine Surgery. JBJS Essential Surgical Techniques, 10, e0020.
https://doi.org/10.2106/jbjs.st.19.00020
[6] Meskó, B. (2022) Covid-19’s Impact on Digital Health Adoption: The Growing Gap between a Technological and a Cultural Transformation. JMIR Human Factors, 9, e38926.
https://doi.org/10.2196/38926
[7] Bini, S.A., Schilling, P.L., Patel, S.P., Kalore, N.V., Ast, M.P., Maratt, J.D., et al. (2020) Digital Orthopaedics: A Glimpse into the Future in the Midst of a Pandemic. The Journal of Arthroplasty, 35, S68-S73.
https://doi.org/10.1016/j.arth.2020.04.048
[8] Lamminen, H., Nevalainen, J., Alho, A., Tallroth, K., Lepisto, J. and Lindholm, T.S. (1996) Experimental Telemedicine in Orthopaedics. Journal of Telemedicine and Telecare, 2, 170-173.
https://doi.org/10.1258/1357633961930013
[9] Scherer, J., Osterhoff, G., Kaufmann, E., Estel, K., Neuhaus, V., Willy, C., et al. (2021) What Is the Acceptance of Video Consultations among Orthopedic and Trauma Outpatients? A Multi-Center Survey in 780 Outpatients. Injury, 52, 3304-3308.
https://doi.org/10.1016/j.injury.2021.02.023
[10] Gilbert, A.W., Jaggi, A. and May, C.R. (2018) What Is the Patient Acceptability of Real Time 1:1 Videoconferencing in an Orthopaedics Setting? A Systematic Review. Physiotherapy, 104, 178-186.
https://doi.org/10.1016/j.physio.2017.11.217
[11] Wongworawat, M.D., Capistrant, G. and Stephenson, J.M. (2017) The Opportunity Awaits to Lead Orthopaedic Telehealth Innovation. Journal of Bone and Joint Surgery, 99, e93.
https://doi.org/10.2106/jbjs.16.01095
[12] Scherer, J., Back, D.A., Thienemann, F., Kaufmann, E., Neuhaus, V., Willy, C., et al. (2021) The Effect of Covid-19 on the Willingness to Use Video Consultations among Orthopedic and Trauma Outpatients: A Multi-Center Survey in 1400 Outpatients. European Journal of Trauma and Emergency Surgery, 48, 2199-2206.
https://doi.org/10.1007/s00068-021-01774-1
[13] Gurchiek, R.D., Choquette, R.H., Beynnon, B.D., Slauterbeck, J.R., Tourville, T.W., Toth, M.J., et al. (2019) Open-Source Remote Gait Analysis: A Post-Surgery Patient Monitoring Application. Scientific Reports, 9, Article No. 17966.
https://doi.org/10.1038/s41598-019-54399-1
[14] Rauer, T., Scherer, J., Stäubli, P., Gerber, J., Pape, H. and Heining, S. (2022) Satisfaction with Telemedicine in Patients with Orthopedic Trauma during the Covid-19 Lockdown: Interview Study. JMIR Formative Research, 6, e35718.
https://doi.org/10.2196/35718
[15] Wilcock, A.D., Rose, S., Busch, A.B., Huskamp, H.A., Uscher-Pines, L., Landon, B., et al. (2019) Association between Broadband Internet Availability and Telemedicine Use. JAMA Internal Medicine, 179, 1580-1582.
https://doi.org/10.1001/jamainternmed.2019.2234
[16] Gajarawala, S.N. and Pelkowski, J.N. (2021) Telehealth Benefits and Barriers. The Journal for Nurse Practitioners, 17, 218-221.
https://doi.org/10.1016/j.nurpra.2020.09.013
[17] Ottermo, M.V., Vstedal, M., Lang, T., Yavuz, Y., Johansen, T.A., et al. (2006) The Role of Tactile Feedback in Laparoscopic Surgery. Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 16, 390-400.
