氯胺酮:从合成到管制
Ketamine: From Synthesis to Regulation
DOI: 10.12677/acm.2025.151269, PDF, HTML, XML,   
作者: 赵崐迪, 阿民勿日他*:内蒙古医科大学基础医学院,内蒙古 呼和浩特;刘金磊:清水河县公安局刑事技术侦察大队,内蒙古 呼和浩特
关键词: 氯胺酮药理学药代动力学滥用Keatmine Pharmacology Pharmacokinetics Abuse
摘要: 20世纪50年代,因缺少稳定的镇静类药物,药学家将注意力集中到了苯环己哌啶,随着新型苯环己哌啶类药物不断开发,氯胺酮最终诞生并应用于麻醉等临床治疗。由于当时其具有一定的安全性与稳定性,很快获得美国政府的批准,被大规模投入各方面的使用,但随着被引入其他国家,氯胺酮对人体产生不良反应逐渐造成社会性影响,从而被各个国家列为管制类药物。本文从氯胺酮的合成历史、药理作用、药代动力学特性和滥用情况,详细地总结了氯胺酮的前世今生。
Abstract: In the 1950s, due to the lack of stable sedatives, pharmacists focused their attention on phencyclidine. With the continuous development of new phencyclidine drugs, ketamine was eventually born and applied in clinical treatments such as anesthesia. Due to its certain safety and stability at the time, ketamine quickly obtained approval from the US government and was widely used in various fields. However, as it was introduced into other countries, ketamine gradually caused adverse reactions to the human body and had social impacts, thus being listed as a controlled drug in various countries. This article provides a detailed summary of the history of ketamine synthesis, pharmacological effects, pharmacokinetic properties, and abuse.
文章引用:赵崐迪, 刘金磊, 阿民勿日他. 氯胺酮:从合成到管制[J]. 临床医学进展, 2025, 15(1): 2026-2033. https://doi.org/10.12677/acm.2025.151269

1. 合成历史

20世纪50年代,药学家为寻找稳定的镇静类药物而开发出苯环己哌啶类化合物(phencyclidine, PCPs),其中包括化合物CI-395和CI-400。该两种化合物拥有有效的镇静效果,但会对使用者造成严重的致幻作用,因此在此基础上开始探索新型PCP衍生物CI-581 [1]。Calvin Stevens [2]于1962年首次合成CI-581并命名为氯胺酮(Ketamine, KET),1963年KET最初作为兽用麻醉剂应用在动物身上,在实验过程中,KET具有PCP类药物的镇静效用,其表现的不良反应弱于同时期合成的其他PCP类化合物。1966年,该药物以Ketalar的名义获得专利同时开始应用于人体。1969年KET以盐酸氯胺酮作为处方药的方式上市,并获得美国食品和药物管理局的批准。1970年KET开始应用在临床方面,除了传统PCP类药物麻醉领域外,KET还被应用于儿科镇痛和麻醉、急诊麻醉、产科和战场救治。由于其拟交感神经特性及安全性,KET被大量投入在越南战争中[3]。但在20世纪70年代,KET对患者造成的不良后果逐渐显现。

2. 药理作用

KET,(+/−) 2-(2-氯苯基)-2-(甲基氨基)-环己酮,以白色结晶粉末状态最为常见,但也存在溶液和片剂的形态。其被称为“独特的药物”,因为KET同时具有催眠、镇痛和健忘症(短期记忆丧失)的作用,而在临床实践中使用的药物中,几乎没有可以同时结合三种特性的化合物[4]

Figure 1. (a) S-KET, (b) R-KET

1. (a) S-KET, (b) R-KET

KET化学式为C13H6ClNO,分子量274.4 M,熔点在258℃~261℃之间。因其同时呈水溶性和脂溶性,可通过肌肉注射、静脉滴注和推注、鼻腔给药等多种途径方便给药,且能快速通过血脑屏障。由于C2位置的光学活性,使KET存在两种对映异构体的手性结构,因此KET拥有相同化学式而空间结构不同的异构分子。两种异构体具有相似的化学特性和物理特性,其中一种异构体将偏振光向左(−),另一种使偏正光向右(+),而作为外消旋体,每种异构体含50%,表现偏正光不会转向。以异构体在视活性中的表现对其命名,两种异构体被命名为S-KET和R-KET异构体[4] (图1)。两种对映异构体对各种受体的亲和力存在差异,也因此在临床使用上表现出不同的效果,与两种异构体结合亲和力不同的受体也具有光学活性,这种对映体和受体表现出差异性的结合成为立体选择性结合。临床中,S (+)-异构体的麻醉效力约为R (−)-异构体的3~4倍[5]

