[1] |
Junaid, S.B., Imam, A.A., Balogun, A.O., De Silva, L.C., Surakat, Y.A., Kumar, G., et al. (2022) Recent Advancements in Emerging Technologies for Healthcare Management Systems: A Survey. Healthcare, 10, Article 1940. https://doi.org/10.3390/healthcare10101940 |
[2] |
Li, Z. (2023) Digital Orthopedics: The Future Developments of Orthopedic Surgery. Journal of Personalized Medicine, 13, Article 292. https://doi.org/10.3390/jpm13020292 |
[3] |
Bini, S.A. (2018) Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care? The Journal of Arthroplasty, 33, 2358-2361. https://doi.org/10.1016/j.arth.2018.02.067 |
[4] |
Trentzsch, H., Osterhoff, G., Heller, R., Nienaber, U. and Lazarovici, M. (2020) Herausforderungen der Digitalisierung in der Traumaversorgung. Der Unfallchirurg, 123, 843-848. https://doi.org/10.1007/s00113-020-00859-7 |
[5] |
Lieberman, I.H., Kisinde, S. and Hesselbacher, S. (2020) Robotic-Assisted Pedicle Screw Placement during Spine Surgery. JBJS Essential Surgical Techniques, 10, e0020. https://doi.org/10.2106/jbjs.st.19.00020 |
[6] |
Meskó, B. (2022) Covid-19’s Impact on Digital Health Adoption: The Growing Gap between a Technological and a Cultural Transformation. JMIR Human Factors, 9, e38926. https://doi.org/10.2196/38926 |
[7] |
Bini, S.A., Schilling, P.L., Patel, S.P., Kalore, N.V., Ast, M.P., Maratt, J.D., et al. (2020) Digital Orthopaedics: A Glimpse into the Future in the Midst of a Pandemic. The Journal of Arthroplasty, 35, S68-S73. https://doi.org/10.1016/j.arth.2020.04.048 |
[8] |
Lamminen, H., Nevalainen, J., Alho, A., Tallroth, K., Lepisto, J. and Lindholm, T.S. (1996) Experimental Telemedicine in Orthopaedics. Journal of Telemedicine and Telecare, 2, 170-173. https://doi.org/10.1258/1357633961930013 |
[9] |
Scherer, J., Osterhoff, G., Kaufmann, E., Estel, K., Neuhaus, V., Willy, C., et al. (2021) What Is the Acceptance of Video Consultations among Orthopedic and Trauma Outpatients? A Multi-Center Survey in 780 Outpatients. Injury, 52, 3304-3308. https://doi.org/10.1016/j.injury.2021.02.023 |
[10] |
Gilbert, A.W., Jaggi, A. and May, C.R. (2018) What Is the Patient Acceptability of Real Time 1:1 Videoconferencing in an Orthopaedics Setting? A Systematic Review. Physiotherapy, 104, 178-186. https://doi.org/10.1016/j.physio.2017.11.217 |
[11] |
Wongworawat, M.D., Capistrant, G. and Stephenson, J.M. (2017) The Opportunity Awaits to Lead Orthopaedic Telehealth Innovation. Journal of Bone and Joint Surgery, 99, e93. https://doi.org/10.2106/jbjs.16.01095 |
[12] |
Scherer, J., Back, D.A., Thienemann, F., Kaufmann, E., Neuhaus, V., Willy, C., et al. (2021) The Effect of Covid-19 on the Willingness to Use Video Consultations among Orthopedic and Trauma Outpatients: A Multi-Center Survey in 1400 Outpatients. European Journal of Trauma and Emergency Surgery, 48, 2199-2206. https://doi.org/10.1007/s00068-021-01774-1 |
[13] |
Gurchiek, R.D., Choquette, R.H., Beynnon, B.D., Slauterbeck, J.R., Tourville, T.W., Toth, M.J., et al. (2019) Open-Source Remote Gait Analysis: A Post-Surgery Patient Monitoring Application. Scientific Reports, 9, Article No. 17966. https://doi.org/10.1038/s41598-019-54399-1 |
[14] |
Rauer, T., Scherer, J., Stäubli, P., Gerber, J., Pape, H. and Heining, S. (2022) Satisfaction with Telemedicine in Patients with Orthopedic Trauma during the Covid-19 Lockdown: Interview Study. JMIR Formative Research, 6, e35718. https://doi.org/10.2196/35718 |
