[1] |
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2020) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492 |
[2] |
Fan, C., Tang, Y., Wang, J., Xiong, F., Guo, C., Wang, Y., et al. (2018) The Emerging Role of Epstein-Barr Virus Encoded MicroRNAs in Nasopharyngeal Carcinoma. Journal of Cancer, 9, 2852-2864. https://doi.org/10.7150/jca.25460 |
[3] |
Lin, D., Meng, X., Hazawa, M., Nagata, Y., Varela, A.M., Xu, L., et al. (2014) The Genomic Landscape of Nasopharyngeal Carcinoma. Nature Genetics, 46, 866-871. https://doi.org/10.1038/ng.3006 |
[4] |
Chang, E.T., Liu, Z., Hildesheim, A., Liu, Q., Cai, Y., Zhang, Z., et al. (2017) Active and Passive Smoking and Risk of Nasopharyngeal Carcinoma: A Population-Based Case-Control Study in Southern China. American Journal of Epidemiology, 185, 1272-1280. https://doi.org/10.1093/aje/kwx018 |
[5] |
Nakanishi, Y., Wakisaka, N., Kondo, S., Endo, K., Sugimoto, H., Hatano, M., et al. (2017) Progression of Understanding for the Role of Epstein-Barr Virus and Management of Nasopharyngeal Carcinoma. Cancer and Metastasis Reviews, 36, 435-447. https://doi.org/10.1007/s10555-017-9693-x |
[6] |
Wang, K., Dong, J., He, S., Wang, X., Jiang, C., Hu, P., et al. (2019) Comparison of Weekly and Triweekly Cisplatin Regimens during Concurrent Chemoradiotherapy for Nasopharyngeal Carcinoma. BMC Cancer, 19, Article No. 482. https://doi.org/10.1186/s12885-019-5688-z |
[7] |
Yuan, R., Hou, Y., Sun, W., Yu, J., Liu, X., Niu, Y., et al. (2017) Natural Products to Prevent Drug Resistance in Cancer Chemotherapy: A Review. Annals of the New York Academy of Sciences, 1401, 19-27. https://doi.org/10.1111/nyas.13387 |
[8] |
Sharifi-Rad, J., Ozleyen, A., Boyunegmez Tumer, T., Oluwaseun Adetunji, C., El Omari, N., Balahbib, A., et al. (2019) Natural Products and Synthetic Analogs as a Source of Antitumor Drugs. Biomolecules, 9, Article 679. https://doi.org/10.3390/biom9110679 |
[9] |
Tian, T., Chen, H. and Zhao, Y. (2014) Traditional Uses, Phytochemistry, Pharmacology, Toxicology and Quality Control of Alisma orientale (Sam.) Juzep: A Review. Journal of Ethnopharmacology, 158, 373-387. https://doi.org/10.1016/j.jep.2014.10.061 |
[10] |
Zhou, X., Ren, Q., Wang, B., Fang, G., Ling, Y. and Li, X. (2019) Alisol A 24-Acetate Isolated from the Alismatis rhizoma Improves Hepatic Lipid Deposition in Hyperlipidemic Mice by ABCA1/ABCG1 Pathway. Journal of Nanoscience and Nanotechnology, 19, 5496-5502. https://doi.org/10.1166/jnn.2019.16592 |
[11] |
Li, Q. and Qu, H. (2012) Study on the Hypoglycemic Activities and Metabolism of Alcohol Extract of Alismatis rhizoma. Fitoterapia, 83, 1046-1053. https://doi.org/10.1016/j.fitote.2012.05.009 |
[12] |
Liu, S., Sheng, W., Li, Y., Zhang, S., Zhu, J., Gao, H., et al. (2019) Chemical Constituents from Alismatis rhizoma and Their Anti-Inflammatory Activities in vitro and in Vivo. Bioorganic Chemistry, 92, Article 103226. https://doi.org/10.1016/j.bioorg.2019.103226 |
[13] |
Meng, Q., Duan, X., Wang, C., Liu, Z., Sun, P., Huo, X., et al. (2016) Alisol B 23-Acetate Protects against Non-Alcoholic Steatohepatitis in Mice via Farnesoid X Receptor Activation. Acta Pharmacologica Sinica, 38, 69-79. https://doi.org/10.1038/aps.2016.119 |
[14] |
Jiang, Z., Zhang, X., Zhang, F., Liu, N., Zhao, F., Zhou, J., et al. (2006) A New Triterpene and Anti-Hepatitis B Virus Active Compounds from Alisma orientalis. Planta Medica, 72, 951-954. https://doi.org/10.1055/s-2006-947178 |
[15] |
Jin, H., Jin, Q., Ryun Kim, A., Choi, H., Lee, J.H., Kim, Y.S., et al. (2012) A New Triterpenoid from Alisma orientale and Their Antibacterial Effect. Archives of Pharmacal Research, 35, 1919-1926. https://doi.org/10.1007/s12272-012-1108-5 |
[16] |
Zhang, L., Xu, Y., Tang, Z., Xu, X., Chen, X., Li, T., et al. (2016) Effects of Alisol B 23-Acetate on Ovarian Cancer Cells: G1 Phase Cell Cycle Arrest, Apoptosis, Migration and Invasion Inhibition. Phytomedicine, 23, 800-809. https://doi.org/10.1016/j.phymed.2016.04.003 |