对谷氨酸N-甲基-D-天冬氨酸受体(N-methyl-D-aspartic acid receptor, NMDA)的作用,是KET镇痛、解离和神经作用特性的基础[6],由于低亲和力,KET以拮抗的方式阻断NMDA多聚受体复合物[7],且对中枢和脊髓部位的阿片受体以及其他部位的去甲肾上腺素、血清素和毒蕈碱胆碱能受体均产生影响[8]-[10]。NMDA受体的拮抗作用会破坏突触生长,这对突触可塑性、学习和记忆的发展至关重要。然而,一项研究调查了亚麻醉剂量的氯胺酮对工作任务中记忆执行过程的影响,发现了一种高度特异性的损伤模式[11]。损伤仅限于言语工作记忆任务的一个子组(在工作记忆中操纵信息)。氯胺酮的特异性损伤效应不影响视觉空间工作记忆,这种作用的特异性表明,NMDA受体阻断的最早作用是对执行功能的高阶控制,而不是更基本的维持过程,临床研究表明,谷氨酸在介导氯胺酮引起的解离症状中起作用,急性给药会导致短暂的高谷氨酸能状态[12]。事实上,减少谷氨酸释放的药物给药前部分抵消了氯胺酮引起的感知障碍[13],反过来,谷氨酸的给药可以逆转这种感知障碍。

乙醇和NO也会使NMDA受体阻断继而产生解离性麻醉,其中乙醇以非竞争性和浓度依赖性的方式阻断谷氨酸对NMDA受体的作用,且阻断作用发生在人体酒精中毒的浓度范围内。而与抑制网状系统不同,KET诱导丘脑-新皮质和边缘系统之间的功能和电生理分离,也因此KET在临床环境以外的应用会增大事故风险。当KET的使用当量达到足以引发麻醉时,会产生恍惚状精神崩溃;对于娱乐性吸毒者,虽然滥用人员可能表现为清醒状态,但其无法正常行动,丧失对疼痛刺激的反应,完全与周围环境脱节[14]

KET的使用剂量在亚麻醉浓度下表现出显著的镇痛效果[15],临床中麻醉通常分别在静脉注射和肌肉注射后30秒和4分钟内发生诱导反应。然而,麻醉时间较短,仅持续5~10分钟,需要通过频繁给药以保持临床效果。有报道称,一项对青少年的早期研究中,对34名健康年轻的志愿者使用了亚麻醉剂量(0.25和0.5 mg/kg)以探究KET对记忆、认知、精神功能、主观情绪等不良反应发生率的影响,最终结果显示KET的亚麻醉剂量提高了不良反应发生率[15]。在威斯康星州卡片分类等高级执行功能测试中,氯胺酮的使用会导致持续性错误结果的增加,一次性亚麻醉剂量氯胺酮的使用,通常导致注意力表现中断,并在警惕性、识别记忆、言语流畅性、工作记忆和情景记忆(精神分裂症中可见的缺陷)测试中表现受损,急性失忆的影响可能非常明显,以至于受试者很难向研究人员描述他们的经历[16]-[21]。2005年有证据表明,KET对15~21岁的年轻人没有造成严重的心理康复反应[22],然而2022年在Jonathan Acevedo总结性的文章中提到:目前KET能有效缓解抑郁的症状,但青少年接触KET会扰乱记忆和其他生理行为,并对大脑造成损害性的影响[23]。另外,娱乐性滥用KET可观察使用人员的年龄、使用剂量、个人经历(期望、个性、动机和情绪)和环境因素(社会、身体和情感环境)对感知和情绪变化呈高度敏感[24] [25]。低剂量下,外界刺激占据主导地位,随着剂量单位增加,环境因素的影响开始减弱,使用者产生迷幻反应,并且迷幻效果逐渐成为主要感受[26]

在临床测试中,KET对其他受体也会产生作用效果,特别是影响谷氨酸能和单胺类神经传递的受体位点[10],临床前研究表明,KET通过增加谷氨酸释放诱导神经病理学行为的发生,并且KET增加前扣带皮层谷氨酸水平,这或许与阳性精神疾病的程度有关[27]。通过剂量依赖的方式,KET明显抑制人体胚胎肾细胞对去甲肾上腺素、多巴胺和血清素的摄取[28]。KET最显著的药理作用是它在NMDA受体阳离子通道上的非竞争性拮抗作用,以及对兴奋性氨基酸递质谷氨酸和天冬氨酸的干扰[29]-[31]。此外,KET与阿片样α受体和μ受体结合,但分别只有其NMDA受体亲和力的10%和20% [32]。因此,阿片受体拮抗剂纳洛酮逆转KET作用的能力有限,无法逆转体内的关键作用[33]。KET对阿片受体具有调节作用,被认为是其镇痛和吞咽不良作用的原因。在动物模型中,KET和其他NMDA拮抗剂,如美沙酮,已被证明可以抑制阿片类药物依赖和耐受的发展和获得[34],而小剂量的KET已被证明可防止反复服用强效短效阿片类物质阿芬太尼时产生耐受[35] [36]