https://doi.org/10.1097/01.sle.0000213734.87956.24
[18] Tzemanaki, A., Al, G.A., Melhuish, C. and Dogramadzi, S. (2018) Design of a Wearable Fingertip Haptic Device for Remote Palpation: Characterisation and Interface with a Virtual Environment. Frontiers in Robotics and AI, 5, Article 62.
https://doi.org/10.3389/frobt.2018.00062
[19] Ramkumar, P.N., Haeberle, H.S., Navarro, S.M., Sultan, A.A., Mont, M.A., Ricchetti, E.T., et al. (2018) Mobile Technology and Telemedicine for Shoulder Range of Motion: Validation of a Motion-Based Machine-Learning Software Development Kit. Journal of Shoulder and Elbow Surgery, 27, 1198-1204.
https://doi.org/10.1016/j.jse.2018.01.013
[20] Kurillo, G., Han, J.J., Nicorici, A. and Bajcsy, R. (2014) Tele-MFAsT: Kinect-Based Tele-Medicine Tool for Remote Motion and Function Assessment. Studies in Health Technology and Informatics, 196, 215-221.
[21] Anton, D., Berges, I., Bermúdez, J., Goñi, A. and Illarramendi, A. (2018) A Telerehabilitation System for the Selection, Evaluation and Remote Management of Therapies. Sensors, 18, Article 1459.
https://doi.org/10.3390/s18051459
[22] Wade, L., Needham, L., McGuigan, P. and Bilzon, J. (2022) Applications and Limitations of Current Markerless Motion Capture Methods for Clinical Gait Biomechanics. Peer Journal, 10, e12995.
https://doi.org/10.7717/peerj.12995
[23] Youssef, Y., Fellmer, F., Gehlen, T., Estel, K., Tsitsilonis, S., Maerdian, S., et al. (2022) Joint and Functional Examinations in the Orthopaedic and Traumatological Video Consultation—What Is Currently Possible? Zeitschrift für Orthopädie und Unfallchirurgie, 162, 149-165.
[24] Estel, K., Weber, G., Richter, L., Hofmann, M., Ruckdeschel, P., Märdian, S., et al. (2021) Acceptance of Supportive Illustrations for Preparation of Patients for an Orthopedic Telemedical Consultation. Frontiers in Surgery, 8, Article 696721.
https://doi.org/10.3389/fsurg.2021.696721
[25] Azamar-Alonso, A., Costa, A.P., Huebner, L. and Tarride, J. (2019) Electronic Referral Systems in Health Care: A Scoping Review. Clinical Economics and Outcomes Research, 11, 325-333.
https://doi.org/10.2147/ceor.s195597
[26] Mohammed, H.T., Payson, L. and Alarakhia, M. (2020) The Impact of Integrating Electronic Referral within a Musculoskeletal Model of Care on Wait Time to Receive Orthopedic Care in Ontario. PLOS ONE, 15, e0241624.
https://doi.org/10.1371/journal.pone.0241624
[27] Steyn, L., Mash, R.J. and Hendricks, G. (2022) Use of the Vula App to Refer Patients in the West Coast District: A Descriptive Exploratory Qualitative Study. South African Family Practice, 64, a5491.
https://doi.org/10.4102/safp.v64i1.5491
[28] Scherer, J., Yogarasa, V., Rauer, T., Pape, H. and Heining, S. (2023) Perspectives of Patients with Orthopedic Trauma on Fully Automated Digital Physical Activity Measurement at Home: Cross-Sectional Survey Study. JMIR Formative Research, 7, e35312.
https://doi.org/10.2196/35312
[29] Scherer, J., Keller, F., Pape, H. and Osterhoff, G. (2020) Would Patients Undergo Postoperative Follow-Up by Using a Smartphone Application? BMC Surgery, 20, Article No. 229.
https://doi.org/10.1186/s12893-020-00889-3
[30] Tan, T., Gatti, A.A., Fan, B., Shea, K.G., Sherman, S.L., Uhlrich, S.D., et al. (2023) A Scoping Review of Portable Sensing for Out-of-Lab Anterior Cruciate Ligament Injury Prevention and Rehabilitation. NPJ Digital Medicine, 6, Article No. 46.