[15] |
Wilcock, A.D., Rose, S., Busch, A.B., Huskamp, H.A., Uscher-Pines, L., Landon, B., et al. (2019) Association between Broadband Internet Availability and Telemedicine Use. JAMA Internal Medicine, 179, 1580-1582. https://doi.org/10.1001/jamainternmed.2019.2234 |
[16] |
Gajarawala, S.N. and Pelkowski, J.N. (2021) Telehealth Benefits and Barriers. The Journal for Nurse Practitioners, 17, 218-221. https://doi.org/10.1016/j.nurpra.2020.09.013 |
[17] |
Ottermo, M.V., Vstedal, M., Lang, T., Yavuz, Y., Johansen, T.A., et al. (2006) The Role of Tactile Feedback in Laparoscopic Surgery. Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 16, 390-400. https://doi.org/10.1097/01.sle.0000213734.87956.24 |
[18] |
Tzemanaki, A., Al, G.A., Melhuish, C. and Dogramadzi, S. (2018) Design of a Wearable Fingertip Haptic Device for Remote Palpation: Characterisation and Interface with a Virtual Environment. Frontiers in Robotics and AI, 5, Article 62. https://doi.org/10.3389/frobt.2018.00062 |
[19] |
Ramkumar, P.N., Haeberle, H.S., Navarro, S.M., Sultan, A.A., Mont, M.A., Ricchetti, E.T., et al. (2018) Mobile Technology and Telemedicine for Shoulder Range of Motion: Validation of a Motion-Based Machine-Learning Software Development Kit. Journal of Shoulder and Elbow Surgery, 27, 1198-1204. https://doi.org/10.1016/j.jse.2018.01.013 |
[20] |
Kurillo, G., Han, J.J., Nicorici, A. and Bajcsy, R. (2014) Tele-MFAsT: Kinect-Based Tele-Medicine Tool for Remote Motion and Function Assessment. Studies in Health Technology and Informatics, 196, 215-221. |
[21] |
Anton, D., Berges, I., Bermúdez, J., Goñi, A. and Illarramendi, A. (2018) A Telerehabilitation System for the Selection, Evaluation and Remote Management of Therapies. Sensors, 18, Article 1459. https://doi.org/10.3390/s18051459 |
[22] |
Wade, L., Needham, L., McGuigan, P. and Bilzon, J. (2022) Applications and Limitations of Current Markerless Motion Capture Methods for Clinical Gait Biomechanics. Peer Journal, 10, e12995. https://doi.org/10.7717/peerj.12995 |
[23] |
Youssef, Y., Fellmer, F., Gehlen, T., Estel, K., Tsitsilonis, S., Maerdian, S., et al. (2022) Joint and Functional Examinations in the Orthopaedic and Traumatological Video Consultation—What Is Currently Possible? Zeitschrift für Orthopädie und Unfallchirurgie, 162, 149-165. |
[24] |
Estel, K., Weber, G., Richter, L., Hofmann, M., Ruckdeschel, P., Märdian, S., et al. (2021) Acceptance of Supportive Illustrations for Preparation of Patients for an Orthopedic Telemedical Consultation. Frontiers in Surgery, 8, Article 696721. https://doi.org/10.3389/fsurg.2021.696721 |
[25] |
Azamar-Alonso, A., Costa, A.P., Huebner, L. and Tarride, J. (2019) Electronic Referral Systems in Health Care: A Scoping Review. Clinical Economics and Outcomes Research, 11, 325-333. https://doi.org/10.2147/ceor.s195597 |
[26] |
Mohammed, H.T., Payson, L. and Alarakhia, M. (2020) The Impact of Integrating Electronic Referral within a Musculoskeletal Model of Care on Wait Time to Receive Orthopedic Care in Ontario. PLOS ONE, 15, e0241624. https://doi.org/10.1371/journal.pone.0241624 |
[27] |
Steyn, L., Mash, R.J. and Hendricks, G. (2022) Use of the Vula App to Refer Patients in the West Coast District: A Descriptive Exploratory Qualitative Study. South African Family Practice, 64, a5491. https://doi.org/10.4102/safp.v64i1.5491 |