3. 药代动力学特性

KET产生独特的麻醉作用被称为“解离性麻醉”或“分离性麻醉”(dissociative anesthesia) [37],这个概念由Domino [38]于1965年首次提出用于描述KET产生的麻醉作用所导致的精神状态拟交感神经特性与脑的解离作用。这种作用致使大脑的高级中枢无法感知听觉、视觉或痛觉的刺激,导致“缺乏反应意识”。KET的作用并非简单的镇静和催眠效果,其影响被比作为感觉剥夺、幻视、孤立感,以及自我与身体分离的状态,与麦角酸二乙胺(Lysergic acid diethylamide, LSD)相比,KET的作用被描述为:与现实失去联系并参与另一个现实的感觉更为明显。原因可能是KET选择性中断了丘脑皮质系统。临床表现为,患者迅速进入恍惚状态、眼睑睁大、眼球震颤、昏迷、失忆,且止痛效果优异。同时患者气道开放,仅有轻微的喉反射,这种麻醉效果超过同时期任何麻醉药的作用,而这种解离麻醉是丘脑皮质结构激活减少、边缘系统与海马体活动增加的结果[39]。长期频繁的使用KET会引起不良的精神疾病反应,并逐渐失去和现实世界的联系[40],这种不良反应与乙醚、氯仿和一氧化二氮(Nitrous oxide, NO)等麻醉剂产生的迷幻效果较为相似[11]。总体而言,KET产生的效应被理解为:具有镇痛作用和导致健忘症的躯体感觉阻滞[39]

KET肌肉注射剂量后的生物利用度为93%,鼻内剂量为25%~50%,口服剂量仅为17%,使用后迅速分布到大脑和其他高灌注组织中;12%是血浆中结合的蛋白质。因此,口服给药会产生较低的KET峰值浓度,但代谢物去甲氯胺酮和脱氢去甲氯胺酮的量会增加[41]

静脉注射时,麻醉效果出现的时间为:肌肉注射时为1~5分钟;鼻吸时为5~10分钟;口服时为15~20分钟。如果注射效果通常持续30~45分钟,如果吸入45~60分钟,口服后1~2小时。KET浓度与麻醉行为之间没有直接相关性。在50~200 ng/mL的浓度范围内,嗜睡和感知扭曲可能与剂量有关,镇痛始于约100 ng/mL的血浆浓度。在麻醉过程中,使用2000~3000 ng/mL的血中KET浓度,当浓度逐渐降至500~1000 ng/mL时,患者可能会从手术中醒来。

KET主要通过肝脏代谢消除,消除半衰期约为2.5小时[42]。KET是高度脂溶性的,分布半衰期短,为10分钟[42],因为它很快分布到血液灌注高的区域。氯胺酮由细胞色素P450 (CYP) 2B6代谢,大部分在24小时内从体内消除。然而,存在活性代谢物,可能会造成长期影响。两种KET异构体的特征是α半衰期短(2~4分钟);β半衰期主要由再分布决定,在成年人中为8~16分钟。KET的蛋白质结合率较低,为20%~30%。在体内,S (+) -KET不会转化为R (−) KET;然而,与S (+) KET相比,外消旋给药后R (−) -KET的清除率和分布体积在统计学上显著减小[43]。通过肝脏生物转化,细胞色素P450 (CYP) 3A4是负责KET的N-去甲基化(代谢产物I)为去甲氯胺酮的主要酶,CYP2B6和CYP2C9亚型的贡献较小。发现未结合的N-去甲基代谢物的效力不到KET的六分之一。如果同时给药,这些同工酶的潜在抑制剂可能会降低消除率;相比之下,潜在的诱导剂可以提高消除率。通过环己酮环的羟基化进一步分解,得到具有0.1%麻醉效力的羟基氯胺酮。KET及其代谢产物发生羟基化,并与尿液中排泄的水溶性结合物结合。代谢半衰期为2.5~3小时。成年人的血浆清除率为每分钟15~20毫升/千克,S (+) -KET的清除率高于对映体[43]。S- (+) 和R- (−)异构体的药代动力学特性之间没有其他显著差异。即使对动物重复服用KET,也没有产生任何可检测到的微粒体酶活性增加[4]

未代谢药物的尿液排泄量约为4%。在法医学中,KET的使用可以在尿液中检测到约3天。据报道,尿液中KET的浓度范围低至10 ng/mL,高达25 µg/mL [4]

4. 滥用情况

最早,于1963年,KET作为兽用麻醉剂在比利时获得专利。1964年8月,由Domino和Corssen指导[44],KET首次应用于人类,并且于1969年获得批准供人类使用,KET以盐酸溶剂的形式上市。