https://doi.org/10.1038/s41746-023-00782-2
[31] Heckman, J.D. and States, J.D. (1989) The Role of the Orthopedist in Injury Prevention. Clinical Orthopaedics and Related Research, 240, 5-8.
https://doi.org/10.1097/00003086-198903000-00003
[32] Braun, B.J., Grimm, B., Hanflik, A.M., Richter, P.H., Sivananthan, S., Yarboro, S.R., et al. (2022) Wearable Technology in Orthopedic Trauma Surgery—An AO Trauma Survey and Review of Current and Future Applications. Injury, 53, 1961-1965.
https://doi.org/10.1016/j.injury.2022.03.026
[33] Bucinskas, V., Dzedzickis, A., Rozene, J., Subaciute-Zemaitiene, J., Satkauskas, I., Uvarovas, V., et al. (2021) Wearable Feet Pressure Sensor for Human Gait and Falling Diagnosis. Sensors, 21, Article 5240.
https://doi.org/10.3390/s21155240
[34] Iyengar, K.P., Kariya, A.D., Botchu, R., Jain, V.K. and Vaishya, R. (2022) Significant Capabilities of SMART Sensor Technology and Their Applications for Industry 4.0 in Trauma and Orthopaedics. Sensors International, 3, Article 100163.
https://doi.org/10.1016/j.sintl.2022.100163
[35] Iyengar, K.P., Gowers, B.T.V., Jain, V.K., Ahluwalia, R.S., Botchu, R. and Vaishya, R. (2021) Smart Sensor Implant Technology in Total Knee Arthroplasty. Journal of Clinical Orthopaedics and Trauma, 22, Article 101605.
https://doi.org/10.1016/j.jcot.2021.101605
[36] Ledet, E.H., Liddle, B., Kradinova, K. and Harper, S. (2018) Smart Implants in Orthopedic Surgery, Improving Patient Outcomes: A Review. Innovation and Entrepreneurship in Health, 5, 41-51.
https://doi.org/10.2147/ieh.s133518
[37] Herteleer, M., Runer, A., Remppis, M., Brouwers, J., Schneider, F., Panagiotopoulou, V.C., et al. (2023) Continuous Shoulder Activity Tracking after Open Reduction and Internal Fixation of Proximal Humerus Fractures. Bioengineering, 10, Article 128.
https://doi.org/10.3390/bioengineering10020128
[38] Estel, K., Scherer, J., Dahl, H., Wolber, E., Forsat, N.D. and Back, D.A. (2022) Potential of Digitalization within Physiotherapy: A Comparative Survey. BMC Health Services Research, 22, Article No. 496.
https://doi.org/10.1186/s12913-022-07931-5
[39] Merle, G., Miclau, T., Parent-Harvey, A. and Harvey, E.J. (2022) Sensor Technology Usage in Orthopedic Trauma. Injury, 53, S59-S63.
https://doi.org/10.1016/j.injury.2022.09.036
[40] Kubicek, J., Tomanec, F., Cerny, M., Vilimek, D., Kalova, M. and Oczka, D. (2019) Recent Trends, Technical Concepts and Components of Computer-Assisted Orthopedic Surgery Systems: A Comprehensive Review. Sensors, 19, Article 5199.
https://doi.org/10.3390/s19235199
[41] Merle, G., Parent-Harvey, A. and Harvey, E.J. (2022) Sensors and Digital Medicine in Orthopaedic Surgery. OTA International: The Open Access Journal of Orthopaedic Trauma, 5, e189.
https://doi.org/10.1097/oi9.0000000000000189
[42] Ernst, M., Richards, R.G. and Windolf, M. (2021) Smart Implants in Fracture Care—Only Buzzword or Real Opportunity? Injury, 52, S101-S105.