[28] |
Scherer, J., Yogarasa, V., Rauer, T., Pape, H. and Heining, S. (2023) Perspectives of Patients with Orthopedic Trauma on Fully Automated Digital Physical Activity Measurement at Home: Cross-Sectional Survey Study. JMIR Formative Research, 7, e35312. https://doi.org/10.2196/35312 |
[29] |
Scherer, J., Keller, F., Pape, H. and Osterhoff, G. (2020) Would Patients Undergo Postoperative Follow-Up by Using a Smartphone Application? BMC Surgery, 20, Article No. 229. https://doi.org/10.1186/s12893-020-00889-3 |
[30] |
Tan, T., Gatti, A.A., Fan, B., Shea, K.G., Sherman, S.L., Uhlrich, S.D., et al. (2023) A Scoping Review of Portable Sensing for Out-of-Lab Anterior Cruciate Ligament Injury Prevention and Rehabilitation. NPJ Digital Medicine, 6, Article No. 46. https://doi.org/10.1038/s41746-023-00782-2 |
[31] |
Heckman, J.D. and States, J.D. (1989) The Role of the Orthopedist in Injury Prevention. Clinical Orthopaedics and Related Research, 240, 5-8. https://doi.org/10.1097/00003086-198903000-00003 |
[32] |
Braun, B.J., Grimm, B., Hanflik, A.M., Richter, P.H., Sivananthan, S., Yarboro, S.R., et al. (2022) Wearable Technology in Orthopedic Trauma Surgery—An AO Trauma Survey and Review of Current and Future Applications. Injury, 53, 1961-1965. https://doi.org/10.1016/j.injury.2022.03.026 |
[33] |
Bucinskas, V., Dzedzickis, A., Rozene, J., Subaciute-Zemaitiene, J., Satkauskas, I., Uvarovas, V., et al. (2021) Wearable Feet Pressure Sensor for Human Gait and Falling Diagnosis. Sensors, 21, Article 5240. https://doi.org/10.3390/s21155240 |
[34] |
Iyengar, K.P., Kariya, A.D., Botchu, R., Jain, V.K. and Vaishya, R. (2022) Significant Capabilities of SMART Sensor Technology and Their Applications for Industry 4.0 in Trauma and Orthopaedics. Sensors International, 3, Article 100163. https://doi.org/10.1016/j.sintl.2022.100163 |
[35] |
Iyengar, K.P., Gowers, B.T.V., Jain, V.K., Ahluwalia, R.S., Botchu, R. and Vaishya, R. (2021) Smart Sensor Implant Technology in Total Knee Arthroplasty. Journal of Clinical Orthopaedics and Trauma, 22, Article 101605. https://doi.org/10.1016/j.jcot.2021.101605 |
[36] |
Ledet, E.H., Liddle, B., Kradinova, K. and Harper, S. (2018) Smart Implants in Orthopedic Surgery, Improving Patient Outcomes: A Review. Innovation and Entrepreneurship in Health, 5, 41-51. https://doi.org/10.2147/ieh.s133518 |
[37] |
Herteleer, M., Runer, A., Remppis, M., Brouwers, J., Schneider, F., Panagiotopoulou, V.C., et al. (2023) Continuous Shoulder Activity Tracking after Open Reduction and Internal Fixation of Proximal Humerus Fractures. Bioengineering, 10, Article 128. https://doi.org/10.3390/bioengineering10020128 |
[38] |
Estel, K., Scherer, J., Dahl, H., Wolber, E., Forsat, N.D. and Back, D.A. (2022) Potential of Digitalization within Physiotherapy: A Comparative Survey. BMC Health Services Research, 22, Article No. 496. https://doi.org/10.1186/s12913-022-07931-5 |
[39] |
Merle, G., Miclau, T., Parent-Harvey, A. and Harvey, E.J. (2022) Sensor Technology Usage in Orthopedic Trauma. Injury, 53, S59-S63. https://doi.org/10.1016/j.injury.2022.09.036 |
[40] |
Kubicek, J., Tomanec, F., Cerny, M., Vilimek, D., Kalova, M. and Oczka, D. (2019) Recent Trends, Technical Concepts and Components of Computer-Assisted Orthopedic Surgery Systems: A Comprehensive Review. Sensors, 19, Article 5199. https://doi.org/10.3390/s19235199 |