然而自1969年,KET被引进英国开始,KET的不良反应开始显现并造成了社会性、灾难性的影响[44]。当时环境下,分子的镇痛特性是麻醉科学发展的主要争论点,氯丙嗪[45]、地西泮[46]、氟哌利多[47]被提出可以应用于限制苏醒兴奋,这使KET作为诱导剂应用于手术成为问题[48]。随后几年的临床工作中,阐述了有关KET的副作用问题,例如肌肉注射[49]、KET及其异构体的药代动力学[50]-[54]、KET选择适应症以及导致颅内压增高和诱发癫痫的争议[55] [56]。由于KET的致幻效应,以及异丙酚等新型静脉麻醉药的出现,使得KET的用量减少。此外KET在越南战争时期和在美国东海岸的滥用现象[57],于1999年KET被正式列入美国《受控物质法》的第三类管控药品;2002年6月9日,我国国家药品监督管理局将KET纳入国家第二类精神药品来进行管制,2003年我国公安部将KET列入毒品范畴;2006年1月1日,英国根据1971年的《滥用药物法》将KET列为C类药物,从2014年6月10日起,KET被重新归类为B类药物。

KET娱乐性使用始于20世纪70年代初的加利福尼亚,20世纪90年代在英国作为“摇头丸”出售,这种滥用从兽医院、医院等有权限接触KET的地点逐渐扩散到夜总会、舞会等娱乐场所。此后,KET演变为“post-rave”俱乐部和青年舞蹈文化也包括俱乐部或派对中的主流“俱乐部毒品”[58]。1999年至2003年,《Mixmag》调查显示,英国俱乐部成员中KET终身流行率从25.5%上升到39.8%,到目前KET的使用率从3.9%上升至16.0% [59]。2011年,终身使用率为62%,而2023年则为41.2% [60],分别低于2010年的67%和50.7% [61]。2013年,KET的使用水平分别降至50.6%和31.5%,但仍然高于美国受访者[62]。2012年,美国受访者使用KET的比例为5.5% [63];2014年,全球KET的使用率为5.7%;2016年全球KET去年使用率为6.72%,2017年为8.6%,2018年为6.5%;2017年和2018年使用者的寿命率分别为11.7%和10.4%。

虽然KET被各国列为管制类药物,但兽医和医疗机构合法供应一直以来是非法KET的来源,然而也有证据表明,中国、东南亚包括马来西亚的金三角地区正在非法生产并通过网络渠道出口销往中国和泰国。2012~2015年,KET全球缉获量大幅升高,主要缉获地区在东亚和东南亚。从2015年开始,KET的全球缉获量有所下降,2015年KET的总缉获量为22吨,2016年由于我国政府加大毒品打击力度,使得同年全球KET总缉获量下降,直至2017年KET总缉获量下降到12吨。2001年至2017年间,共有47个国家和地区汇报了缉获KET。

至今KET依然在各国地下非法市场中,以“K粉”、“摇头丸”等形式流行。近年,在KET的基础上,不法分子通过化学修饰技术对KET结构进行改造,从而得到新型精神活性物质(New Psychoactive Substance, NPSs),如氟胺酮[64]、去氯胺酮[65]、溴胺酮[66]等,这些衍生物中的大部分在我国被列为管制类药物,虽然其中一些衍生物的作用机制、代谢过程、依赖性和毒性尚不明确,但同KET一样均属于PCP类物质,因此可能会对人体造成相似的危害,也有一些报道称这些衍生物引发或诱发了一些人体损伤[67] [68]