https://doi.org/10.1016/j.injury.2020.09.026
[43] Windolf, M., Varjas, V., Gehweiler, D., Schwyn, R., Arens, D., Constant, C., et al. (2022) Continuous Implant Load Monitoring to Assess Bone Healing Status—Evidence from Animal Testing. Medicina, 58, Article 858.
https://doi.org/10.3390/medicina58070858
[44] Ruther, C., Timm, U., Fritsche, A., Ewald, H., Mittelmeier, W., Bader, R., et al. (2013) A New Approach for Diagnostic Investigation of Total Hip Replacement Loosening. In: Communications in Computer and Information Science, Springer, 74-79.
https://doi.org/10.1007/978-3-642-29752-6_6
[45] Kirking, B., Krevolin, J., Townsend, C., Colwell, C.W. and D’Lima, D.D. (2006) A Multiaxial Force-Sensing Implantable Tibial Prosthesis. Journal of Biomechanics, 39, 1744-1751.
https://doi.org/10.1016/j.jbiomech.2005.05.023
[46] Szivek, J.A., Roberto, R.F. and Margolis, D.S. (2005) In Vivo Strain Measurements from Hardware and Lamina during Spine Fusion. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 75, 243-250.
https://doi.org/10.1002/jbm.b.30262
[47] Barri, K., Zhang, Q., Mehta, D., Chakrabartty, S., Debski, R.E. and Alavi, A.H. (2021). An Implantable, Battery-Free Sensing System for Monitoring of Spinal Fusion.
https://doi.org/10.1117/12.2580811
[48] Ehrlich, G.D., Stoodley, P., Kathju, S., Zhao, Y., McLeod, B.R., Balaban, N., et al. (2005) Engineering Approaches for the Detection and Control of Orthopaedic Biofilm Infections. Clinical Orthopaedics and Related Research, 437, 59-66.
https://doi.org/10.1097/00003086-200508000-00011
[49] Saccomano, S.C., Jewell, M.P. and Cash, K.J. (2021) A Review of Chemosensors and Biosensors for Monitoring Biofilm Dynamics. Sensors and Actuators Reports, 3, Article 100043.
https://doi.org/10.1016/j.snr.2021.100043
[50] Graichen, H., Lekkreusuwan, K. and Scior, W. (2020) How Will Digitalisation Affect Patient Treatment in Arthroplasty? Part I: Intraoperative Aspects. Journal of Orthopaedics, 17, A1-A5.
https://doi.org/10.1016/j.jor.2019.12.013
[51] Schleer, P., Kaiser, P., Drobinsky, S. and Radermacher, K. (2020) Augmentation of Haptic Feedback for Teleoperated Robotic Surgery. International Journal of Computer Assisted Radiology and Surgery, 15, 515-529.
https://doi.org/10.1007/s11548-020-02118-x
[52] Beyaz, S. (2020) A Brief History of Artificial Intelligence and Robotic Surgery in Orthopedics & Traumatology and Future Expectations. Joint Diseases and Related Surgery, 31, 653-655.
https://doi.org/10.5606/ehc.2020.75300
[53] Bodner, J., Augustin, F., Wykypiel, H., Fish, J., Muehlmann, G., Wetscher, G., et al. (2005) The Da Vinci Robotic System for General Surgical Applications: A Critical Interim Appraisal. Swiss Medical Weekly, 135, 674-678.
https://doi.org/10.4414/smw.2005.11022
[54] Buchan, G.B.J., Hecht, C.J., Lawrie, C.M., Sculco, P.K. and Kamath, A.F. (2023) The Learning Curve for a Novel, Fluoroscopy-Based Robotic-Assisted Total Hip Arthroplasty System. The International Journal of Medical Robotics and Computer Assisted Surgery, 19, e2518.
https://doi.org/10.1002/rcs.2518
[55] Kayani, B., Konan, S., Huq, S.S., Ibrahim, M.S., Ayuob, A. and Haddad, F.S. (2019) The Learning Curve of Robotic-Arm Assisted Acetabular Cup Positioning during Total Hip Arthroplasty. HIP International, 31, 311-319.
https://doi.org/10.1177/1120700019889334
[56] Aurelien, G. (2017) Hands-On Machine Learning with Scikit-Learn & Tensor Flow. 1st Edition, O’Reilly.