[41] |
Merle, G., Parent-Harvey, A. and Harvey, E.J. (2022) Sensors and Digital Medicine in Orthopaedic Surgery. OTA International: The Open Access Journal of Orthopaedic Trauma, 5, e189. https://doi.org/10.1097/oi9.0000000000000189 |
[42] |
Ernst, M., Richards, R.G. and Windolf, M. (2021) Smart Implants in Fracture Care—Only Buzzword or Real Opportunity? Injury, 52, S101-S105. https://doi.org/10.1016/j.injury.2020.09.026 |
[43] |
Windolf, M., Varjas, V., Gehweiler, D., Schwyn, R., Arens, D., Constant, C., et al. (2022) Continuous Implant Load Monitoring to Assess Bone Healing Status—Evidence from Animal Testing. Medicina, 58, Article 858. https://doi.org/10.3390/medicina58070858 |
[44] |
Ruther, C., Timm, U., Fritsche, A., Ewald, H., Mittelmeier, W., Bader, R., et al. (2013) A New Approach for Diagnostic Investigation of Total Hip Replacement Loosening. In: Communications in Computer and Information Science, Springer, 74-79. https://doi.org/10.1007/978-3-642-29752-6_6 |
[45] |
Kirking, B., Krevolin, J., Townsend, C., Colwell, C.W. and D’Lima, D.D. (2006) A Multiaxial Force-Sensing Implantable Tibial Prosthesis. Journal of Biomechanics, 39, 1744-1751. https://doi.org/10.1016/j.jbiomech.2005.05.023 |
[46] |
Szivek, J.A., Roberto, R.F. and Margolis, D.S. (2005) In Vivo Strain Measurements from Hardware and Lamina during Spine Fusion. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 75, 243-250. https://doi.org/10.1002/jbm.b.30262 |
[47] |
Barri, K., Zhang, Q., Mehta, D., Chakrabartty, S., Debski, R.E. and Alavi, A.H. (2021). An Implantable, Battery-Free Sensing System for Monitoring of Spinal Fusion. https://doi.org/10.1117/12.2580811 |
[48] |
Ehrlich, G.D., Stoodley, P., Kathju, S., Zhao, Y., McLeod, B.R., Balaban, N., et al. (2005) Engineering Approaches for the Detection and Control of Orthopaedic Biofilm Infections. Clinical Orthopaedics and Related Research, 437, 59-66. https://doi.org/10.1097/00003086-200508000-00011 |
[49] |
Saccomano, S.C., Jewell, M.P. and Cash, K.J. (2021) A Review of Chemosensors and Biosensors for Monitoring Biofilm Dynamics. Sensors and Actuators Reports, 3, Article 100043. https://doi.org/10.1016/j.snr.2021.100043 |
[50] |
Graichen, H., Lekkreusuwan, K. and Scior, W. (2020) How Will Digitalisation Affect Patient Treatment in Arthroplasty? Part I: Intraoperative Aspects. Journal of Orthopaedics, 17, A1-A5. https://doi.org/10.1016/j.jor.2019.12.013 |
[51] |
Schleer, P., Kaiser, P., Drobinsky, S. and Radermacher, K. (2020) Augmentation of Haptic Feedback for Teleoperated Robotic Surgery. International Journal of Computer Assisted Radiology and Surgery, 15, 515-529. https://doi.org/10.1007/s11548-020-02118-x |
[52] |
Beyaz, S. (2020) A Brief History of Artificial Intelligence and Robotic Surgery in Orthopedics & Traumatology and Future Expectations. Joint Diseases and Related Surgery, 31, 653-655. https://doi.org/10.5606/ehc.2020.75300 |
[53] |
Bodner, J., Augustin, F., Wykypiel, H., Fish, J., Muehlmann, G., Wetscher, G., et al. (2005) The Da Vinci Robotic System for General Surgical Applications: A Critical Interim Appraisal. Swiss Medical Weekly, 135, 674-678. https://doi.org/10.4414/smw.2005.11022 |
[54] |