NOTES

*通讯作者。

参考文献

[1] Johnstone, M., Evans, V. and Baigel, S. (1959) Sernyl (C1-395) in Clinical Anaesthesia. British Journal of Anaesthesia, 31, 433-439.
https://doi.org/10.1093/bja/31.10.433
[2] Mion, G. (2017) History of Anaesthesia: The Ketamine Story—Past, Present and Future. European Journal of Anaesthesiology, 34, 571-575.
https://doi.org/10.1097/eja.0000000000000638
[3] white, P.F., Way, W.L. and Trevor, A.J. (1982) Ketamine—Its Pharmacology and Therapeutic Uses. Anesthesiology, 56, 119-136.
https://doi.org/10.1097/00000542-198202000-00007
[4] Sinner, B. and Graf, B.M. (2008) Ketamine. In: Schüttler, J. and Schwilden, H., Eds., Modern Anesthetics, Springer, 313-333.
https://doi.org/10.1007/978-3-540-74806-9_15
[5] White, P.F., Ham, J., Way, W.L. and Trevor, A. (1980) Pharmacology of Ketamine Isomers in Surgical Patients. Anesthesiology, 52, 231-239.
https://doi.org/10.1097/00000542-198003000-00008
[6] Jevtović-Todorović, V., Todorovć, S.M., Mennerick, S., Powell, S., Dikranian, K., Benshoff, N., et al. (1998) Nitrous Oxide (Laughing Gas) Is an NMDA Antagonist, Neuroprotectant and Neurotoxin. Nature Medicine, 4, 460-463.
https://doi.org/10.1038/nm0498-460
[7] Wood, P.L. (2005) The NMDA Receptor Complex: A Long and Winding Road to Therapeutics. IDrugs: The Investigational Drugs Journal, 8, 229-235.
[8] Kong, P.E.L., Snijdelaar, D.G. and Crul, B.J.P. (2002) Parenteral Administration of Low Dose Ketamine for the Treatment of Neuropathic Pain in Cancer Patients. Nederlands tijdschrift voor geneeskunde, 146, 2556-2558.
[9] Nishimura, M. and Sato, K. (1999) Ketamine Stereoselectively Inhibits Rat Dopamine Transporter. Neuroscience Letters, 274, 131-134.
https://doi.org/10.1016/s0304-3940(99)00688-6
[10] Rowland, L.M., Bustillo, J.R., Mullins, P.G., Jung, R.E., Lenroot, R., Landgraf, E., et al. (2005) Effects of Ketamine on Anterior Cingulate Glutamate Metabolism in Healthy Humans: A 4-T Proton MRS Study. American Journal of Psychiatry, 162, 394-396.
https://doi.org/10.1176/appi.ajp.162.2.394
[11] Honey, R.A.E., Turner, D.C., Honey, G.D., Sharar, S.R., Kumaran, D., Pomarol-Clotet, E., et al. (2003) Subdissociative Dose Ketamine Produces a Deficit in Manipulation but Not Maintenance of the Contents of Working Memory. Neuropsychopharmacology, 28, 2037-2044.
https://doi.org/10.1038/sj.npp.1300272
[12] Chambers, R.A., Bremner, J.D., Moghaddam, B., et al. (1999) Glutamate and Post-Traumatic Stress Disorder: Toward a Psychobiology of Dissociation. Seminars in Clinical Neuropsychiatry, 4, 274-281.
[13] Anand, A., Charney, D.S., Oren, D.A., Berman, R.M., Hu, X.S., Cappiello, A., et al. (2000) Attenuation of the Neuropsychiatric Effects of Ketamine with Lamotrigine: Support for Hyperglutamatergic Effects of N-methyl-D-aspartate Receptor Antagonists. Archives of General Psychiatry, 57, 270-276.
https://doi.org/10.1001/archpsyc.57.3.270
[14] Grinspoon, L. and Bakalar, J.B. (1981) The Major Psychedelic Drugs. In: Grinspoon, L. and Bakalar, J.B., Eds., Sources and Effects, Basic Books Inc., 32-36.
[15] Ghoneim, M.M., Hinrichs, J.V., Mewaldt, S.P. and Petersen, R.C. (1985) Ketamine: Behavioral Effects of Subanesthetic Doses. Journal of Clinical Psychopharmacology, 5, 70-77.
https://doi.org/10.1097/00004714-198504000-00003
[16] Krystal, J.H., Petrakis, I.L., Webb, E., Cooney, N.L., Karper, L.P., Namanworth, S., et al. (1998) Dose-Related Ethanol-Like Effects of the NMDA Antagonist, Ketamine, in Recently Detoxified Alcoholics. Archives of General Psychiatry, 55, 354-360.
https://doi.org/10.1001/archpsyc.55.4.354
[17] Krystal, J.H. (1994) Subanesthetic Effects of the Noncompetitive NMDA Antagonist, Ketamine, in Humans: Psychotomimetic, Perceptual, Cognitive, and Neuroendocrine Responses. Archives of General Psychiatry, 51, 199-214.
https://doi.org/10.1001/archpsyc.1994.03950030035004