[17] |
Xu, W., Li, T., Qiu, J., Wu, S., Huang, M., Lin, L., et al. (2015) Anti-Proliferative Activities of Terpenoids Isolated from Alisma Orientalis and Their Structure-Activity Relationships. Anti-Cancer Agents in Medicinal Chemistry, 15, 228-235. https://doi.org/10.2174/1871520614666140601213514 |
[18] |
Lou, C., Xu, X., Chen, Y. and Zhao, H. (2019) Alisol A Suppresses Proliferation, Migration, and Invasion in Human Breast Cancer MDA-MB-231 Cells. Molecules, 24, 3651. https://doi.org/10.3390/molecules24203651 |
[19] |
Xiang, Y., Guo, Z., Zhu, P., Chen, J. and Huang, Y. (2019) Traditional Chinese Medicine as a Cancer Treatment: Modern Perspectives of Ancient but Advanced Science. Cancer Medicine, 8, 1958-1975. https://doi.org/10.1002/cam4.2108 |
[20] |
Zhang, A., Sheng, Y. and Zou, M. (2017) Antiproliferative Activity of Alisol B in MDA-MB-231 Cells Is Mediated by Apoptosis, Dysregulation of Mitochondrial Functions, Cell Cycle Arrest and Generation of Reactive Oxygen Species. Biomedicine & Pharmacotherapy, 87, 110-117. https://doi.org/10.1016/j.biopha.2016.12.088 |
[21] |
Liu, Y., Xia, X., Meng, L., Wang, Y. and Li, Y. (2019) Alisol B 23-Acetate Inhibits the Viability and Induces Apoptosis of Non-Small Cell Lung Cancer Cells via PI3K/AKT/mTOR Signal Pathway. Molecular Medicine Reports, 20, 1187-1195. https://doi.org/10.3892/mmr.2019.10355 |
[22] |
Xia, J., Luo, Q., Huang, S., Jiang, F., Wang, L., Wang, G., et al. (2019) Alisol B 23-Acetate-Induced Hepg2 Hepatoma Cell Death through mTOR Signaling-Initiated G1 Cell Cycle Arrest and Apoptosis: A Quantitative Proteomic Study. Chinese Journal of Cancer Research, 31, 375-388. https://doi.org/10.21147/j.issn.1000-9604.2019.02.12 |
[23] |
Shapiro, G.I. and Harper, J.W. (1999) Anticancer Drug Targets: Cell Cycle and Checkpoint Control. Journal of Clinical Investigation, 104, 1645-1653. https://doi.org/10.1172/jci9054 |
[24] |
Kovacs, L.A.S., Orlando, D.A. and Haase, S.B. (2008) Transcription Network and Cyclin/CDKs: The Yin and Yang of Cell Cycle Oscillators. Cell Cycle, 7, 2626-2629. https://doi.org/10.4161/cc.7.17.6515 |
[25] |
Ma, Z., Wang, W., Zhang, Y., Yao, M., Ying, L. and Zhu, L. (2019) Inhibitory Effect of Simvastatin in Nasopharyngeal Carcinoma Cells. Experimental and Therapeutic Medicine, 17, 4477-4484. https://doi.org/10.3892/etm.2019.7525 |
[26] |
Pan, B., Zhong, W., Deng, Z., Lai, C., Chu, J., Jiao, G., et al. (2016) Inhibition of Prostate Cancer Growth by Solanine Requires the Suppression of Cell Cycle Proteins and the Activation of ROS/P38 Signaling Pathway. Cancer Medicine, 5, 3214-3222. https://doi.org/10.1002/cam4.916 |
[27] |
Polette, M., Nawrocki-Raby, B., Gilles, C., Clavel, C. and Birembaut, P. (2004) Tumour Invasion and Matrix Metalloproteinases. Critical Reviews in Oncology/Hematology, 49, 179-186. https://doi.org/10.1016/j.critrevonc.2003.10.008 |
[28] |
Chen, K., Zhang, S., Ji, Y., Li, J., An, P., Ren, H., et al. (2013) Baicalein Inhibits the Invasion and Metastatic Capabilities of Hepatocellular Carcinoma Cells via Down-Regulation of the ERK Pathway. PLOS ONE, 8, e72927. https://doi.org/10.1371/journal.pone.0072927 |
[29] |
Du, P., Lai, Y., Yao, D., Chen, J. and Ding, N. (2019) Downregulation of MicroRNA-1246 Inhibits Tumor Growth and Promotes Apoptosis of Cervical Cancer Cells by Targeting Thrombospondin-2. Oncology Letters, 18, 2491-2499. https://doi.org/10.3892/ol.2019.10571 |
[30] |
Xue, X., Zhou, X., Wei, W., Chen, T., Su, Q., Tao, J., et al. (2016) Alisol A 24-Acetate, a Triterpenoid Derived from Alisma orientale, Inhibits Ox-LDL-Induced Phenotypic Transformation and Migration of Rat Vascular Smooth Muscle Cells through Suppressing ERK1/2 Signaling. Journal of Vascular Research, 53, 291-300. https://doi.org/10.1159/000448715 |