Buchan, G.B.J., Hecht, C.J., Lawrie, C.M., Sculco, P.K. and Kamath, A.F. (2023) The Learning Curve for a Novel, Fluoroscopy-Based Robotic-Assisted Total Hip Arthroplasty System. The International Journal of Medical Robotics and Computer Assisted Surgery, 19, e2518. https://doi.org/10.1002/rcs.2518 |
[55] |
Kayani, B., Konan, S., Huq, S.S., Ibrahim, M.S., Ayuob, A. and Haddad, F.S. (2019) The Learning Curve of Robotic-Arm Assisted Acetabular Cup Positioning during Total Hip Arthroplasty. HIP International, 31, 311-319. https://doi.org/10.1177/1120700019889334 |
[56] |
Aurelien, G. (2017) Hands-On Machine Learning with Scikit-Learn & Tensor Flow. 1st Edition, O’Reilly. |
[57] |
Iyengar, K.P., Jun Ngo, V.Q., Jain, V.K., Ahuja, N., Hakim, Z. and Sangani, C. (2021) What Does the Orthopaedic Surgeon Want in the Radiology Report? Journal of Clinical Orthopaedics and Trauma, 21, Article 101530. https://doi.org/10.1016/j.jcot.2021.101530 |
[58] |
Meena, T. and Roy, S. (2022) Bone Fracture Detection Using Deep Supervised Learning from Radiological Images: A Paradigm Shift. Diagnostics, 12, Article 2420. https://doi.org/10.3390/diagnostics12102420 |
[59] |
Kijowski, R. and Fritz, J. (2023) Emerging Technology in Musculoskeletal MRI and CT. Radiology, 306, 6-19. https://doi.org/10.1148/radiol.220634 |
[60] |
Kuo, R.Y.L., Harrison, C., Curran, T., Jones, B., Freethy, A., Cussons, D., et al. (2022) Artificial Intelligence in Fracture Detection: A Systematic Review and Meta-Analysis. Radiology, 304, 50-62. https://doi.org/10.1148/radiol.211785 |
[61] |
Farhadi, F., Barnes, M.R., Sugito, H.R., Sin, J.M., Henderson, E.R. and Levy, J.J. (2022) Applications of Artificial Intelligence in Orthopaedic Surgery. Frontiers in Medical Technology, 4, Article 995526. https://doi.org/10.3389/fmedt.2022.995526 |
[62] |
Haglin, J.M., Eltorai, A.E.M., Gil, J.A., Marcaccio, S.E., Botero-Hincapie, J. and Daniels, A.H. (2016) Patient-Specific Orthopaedic Implants. Orthopaedic Surgery, 8, 417-424. https://doi.org/10.1111/os.12282 |
[63] |
khan, B., Fatima, H., Qureshi, A., Kumar, S., Hanan, A., Hussain, J., et al. (2023) Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector. Biomedical Materials & Devices, 1, 731-738. https://doi.org/10.1007/s44174-023-00063-2 |
[64] |
Mirskikh, I., Mingaleva, Z., Kuranov, V. and Dobrovlyanina, O. (2022) Problems and Negative Consequences of the Digitalization of Medicine. In: Lecture Notes in Networks and Systems, Springer, 445-455. https://doi.org/10.1007/978-3-030-93677-8_39 |
[65] |
Attias, N., Lindsey, R.W., Starr, A.J., Borer, D., Bridges, K. and Hipp, J.A. (2005) The Use of a Virtual Three-Dimensional Model to Evaluate the Intraosseous Space Available for Percutaneous Screw Fixation of Acetabular Fractures. The Journal of Bone and Joint Surgery, British Volume, 87, 1520-1523. https://doi.org/10.1302/0301-620x.87b11.16614 |
[66] |
Fadero, P.E. and Shah, M. (2014) Three Dimensional (3D) Modelling and Surgical Planning in Trauma and Orthopaedics. The Surgeon, 12, 328-333. https://doi.org/10.1016/j.surge.2014.03.008 |
[67] |
Lambrechts, A., Wirix-Speetjens, R., Maes, F. and Van Huffel, S. (2022) Artificial Intelligence Based Patient-Specific Preoperative Planning Algorithm for Total Knee Arthroplasty. Frontiers in Robotics and AI, 9, Article 840282. https://doi.org/10.3389/frobt.2022.840282 |
[68] |