[57] Iyengar, K.P., Jun Ngo, V.Q., Jain, V.K., Ahuja, N., Hakim, Z. and Sangani, C. (2021) What Does the Orthopaedic Surgeon Want in the Radiology Report? Journal of Clinical Orthopaedics and Trauma, 21, Article 101530.
https://doi.org/10.1016/j.jcot.2021.101530
[58] Meena, T. and Roy, S. (2022) Bone Fracture Detection Using Deep Supervised Learning from Radiological Images: A Paradigm Shift. Diagnostics, 12, Article 2420.
https://doi.org/10.3390/diagnostics12102420
[59] Kijowski, R. and Fritz, J. (2023) Emerging Technology in Musculoskeletal MRI and CT. Radiology, 306, 6-19.
https://doi.org/10.1148/radiol.220634
[60] Kuo, R.Y.L., Harrison, C., Curran, T., Jones, B., Freethy, A., Cussons, D., et al. (2022) Artificial Intelligence in Fracture Detection: A Systematic Review and Meta-Analysis. Radiology, 304, 50-62.
https://doi.org/10.1148/radiol.211785
[61] Farhadi, F., Barnes, M.R., Sugito, H.R., Sin, J.M., Henderson, E.R. and Levy, J.J. (2022) Applications of Artificial Intelligence in Orthopaedic Surgery. Frontiers in Medical Technology, 4, Article 995526.
https://doi.org/10.3389/fmedt.2022.995526
[62] Haglin, J.M., Eltorai, A.E.M., Gil, J.A., Marcaccio, S.E., Botero-Hincapie, J. and Daniels, A.H. (2016) Patient-Specific Orthopaedic Implants. Orthopaedic Surgery, 8, 417-424.
https://doi.org/10.1111/os.12282
[63] khan, B., Fatima, H., Qureshi, A., Kumar, S., Hanan, A., Hussain, J., et al. (2023) Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector. Biomedical Materials & Devices, 1, 731-738.
https://doi.org/10.1007/s44174-023-00063-2
[64] Mirskikh, I., Mingaleva, Z., Kuranov, V. and Dobrovlyanina, O. (2022) Problems and Negative Consequences of the Digitalization of Medicine. In: Lecture Notes in Networks and Systems, Springer, 445-455.
https://doi.org/10.1007/978-3-030-93677-8_39
[65] Attias, N., Lindsey, R.W., Starr, A.J., Borer, D., Bridges, K. and Hipp, J.A. (2005) The Use of a Virtual Three-Dimensional Model to Evaluate the Intraosseous Space Available for Percutaneous Screw Fixation of Acetabular Fractures. The Journal of Bone and Joint Surgery, British Volume, 87, 1520-1523.
https://doi.org/10.1302/0301-620x.87b11.16614
[66] Fadero, P.E. and Shah, M. (2014) Three Dimensional (3D) Modelling and Surgical Planning in Trauma and Orthopaedics. The Surgeon, 12, 328-333.
https://doi.org/10.1016/j.surge.2014.03.008
[67] Lambrechts, A., Wirix-Speetjens, R., Maes, F. and Van Huffel, S. (2022) Artificial Intelligence Based Patient-Specific Preoperative Planning Algorithm for Total Knee Arthroplasty. Frontiers in Robotics and AI, 9, Article 840282.
https://doi.org/10.3389/frobt.2022.840282
[68] Joshi, R.S., Lau, D. and Ames, C.P. (2021) Artificial Intelligence for Adult Spinal Deformity: Current State and Future Directions. The Spine Journal, 21, 1626-1634.
https://doi.org/10.1016/j.spinee.2021.04.019
[69] Schweigkofler, U. and Hoffmann, R. (2013) Präklinische Polytraumaversorgung. Der Chirurg, 84, 739-744.