[18] Malhotra, A. (1996) NMDA Receptor Function and Human Cognition: The Effects of Ketamine in Healthy Volunteers. Neuropsychopharmacology, 14, 301-307.
https://doi.org/10.1016/0893-133x(95)00137-3
[19] Baer, G. and Parkas, P. (1981) Ketamine-Induced Psychopathological Changes in Normal Volunteers during Conditions Used for Experimental Psychoses (Author’s Transl.). Der Anaesthesist, 30, 251-256.
[20] Newcomer, J., Farber, N.B., Jevtovic-Todorovic, V., et al. (1999) Ketamine-Induced NMDA Receptor Hypofunction as a Model of Memory Impairment and Psychosis. Neuropsychopharmacology, 20, 106-118.
https://doi.org/10.1016/s0893-133x(98)00067-0
[21] Green, S.M. and Johnson, N.E. (1990) Ketamine Sedation for Pediatric Procedures: Part 2, Review and Implications. Annals of Emergency Medicine, 19, 1033-1046.
https://doi.org/10.1016/s0196-0644(05)82569-7
[22] Green, S.M. and Sherwin, T.S. (2005) Incidence and Severity of Recovery Agitation after Ketamine Sedation in Young Adults. The American Journal of Emergency Medicine, 23, 142-144.
https://doi.org/10.1016/j.ajem.2004.04.030
[23] Acevedo, J. and Siegel, J.A. (2022) Neurobiological, Behavioral, and Cognitive Effects of Ketamine in Adolescents: A Review of Human and Pre-Clinical Research. Behavioural Brain Research, 435, Article ID: 114049.
https://doi.org/10.1016/j.bbr.2022.114049
[24] Hansen, G., Jensen, S.B., Chandresh, L. and Hilden, T. (1988) The Psychotropic Effect of Ketamine. Journal of Psychoactive Drugs, 20, 419-425.
https://doi.org/10.1080/02791072.1988.10472511
[25] Curran, H.V. and Morgan, C. (2000) Cognitive, Dissociative and Psychotogenic Effects of Ketamine in Recreational Users on the Night of Drug Use and 3 Days Later. Addiction, 95, 575-590.
https://doi.org/10.1046/j.1360-0443.2000.9545759.x
[26] Oye, I., Paulsen, O. and Maurset, A. (1992) Effects of Ketamine on Sensory Perception: Evidence for a Role of N-methyl-D-aspartate Receptors. Journal of Pharmacology and Experimental Therapeutics, 260, 1209-1213.
[27] Stone, J.M., Dietrich, C., Edden, R., Mehta, M.A., De Simoni, S., Reed, L.J., et al. (2012) Ketamine Effects on Brain GABA and Glutamate Levels with 1H-MRS: Relationship to Ketamine-Induced Psychopathology. Molecular Psychiatry, 17, 664-665.
https://doi.org/10.1038/mp.2011.171
[28] Nishimura, M., Sato, K., Okada, T., Yoshiya, I., Schloss, P., Shimada, S., et al. (1998) Ketamine Inhibits Monoamine Transporters Expressed in Human Embryonic Kidney 293 Cells. Anesthesiology, 88, 768-774.
https://doi.org/10.1097/00000542-199803000-00029
[29] Anis, N.A., Berry, S.C., Burton, N.R. and Lodge, D. (1983) The Dissociative Anaesthetics, Ketamine and Phencyclidine, Selectively Reduce Excitation of Central Mammalian Neurones by N‐Methyl‐Aspartate. British Journal of Pharmacology, 79, 565-575.
https://doi.org/10.1111/j.1476-5381.1983.tb11031.x
[30] Gao, X., Sakai, K., Roberts, R.C., Conley, R.R., Dean, B. and Tamminga, C.A. (2000) Ionotropic Glutamate Receptors and Expression of n-Methyl-d-Aspartate Receptor Subunits in Subregions of Human Hippocampus: Effects of Schizophrenia. American Journal of Psychiatry, 157, 1141-1149.
https://doi.org/10.1176/appi.ajp.157.7.1141
[31] Harrison, P.J., Law, A.J. and Eastwood, S.L. (2003) Glutamate Receptors and Transporters in the Hippocampus in Schizophrenia. Annals of the New York Academy of Sciences, 1003, 94-101.
https://doi.org/10.1196/annals.1300.006
[32] Hirota, K., Okawa, H., Appadu, B.L., Grandy, D.K., Devi, L.A. and Lambert, D.G. (1999) Stereoselective Interaction of Ketamine with Recombinant [Micro Sign], [Small Kappa, Greek], and [Small Delta, Greek] Opioid Receptors Expressed in Chinese Hamster Ovary Cells. Anesthesiology, 90, 174-182.
https://doi.org/10.1097/00000542-199901000-00023
[33] Mikkelsen, S., Ilkjaer, S., Brennum, J., Borgbjerg, F.M. and Dahl, J.B. (1999) The Effect of Naloxone on Ketamine-Induced Effects on Hyperalgesia and Ketamine-Induced Side Effects in Humans. Anesthesiology, 90, 1539-1545.