Joshi, R.S., Lau, D. and Ames, C.P. (2021) Artificial Intelligence for Adult Spinal Deformity: Current State and Future Directions. The Spine Journal, 21, 1626-1634. https://doi.org/10.1016/j.spinee.2021.04.019 |
[69] |
Schweigkofler, U. and Hoffmann, R. (2013) Präklinische Polytraumaversorgung. Der Chirurg, 84, 739-744. https://doi.org/10.1007/s00104-013-2475-2 |
[70] |
Reime, B., Wurmb, T., Kippnich, U., Shammas, L., Rashid, A. and Eder, P. (2018) Prehospital Telemedical Emergency Management of Severely Injured Trauma Patients. Methods of Information in Medicine, 57, 231-242. https://doi.org/10.1055/s-0039-1681089 |
[71] |
Convertino, V.A., Moulton, S.L., Grudic, G.Z., Rickards, C.A., Hinojosa-Laborde, C., Gerhardt, R.T., et al. (2011) Use of Advanced Machine-Learning Techniques for Noninvasive Monitoring of Hemorrhage. Journal of Trauma: Injury, Infection & Critical Care, 71, S25-S32. https://doi.org/10.1097/ta.0b013e3182211601 |
[72] |
Chen, L., McKenna, T.M., Reisner, A.T., Gribok, A. and Reifman, J. (2008) Decision Tool for the Early Diagnosis of Trauma Patient Hypovolemia. Journal of Biomedical Informatics, 41, 469-478. https://doi.org/10.1016/j.jbi.2007.12.002 |
[73] |
Sonkin, R., Jaffe, E., Wacht, O., Morse, H. and Bitan, Y. (2022) Real-Time Video Communication between Ambulance Paramedic and Scene—A Simulation-Based Study. BMC Health Services Research, 22, Article No. 1049. https://doi.org/10.1186/s12913-022-08445-w |
[74] |
Baur, D., Gehlen, T., Scherer, J., Back, D.A., Tsitsilonis, S., Kabir, K., et al. (2022) Decision Support by Machine Learning Systems for Acute Management of Severely Injured Patients: A Systematic Review. Frontiers in Surgery, 9, Article 924810. https://doi.org/10.3389/fsurg.2022.924810 |
[75] |
Ogunyemi, O.I. (2002) Combining Geometric and Probabilistic Reasoning for Computer-Based Penetrating-Trauma Assessment. Journal of the American Medical Informatics Association, 9, 273-282. https://doi.org/10.1197/jamia.m0979 |
[76] |
Metzger, M., Howard, M., Kellogg, L. and Kundi, R. (2015) Ensemble Prediction of Vascular Injury in Trauma Care: Initial Efforts towards Data-Driven, Low-Cost Screening. 2015 IEEE International Conference on Big Data, Santa Clara, 29 October-1 November 2015, 2560-2568. https://doi.org/10.1109/bigdata.2015.7364053 |
[77] |
Abdulbaqi, J., Gu, Y., Xu, Z., Gao, C., Marsic, I. and Burd, R.S. (2020). Speech-Based Activity Recognition for Trauma Resuscitation. 2020 IEEE International Conference on Healthcare Informatics (ICHI), Oldenburg, 30 November-3 December 2020, 1-8. https://doi.org/10.1109/ichi48887.2020.9374372 |
[78] |
Hodgman, E., Cripps, M., Mina, M., Bulger, E., Schreiber, M., Brasel, K., et al. (2018) External Validation of a Smartphone App Model to Predict the Need for Massive Transfusion Using Five Different Definitions. Journal of Trauma and Acute Care Surgery, 84, 397-402. https://doi.org/10.1097/ta.0000000000001756 |
[79] |
Walczak, S. (2005) Artificial Neural Network Medical Decision Support Tool: Predicting Transfusion Requirements of ER Patients. IEEE Transactions on Information Technology in Biomedicine, 9, 468-474. https://doi.org/10.1109/titb.2005.847510 |
[80] |
Bhat, A., Podstawczyk, D., Walther, B.K., Aggas, J.R., Machado-Aranda, D., Ward, K.R., et al. (2020) Toward a Hemorrhagic Trauma Severity Score: Fusing Five Physiological Biomarkers. Journal of Translational Medicine, 18, Article No. 348. https://doi.org/10.1186/s12967-020-02516-4 |