https://doi.org/10.1007/s00104-013-2475-2
[70] Reime, B., Wurmb, T., Kippnich, U., Shammas, L., Rashid, A. and Eder, P. (2018) Prehospital Telemedical Emergency Management of Severely Injured Trauma Patients. Methods of Information in Medicine, 57, 231-242.
https://doi.org/10.1055/s-0039-1681089
[71] Convertino, V.A., Moulton, S.L., Grudic, G.Z., Rickards, C.A., Hinojosa-Laborde, C., Gerhardt, R.T., et al. (2011) Use of Advanced Machine-Learning Techniques for Noninvasive Monitoring of Hemorrhage. Journal of Trauma: Injury, Infection & Critical Care, 71, S25-S32.
https://doi.org/10.1097/ta.0b013e3182211601
[72] Chen, L., McKenna, T.M., Reisner, A.T., Gribok, A. and Reifman, J. (2008) Decision Tool for the Early Diagnosis of Trauma Patient Hypovolemia. Journal of Biomedical Informatics, 41, 469-478.
https://doi.org/10.1016/j.jbi.2007.12.002
[73] Sonkin, R., Jaffe, E., Wacht, O., Morse, H. and Bitan, Y. (2022) Real-Time Video Communication between Ambulance Paramedic and Scene—A Simulation-Based Study. BMC Health Services Research, 22, Article No. 1049.
https://doi.org/10.1186/s12913-022-08445-w
[74] Baur, D., Gehlen, T., Scherer, J., Back, D.A., Tsitsilonis, S., Kabir, K., et al. (2022) Decision Support by Machine Learning Systems for Acute Management of Severely Injured Patients: A Systematic Review. Frontiers in Surgery, 9, Article 924810.
https://doi.org/10.3389/fsurg.2022.924810
[75] Ogunyemi, O.I. (2002) Combining Geometric and Probabilistic Reasoning for Computer-Based Penetrating-Trauma Assessment. Journal of the American Medical Informatics Association, 9, 273-282.
https://doi.org/10.1197/jamia.m0979
[76] Metzger, M., Howard, M., Kellogg, L. and Kundi, R. (2015) Ensemble Prediction of Vascular Injury in Trauma Care: Initial Efforts towards Data-Driven, Low-Cost Screening. 2015 IEEE International Conference on Big Data, Santa Clara, 29 October-1 November 2015, 2560-2568.
https://doi.org/10.1109/bigdata.2015.7364053
[77] Abdulbaqi, J., Gu, Y., Xu, Z., Gao, C., Marsic, I. and Burd, R.S. (2020). Speech-Based Activity Recognition for Trauma Resuscitation. 2020 IEEE International Conference on Healthcare Informatics (ICHI), Oldenburg, 30 November-3 December 2020, 1-8.
https://doi.org/10.1109/ichi48887.2020.9374372
[78] Hodgman, E., Cripps, M., Mina, M., Bulger, E., Schreiber, M., Brasel, K., et al. (2018) External Validation of a Smartphone App Model to Predict the Need for Massive Transfusion Using Five Different Definitions. Journal of Trauma and Acute Care Surgery, 84, 397-402.
https://doi.org/10.1097/ta.0000000000001756
[79] Walczak, S. (2005) Artificial Neural Network Medical Decision Support Tool: Predicting Transfusion Requirements of ER Patients. IEEE Transactions on Information Technology in Biomedicine, 9, 468-474.
https://doi.org/10.1109/titb.2005.847510
[80] Bhat, A., Podstawczyk, D., Walther, B.K., Aggas, J.R., Machado-Aranda, D., Ward, K.R., et al. (2020) Toward a Hemorrhagic Trauma Severity Score: Fusing Five Physiological Biomarkers. Journal of Translational Medicine, 18, Article No. 348.
https://doi.org/10.1186/s12967-020-02516-4
[81] Liu, N.T., Holcomb, J.B., Wade, C.E., Darrah, M.I. and Salinas, J. (2014) Utility of Vital Signs, Heart Rate Variability and Complexity, and Machine Learning for Identifying the Need for Lifesaving Interventions in Trauma Patients. Shock, 42, 108-114.