https://doi.org/10.1097/00000542-199906000-00007
[34] Laurel Gorman, A., Elliott, K.J. and Inturrisi, C.E. (1997) The D-and L-Isomers of Methadone Bind to the Non-Competitive Site on the N-Methyl-D-Aspartate (NMDA) Receptor in Rat Forebrain and Spinal Cord. Neuroscience Letters, 223, 5-8.
https://doi.org/10.1016/s0304-3940(97)13391-2
[35] Kissin, I., Bright, C.A. and Bradley, E.L. (2000) The Effect of Ketamine on Opioid-Induced Acute Tolerance: Can It Explain Reduction of Opioid Consumption with Ketamine-Opioid Analgesic Combinations? Anesthesia & Analgesia, 91, 1483-1488.
https://doi.org/10.1097/00000539-200012000-00035
[36] Byrd, L.D., Standish, L.J. and Howell, L.L. (1987) Behavioral Effects of Phencyclidine and Ketamine Alone and in Combination with Other Drugs. European Journal of Pharmacology, 144, 331-341.
https://doi.org/10.1016/0014-2999(87)90386-4
[37] Craven, R. (2007) Ketamine. Anaesthesia, 62, 48-53.
https://doi.org/10.1111/j.1365-2044.2007.05298.x
[38] Shannon, S. and Faacap, M.D. (2023) Ketamine: Catalyst for Paradigm Change in Mental Health. The Journal of Psychedelic Psychiatry, 5, 1-48.
[39] Domino, E.F., Chodoff, P. and Corssen, G. (1965) Pharmacologic Effects of CI‐581, a New Dissociative Anesthetic, in Man. Clinical Pharmacology & Therapeutics, 6, 279-291.
https://doi.org/10.1002/cpt196563279
[40] Lilly, J.C. (1978) The Scientist: A Novel Autobiography. Lippincott Williams & Wilkins.
[41] Larenza, M.P., Landoni, M.F., Levionnois, O.L., Knobloch, M., Kronen, P.W., Theurillat, R., et al. (2007) Stereoselective Pharmacokinetics of Ketamine and Norketamine after Racemic Ketamine or S-Ketamine Administration during Isoflurane Anaesthesia in Shetland Ponies. British Journal of Anaesthesia, 98, 204-212.
https://doi.org/10.1093/bja/ael336
[42] Wieber, J., Gugler, R., Hengstmann, J.H., et al. (1975) Pharmacokinetics of Ketamine in Man. Der Anaesthesist, 24, 260-263.
[43] Geisslinger, G., Hering, W., Thomann, P., Knoll, R., Kamp, H. and Brune, K. (1993) Pharmacokinetics and Pharmacodynamics of Ketamine Enantiomers in Surgical Patients Using a Stereoselective Analytical Method. British Journal of Anaesthesia, 70, 666-671.
https://doi.org/10.1093/bja/70.6.666
[44] Dundee, J.W. (1990) Twenty‐Five Years of Ketamine a Report of an International Meeting. Anaesthesia, 45, 159-160.
https://doi.org/10.1111/j.1365-2044.1990.tb14287.x
[45] Erbguth, P.H., Reiman, B. and Klein, R.L. (1972) The Influence of Chlorpromazine, Diazepam, and Droperidol on Emergence from Ketamine. Anesthesia & Analgesia, 51, 693-699.
https://doi.org/10.1213/00000539-197209000-00008
[46] Muhlmann-Weill, M., Mangeney, F. and Gauthier-Lafaye, J.P. (1972) Ketamine-Diapezam Association in Anesthesia. Anesthesie, Analgesie, Reanimation, 29, 355-363.
[47] Sadove, M.S., Hatano, S., Zahed, B., Redlin, T., Arastounejad, P. and Roman, V. (1971) Clinical Study of Droperidol in the Prevention of the Side Effects of Ketamine Anesthesia: A Preliminary Report. Anesthesia & Analgesia, 50, 388-393.
https://doi.org/10.1213/00000539-197105000-00024
[48] Dundee, J.W., Bovill, J., Knox, J.W.D., Clarke, R.S.J., Black, G.W., Love, S.H.S., et al. (1970) Ketamine as an Induction Agent in Anaesthetics. The Lancet, 295, 1370-1371.
https://doi.org/10.1016/s0140-6736(70)91273-0
[49] Phillips, L.A., Seruvatu, S.G., Rika, P.N. and Tirikula, U. (1970) Anaesthesia for the Surgeon‐Anaesthetist in Difficult Situations: The Use of Intramuscular 2 (O-chlorophenyl)-2 Methylamino Cyclohexanone HC1 (Parke Davis CI-581, Ketamine). Anaesthesia, 25, 36-45.
https://doi.org/10.1111/j.1365-2044.1970.tb00157.x
[50] Idvall, J., Ahlgren, I., Aronsen, K.F. and Stenberg, P. (1979) Ketamine Infusions: Pharmacokinetics and Clinical Effects. British Journal of Anaesthesia, 51, 1167-1173.
https://doi.org/10.1093/bja/51.12.1167
[51] Clements, J.A. and Nimmo, W.S. (1981) Pharmacokinetics and Analgesic Effect of Ketamine in Man. British Journal of Anaesthesia, 53, 27-30.