[81] |
Liu, N.T., Holcomb, J.B., Wade, C.E., Darrah, M.I. and Salinas, J. (2014) Utility of Vital Signs, Heart Rate Variability and Complexity, and Machine Learning for Identifying the Need for Lifesaving Interventions in Trauma Patients. Shock, 42, 108-114. https://doi.org/10.1097/shk.0000000000000186 |
[82] |
Liu, N.T., Holcomb, J.B., Wade, C.E., Batchinsky, A.I., Cancio, L.C., Darrah, M.I., et al. (2013) Development and Validation of a Machine Learning Algorithm and Hybrid System to Predict the Need for Life-Saving Interventions in Trauma Patients. Medical & Biological Engineering & Computing, 52, 193-203. https://doi.org/10.1007/s11517-013-1130-x |
[83] |
Clarke, J.R., Hayward, C.Z., Santora, T.A., Wagner, D.K. and Webber, B.L. (2002) Computer-Generated Trauma Management Plans: Comparison with Actual Care. World Journal of Surgery, 26, 536-538. https://doi.org/10.1007/s00268-001-0263-5 |
[84] |
Ahmed, F.S., Ali, L., Joseph, B.A., Ikram, A., Ul Mustafa, R. and Bukhari, S.A.C. (2020) A Statistically Rigorous Deep Neural Network Approach to Predict Mortality in Trauma Patients Admitted to the Intensive Care Unit. Journal of Trauma and Acute Care Surgery, 89, 736-742. https://doi.org/10.1097/ta.0000000000002888 |
[85] |
DiRusso, S.M., Sullivan, T., Holly, C., Cuff, S.N. and Savino, J. (2000) An Artificial Neural Network as a Model for Prediction of Survival in Trauma Patients: Validation for a Regional Trauma Area. The Journal of Trauma: Injury, Infection, and Critical Care, 49, 212-223. https://doi.org/10.1097/00005373-200008000-00006 |
[86] |
Niggli, C., Pape, H., Niggli, P. and Mica, L. (2021) Validation of a Visual-Based Analytics Tool for Outcome Prediction in Polytrauma Patients (WATSON Trauma Pathway Explorer) and Comparison with the Predictive Values of Triss. Journal of Clinical Medicine, 10, Article 2115. https://doi.org/10.3390/jcm10102115 |
[87] |
Richter, P.H., Yarboro, S., Kraus, M. and Gebhard, F. (2015) One Year Orthopaedic Trauma Experience Using an Advanced Interdisciplinary Hybrid Operating Room. Injury, 46, S129-S134. https://doi.org/10.1016/s0020-1383(15)30032-2 |
[88] |
Braun, F., Peh, S., Weuster, M., Klueter, T., Seekamp, A. and Lippross, S. (2019) Der Hybridoperationssaal. Der Unfallchirurg, 123, 134-142. https://doi.org/10.1007/s00113-019-0657-1 |
[89] |
Schuetze, K., Kraus, M., Eickhoff, A., Gebhard, F. and Richter, P.H. (2018) Radiation Exposure for Intraoperative 3D Scans in a Hybrid Operating Room: How to Reduce Radiation Exposure for the Surgical Team. International Journal of Computer Assisted Radiology and Surgery, 13, 1291-1300. https://doi.org/10.1007/s11548-018-1747-1 |
[90] |
Mah, E. (2023) Metaverse, AR, Machine Learning & AI in Orthopaedics? Journal of Orthopaedic Surgery, 31, Article 10225536231165362. https://doi.org/10.1177/10225536231165362 |
[91] |
McKnight, R.R., Pean, C.A., Buck, J.S., Hwang, J.S., Hsu, J.R. and Pierrie, S.N. (2020) Virtual Reality and Augmented Reality—Translating Surgical Training into Surgical Technique. Current Reviews in Musculoskeletal Medicine, 13, 663-674. https://doi.org/10.1007/s12178-020-09667-3 |
[92] |
Bell, R.H., Biester, T.W., Tabuenca, A., Rhodes, R.S., Cofer, J.B., Britt, L.D., et al. (2009) Operative Experience of Residents in US General Surgery Programs. Annals of Surgery, 249, 719-724. https://doi.org/10.1097/sla.0b013e3181a38e59 |