https://doi.org/10.1097/shk.0000000000000186
[82] Liu, N.T., Holcomb, J.B., Wade, C.E., Batchinsky, A.I., Cancio, L.C., Darrah, M.I., et al. (2013) Development and Validation of a Machine Learning Algorithm and Hybrid System to Predict the Need for Life-Saving Interventions in Trauma Patients. Medical & Biological Engineering & Computing, 52, 193-203.
https://doi.org/10.1007/s11517-013-1130-x
[83] Clarke, J.R., Hayward, C.Z., Santora, T.A., Wagner, D.K. and Webber, B.L. (2002) Computer-Generated Trauma Management Plans: Comparison with Actual Care. World Journal of Surgery, 26, 536-538.
https://doi.org/10.1007/s00268-001-0263-5
[84] Ahmed, F.S., Ali, L., Joseph, B.A., Ikram, A., Ul Mustafa, R. and Bukhari, S.A.C. (2020) A Statistically Rigorous Deep Neural Network Approach to Predict Mortality in Trauma Patients Admitted to the Intensive Care Unit. Journal of Trauma and Acute Care Surgery, 89, 736-742.
https://doi.org/10.1097/ta.0000000000002888
[85] DiRusso, S.M., Sullivan, T., Holly, C., Cuff, S.N. and Savino, J. (2000) An Artificial Neural Network as a Model for Prediction of Survival in Trauma Patients: Validation for a Regional Trauma Area. The Journal of Trauma: Injury, Infection, and Critical Care, 49, 212-223.
https://doi.org/10.1097/00005373-200008000-00006
[86] Niggli, C., Pape, H., Niggli, P. and Mica, L. (2021) Validation of a Visual-Based Analytics Tool for Outcome Prediction in Polytrauma Patients (WATSON Trauma Pathway Explorer) and Comparison with the Predictive Values of Triss. Journal of Clinical Medicine, 10, Article 2115.
https://doi.org/10.3390/jcm10102115
[87] Richter, P.H., Yarboro, S., Kraus, M. and Gebhard, F. (2015) One Year Orthopaedic Trauma Experience Using an Advanced Interdisciplinary Hybrid Operating Room. Injury, 46, S129-S134.
https://doi.org/10.1016/s0020-1383(15)30032-2
[88] Braun, F., Peh, S., Weuster, M., Klueter, T., Seekamp, A. and Lippross, S. (2019) Der Hybridoperationssaal. Der Unfallchirurg, 123, 134-142.
https://doi.org/10.1007/s00113-019-0657-1
[89] Schuetze, K., Kraus, M., Eickhoff, A., Gebhard, F. and Richter, P.H. (2018) Radiation Exposure for Intraoperative 3D Scans in a Hybrid Operating Room: How to Reduce Radiation Exposure for the Surgical Team. International Journal of Computer Assisted Radiology and Surgery, 13, 1291-1300.
https://doi.org/10.1007/s11548-018-1747-1
[90] Mah, E. (2023) Metaverse, AR, Machine Learning & AI in Orthopaedics? Journal of Orthopaedic Surgery, 31, Article 10225536231165362.
https://doi.org/10.1177/10225536231165362
[91] McKnight, R.R., Pean, C.A., Buck, J.S., Hwang, J.S., Hsu, J.R. and Pierrie, S.N. (2020) Virtual Reality and Augmented Reality—Translating Surgical Training into Surgical Technique. Current Reviews in Musculoskeletal Medicine, 13, 663-674.
https://doi.org/10.1007/s12178-020-09667-3
[92] Bell, R.H., Biester, T.W., Tabuenca, A., Rhodes, R.S., Cofer, J.B., Britt, L.D., et al. (2009) Operative Experience of Residents in US General Surgery Programs. Annals of Surgery, 249, 719-724.
https://doi.org/10.1097/sla.0b013e3181a38e59
[93] Lewis, F.R. and Klingensmith, M.E. (2012) Issues in General Surgery Residency Training—2012. Annals of Surgery, 256, 553-559.