https://doi.org/10.1093/bja/53.1.27
[52] Domino, E.F., Domino, S.E., Smith, R.E., Domino, L.E., Goulet, J.R., Domino, K.E., et al. (1984) Ketamine Kinetics in Unmedicated and Diazepam-Premedicated Subjects. Clinical Pharmacology and Therapeutics, 36, 645-653.
https://doi.org/10.1038/clpt.1984.235
[53] Absalom, A.R., Lee, M., Menon, D.K., Sharar, S.R., De Smet, T., Halliday, J., et al. (2007) Predictive Performance of the Domino, Hijazi, and Clements Models during Low-Dose Target-Controlled Ketamine Infusions in Healthy Volunteers. British Journal of Anaesthesia, 98, 615-623.
https://doi.org/10.1093/bja/aem063
[54] Marietta, M.P. (1976) On the Biodis Position of Ketamine and the Pharmacology of Its Enantiomorphs in the Rat. UCSF.
[55] Adams, H.A. and Hempelmann, G. (1990) 20 Years of Ketamine—A Backward Look. Der Anaesthesist, 39, 71-76.
[56] Reich, D.L. and Silvay, G. (1989) Ketamine: An Update on the First Twenty-Five Years of Clinical Experience. Canadian Journal of Anaesthesia, 36, 186-197.
https://doi.org/10.1007/bf03011442
[57] Jansen, K.L.R. (2000) A Review of the Nonmedical Use of Ketamine: Use, Users and Consequences. Journal of Psychoactive Drugs, 32, 419-433.
https://doi.org/10.1080/02791072.2000.10400244
[58] Schifano, F., Corkery, J., Deluca, P., Oyefeso, A. and Ghodse, A.H. (2006) Ecstasy (MDMA, MDA, MDEA, MBDB) Consumption, Seizures, Related Offences, Prices, Dosage Levels and Deaths in the UK (1994-2003). Journal of Psychopharmacology, 20, 456-463.
https://doi.org/10.1177/0269881106060147
[59] Kalsi, S.S., Wood, D.M. and Dargan, P.I. (2011) The Epidemiology and Patterns of Acute and Chronic Toxicity Associated with Recreational Ketamine Use. Emerging Health Threats Journal, 4, Article No. 7107.
https://doi.org/10.3402/ehtj.v4i0.7107
[60] Dillon, P. (2003) Patterns of Use and Harms Associated with Non-Medical Ketamine Use. Drug and Alcohol Dependence, 69, 23-28.
https://doi.org/10.1016/s0376-8716(02)00243-0
[61] McCambridge, J., Winstock, A., Hunt, N. and Mitcheson, L. (2006) 5-Year Trends in Use of Hallucinogens and Other Adjunct Drugs among UK Dance Drug Users. European Addiction Research, 13, 57-64.
https://doi.org/10.1159/000095816
[62] Winstock, A. (2011) The 2011 Mixmag Drugs Survey. Mixmag Magazine.
[63] Dick, D. and Torrance, C. (2010) MixMag Drugs Survey. Mixmag Magazine, 225, 44-53.
[64] Cheng, W., Dao, K. and Wong, W. (2024) Fluorodeschloroketamine Found as a Street Drug in Drug Seizures and Drug Driving Cases in Hong Kong. Forensic Science International, 361, Article ID: 112075.
https://doi.org/10.1016/j.forsciint.2024.112075
[65] Weng, T., Chin, L.W., Chen, L., Chen, J., Chen, G. and Fang, C. (2020) Clinical Characteristics of Patients Admitted to Emergency Department for the Use of Ketamine Analogues with or without Other New Psychoactive Substances. Clinical Toxicology, 59, 528-531.
https://doi.org/10.1080/15563650.2020.1826506
[66] Gao, J., Xu, B., Yang, R. and Zhang, H. (2023) Screening Strategy for Ketamine-Based New Psychoactive Substances Using Fragmentation Characteristics from High Resolution Mass Spectrometry. Forensic Science International, 347, Article ID: 111677.
https://doi.org/10.1016/j.forsciint.2023.111677
[67] Tang, M.H.Y., Li, T.C., Lai, C.K., Chong, Y.K., Ching, C.K. and Mak, T.W.L. (2020) Emergence of New Psychoactive Substance 2-Fluorodeschloroketamine: Toxicology and Urinary Analysis in a Cluster of Patients Exposed to Ketamine and Multiple Analogues. Forensic Science International, 312, Article ID: 110327.
https://doi.org/10.1016/j.forsciint.2020.110327
[68] Riess, S., Chèze, M., Muckensturm, A., Klinger, N., Roussel, O. and Cirimele, V. (2024) 2-Fluorodeschloroketamine Consumption: About Two Deaths and a Case of Self-Mutilation. Journal of Analytical Toxicology, 48, 398-404.
https://doi.org/10.1093/jat/bkae021

Baidu
map