[93] |
Lewis, F.R. and Klingensmith, M.E. (2012) Issues in General Surgery Residency Training—2012. Annals of Surgery, 256, 553-559. https://doi.org/10.1097/sla.0b013e31826bf98c |
[94] |
Kogan, M., Klein, S.E., Hannon, C.P. and Nolte, M.T. (2020) Orthopaedic Education during the COVID-19 Pandemic. Journal of the American Academy of Orthopaedic Surgeons, 28, e456-e464. https://doi.org/10.5435/jaaos-d-20-00292 |
[95] |
Hasan, L.K., Haratian, A., Kim, M., Bolia, I.K., Weber, A.E. and Petrigliano, F.A. (2021) Virtual Reality in Orthopedic Surgery Training. Advances in Medical Education and Practice, 12, 1295-1301. https://doi.org/10.2147/amep.s321885 |
[96] |
Cevallos, N., Zukotynski, B., Greig, D., Silva, M. and Thompson, R.M. (2022) The Utility of Virtual Reality in Orthopedic Surgical Training. Journal of Surgical Education, 79, 1516-1525. https://doi.org/10.1016/j.jsurg.2022.06.007 |
[97] |
Tronchot, A., Berthelemy, J., Thomazeau, H., Huaulmé, A., Walbron, P., Sirveaux, F., et al. (2021) Validation of Virtual Reality Arthroscopy Simulator Relevance in Characterising Experienced Surgeons. Orthopaedics & Traumatology: Surgery & Research, 107, Article 103079. https://doi.org/10.1016/j.otsr.2021.103079 |
[98] |
Rahm, S., Wieser, K., Bauer, D.E., Waibel, F.W., Meyer, D.C., Gerber, C., et al. (2018) Efficacy of Standardized Training on a Virtual Reality Simulator to Advance Knee and Shoulder Arthroscopic Motor Skills. BMC Musculoskeletal Disorders, 19, Article No. 150. https://doi.org/10.1186/s12891-018-2072-0 |
[99] |
Walbron, P., Common, H., Thomazeau, H., Hosseini, K., Peduzzi, L., Bulaid, Y., et al. (2020) Virtual Reality Simulator Improves the Acquisition of Basic Arthroscopy Skills in First-Year Orthopedic Surgery Residents. Orthopaedics & Traumatology: Surgery & Research, 106, 717-724. https://doi.org/10.1016/j.otsr.2020.03.009 |
[100] |
Lohre, R., Bois, A.J., Athwal, G.S. and Goel, D.P. (2020) Improved Complex Skill Acquisition by Immersive Virtual Reality Training. Journal of Bone and Joint Surgery, 102, e26. https://doi.org/10.2106/jbjs.19.00982 |
[101] |
Gumaa, M. and Rehan Youssef, A. (2019) Is Virtual Reality Effective in Orthopedic Rehabilitation? A Systematic Review and Meta-Analysis. Physical Therapy, 99, 1304-1325. https://doi.org/10.1093/ptj/pzz093 |
[102] |
Sharma, A., Harrington, R.A., McClellan, M.B., Turakhia, M.P., Eapen, Z.J., Steinhubl, S., et al. (2018) Using Digital Health Technology to Better Generate Evidence and Deliver Evidence-Based Care. Journal of the American College of Cardiology, 71, 2680-2690. https://doi.org/10.1016/j.jacc.2018.03.523 |
[103] |
Bhavnani, S.P., Narula, J. and Sengupta, P.P. (2016) Mobile Technology and the Digitization of Healthcare. European Heart Journal, 37, 1428-1438. https://doi.org/10.1093/eurheartj/ehv770 |
[104] |
Manteghinejad, A. and Javanmard, S.H. (2021) Challenges and Opportunities of Digital Health in a Post-Covid19 World. Journal of Research in Medical Sciences, 26, 11. https://doi.org/10.4103/jrms.jrms_1255_20 |
[105] |
Haimi, M. (2023) The Tragic Paradoxical Effect of Telemedicine on Healthcare Disparities—A Time for Redemption: A Narrative Review. BMC Medical Informatics and Decision Making, 23, Article No. 95. https://doi.org/10.1186/s12911-023-02194-4 |