https://doi.org/10.1097/sla.0b013e31826bf98c
[94] Kogan, M., Klein, S.E., Hannon, C.P. and Nolte, M.T. (2020) Orthopaedic Education during the COVID-19 Pandemic. Journal of the American Academy of Orthopaedic Surgeons, 28, e456-e464.
https://doi.org/10.5435/jaaos-d-20-00292
[95] Hasan, L.K., Haratian, A., Kim, M., Bolia, I.K., Weber, A.E. and Petrigliano, F.A. (2021) Virtual Reality in Orthopedic Surgery Training. Advances in Medical Education and Practice, 12, 1295-1301.
https://doi.org/10.2147/amep.s321885
[96] Cevallos, N., Zukotynski, B., Greig, D., Silva, M. and Thompson, R.M. (2022) The Utility of Virtual Reality in Orthopedic Surgical Training. Journal of Surgical Education, 79, 1516-1525.
https://doi.org/10.1016/j.jsurg.2022.06.007
[97] Tronchot, A., Berthelemy, J., Thomazeau, H., Huaulmé, A., Walbron, P., Sirveaux, F., et al. (2021) Validation of Virtual Reality Arthroscopy Simulator Relevance in Characterising Experienced Surgeons. Orthopaedics & Traumatology: Surgery & Research, 107, Article 103079.
https://doi.org/10.1016/j.otsr.2021.103079
[98] Rahm, S., Wieser, K., Bauer, D.E., Waibel, F.W., Meyer, D.C., Gerber, C., et al. (2018) Efficacy of Standardized Training on a Virtual Reality Simulator to Advance Knee and Shoulder Arthroscopic Motor Skills. BMC Musculoskeletal Disorders, 19, Article No. 150.
https://doi.org/10.1186/s12891-018-2072-0
[99] Walbron, P., Common, H., Thomazeau, H., Hosseini, K., Peduzzi, L., Bulaid, Y., et al. (2020) Virtual Reality Simulator Improves the Acquisition of Basic Arthroscopy Skills in First-Year Orthopedic Surgery Residents. Orthopaedics & Traumatology: Surgery & Research, 106, 717-724.
https://doi.org/10.1016/j.otsr.2020.03.009
[100] Lohre, R., Bois, A.J., Athwal, G.S. and Goel, D.P. (2020) Improved Complex Skill Acquisition by Immersive Virtual Reality Training. Journal of Bone and Joint Surgery, 102, e26.
https://doi.org/10.2106/jbjs.19.00982
[101] Gumaa, M. and Rehan Youssef, A. (2019) Is Virtual Reality Effective in Orthopedic Rehabilitation? A Systematic Review and Meta-Analysis. Physical Therapy, 99, 1304-1325.
https://doi.org/10.1093/ptj/pzz093
[102] Sharma, A., Harrington, R.A., McClellan, M.B., Turakhia, M.P., Eapen, Z.J., Steinhubl, S., et al. (2018) Using Digital Health Technology to Better Generate Evidence and Deliver Evidence-Based Care. Journal of the American College of Cardiology, 71, 2680-2690.
https://doi.org/10.1016/j.jacc.2018.03.523
[103] Bhavnani, S.P., Narula, J. and Sengupta, P.P. (2016) Mobile Technology and the Digitization of Healthcare. European Heart Journal, 37, 1428-1438.
https://doi.org/10.1093/eurheartj/ehv770
[104] Manteghinejad, A. and Javanmard, S.H. (2021) Challenges and Opportunities of Digital Health in a Post-Covid19 World. Journal of Research in Medical Sciences, 26, 11.
https://doi.org/10.4103/jrms.jrms_1255_20
[105] Haimi, M. (2023) The Tragic Paradoxical Effect of Telemedicine on Healthcare Disparities—A Time for Redemption: A Narrative Review. BMC Medical Informatics and Decision Making, 23, Article No. 95.
https://doi.org/10.1186/s12911-023-02194-4

Baidu
map