Alisol A抑制鼻咽癌细胞的增殖、迁移和侵袭
Alisol A Inhibited the Proliferation, Migration, and Invasion of Nasopharyngeal Carcinoma Cells
DOI: 10.12677/acm.2025.151295, PDF, HTML, XML,   
作者: 刘会清, 张艺璇:河北大学附属医院耳鼻喉科,河北 保定;刘海燕*:河北大学附属医院神经内科,河北 保定
关键词: Alisol A鼻咽癌Alisol A Nasopharyngeal Carcinoma
摘要: 目的:Alisol A是从泽泻中分离得到的具有生物活性的三萜类化合物,具有抗癌潜能。本研究旨在探讨Alisol A对鼻咽癌细胞生长的影响。方法:MTT实验、集落形成实验、流式细胞术、transwell实验、伤口愈合实验分别检测细胞活力、增殖、细胞周期、迁移、侵袭。结果:Alisol A可抑制鼻咽癌细胞的活力、增殖、迁移和侵袭。Alisol A对C666-1和HK1细胞的生长有明显的抑制作用,并呈时间和浓度依赖性。Alisol A处理显著降低了鼻咽癌细胞中细胞周期相关基因的蛋白表达。在Alisol A处理的细胞中,鼻咽癌细胞的迁移和侵袭能力降低。Alisol A处理显著降低了鼻咽癌细胞中MMP2和MMP9的蛋白表达。结论:Alisol A抑制鼻咽癌细胞的增殖、迁移和侵袭。Alisol A可能是治疗鼻咽癌的靶点。
Abstract: Purpose: Alisol A is a bioactive triterpenoid isolated from the Rhizoma alismatis, which has anticancer potential. In this study, we explored the effect of Alisol A on the growth of nasopharyngeal carcinoma (NPC) cells. Methods: MTT assay, colony formation assay, flow cytometry, transwell assay, wound healing assay were used to assess cell viability, proliferation, cell cycle, migration, invasion, respectively, in vitro. Results: Alisol A inhibited the viability, proliferation, migration, and invasion of NPC cells. Alisol A significantly inhibited the growth of C666-1 and HK1 cells in a time- and concentration-dependent manner. Alisol A treatment significantly reduced the protein expression of cell cycle-related genes in NPC cells. The migration and invasion abilities of NPC cells were reduced in Alisol A-treated cells. Alisol A treatment significantly reduced the protein expression of MMP2 and MMP9 in NPC cells. Conclusion: Alisol A inhibited the proliferation, migration, and invasion of NPC cells. Alisol A may be a potential therapeutic target for nasopharyngeal.
文章引用:刘会清, 张艺璇, 刘海燕. Alisol A抑制鼻咽癌细胞的增殖、迁移和侵袭[J]. 临床医学进展, 2025, 15(1): 2250-2258. https://doi.org/10.12677/acm.2025.151295

1. 引言

鼻咽癌(NPC)常见于东南亚国家和中国南部[1]。NPC与多种危险因素相关,包括Epstein-Barr病毒感染[2]、宿主遗传[3]和环境[4]。有创手术、放疗和化疗有助于鼻咽癌的恢复[5]。顺铂Cisplatin是鼻咽癌最常用的化疗药物,但其急性毒性往往难以耐受[6]。因此,新药的开发对于改善鼻咽癌患者的临床结局至关重要。

天然产物具有潜在的有效性和低毒性,是新型抗癌药物的宝贵来源[7] [8]。泽泻[泽泻的干根茎(Sam.)]在中国、韩国和日本广泛使用[9]。泽泻的提取物具有多种药理作用,包括降血脂[10]、降血糖[11]、抗炎[12]、保肝[13]、抗乙型肝炎病毒[14]、抗菌[15]和抗癌[16]。Alisol A是从泽泻中分离出来的一种三萜类物质[17]。以前的研究表明,Alisol A抑制乳腺癌细胞的生长[18]。然而,目前还没有关于Alisol A对鼻咽癌细胞作用的报道。

本研究以HK1和C666-1细胞为实验对象,功能学角度检测Alisol A对细胞增殖、迁移和侵袭的抑制作用。

2. 材料和方法

2.1. 细胞培养

鼻咽癌细胞株(C666-1和HK1)购自上海汇英生物技术有限公司(中国上海)。将细胞置于含有10% FBS、100 U/mL青霉素G和100 μg/mL链霉素(HyClone, Logan, UT, USA)的RPMI-1640中,37℃,5% CO2培养箱中培养。Alisol A购自Taotu生物技术有限公司(中国上海),溶于二甲基亚砜(DMSO)中。

2.2. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT)

MTT法是一种常用的细胞存活率和增殖评估方法。其原理是利用细胞中活性酶将MTT (3-[4,5-二甲基噻唑-2-基]-2,5-二苯基四唑溴化物)还原为不溶的紫色结晶Formazan,进而通过溶解和分光光度计检测吸光度来间接测量细胞的活性。MTT法被广泛应用于评估细胞毒性、药物敏感性和增殖能力。

C666-1和HK1细胞(2 × 104)接种于96孔板中,分别用Alisol A (10、20、40 μM)或顺铂(DDP, 10 μM)处理24 h。在24、48、72 h时,在96孔板的每孔中加入20 µL (5 mg/mL)的MTT溶液,在37℃下处理4 h。将形成的甲氮杂晶体溶解于100 µL DMSO中。用酶标仪(Bio-Rad, Hercules, CA, USA)在570 nm处测定吸光度。数据表示如下:抑制率(%) = [1 − (od570处理 − od570空白)/(od570对照 − od570空白)] × 100%。

2.3. 集落形成试验

集落形成法主要用于评价细胞增殖和克隆形成能力。通过在培养皿中接种细胞后观察其集落形成情况,该方法可以直接反映单个细胞的存活能力和增殖潜力,尤其适合于肿瘤细胞研究,用于评估抗癌药物对细胞增殖的影响。

C666-1和HK1细胞(1 × 103)接种于6孔板。在37℃条件下,用10、20、40 μM的Alisol A或10 μM的顺铂处理细胞8天。培养基每2天更换1次。0.1%结晶紫溶液染色,倒置显微镜下计数菌落。一个细胞集落应包含≥50个细胞团。

2.4. 流式细胞术分析细胞周期

流式细胞术在细胞周期分析和细胞凋亡检测中扮演重要角色。通过检测荧光标记的细胞核染色剂的染色强度,流式细胞术可精确区分G0/G1、S和G2/M期细胞,帮助研究者了解细胞周期分布情况。此外,该技术还可以结合不同的荧光标记物,评估细胞的多项特性如凋亡、表面标志物的表达等。

C666-1和HK1细胞(3 × 105)接种于6孔板,用10、20、40 µM的Alisol A处理24 h。收集固定后,碘化丙啶染色。用流式细胞仪(BD Biosciences, Franklin Lakes, NJ, USA)分析样本。流式细胞术(Flow Cytometry)

2.5. 伤口愈合试验

伤口愈合法用于观察细胞迁移。实验通过在培养皿中人为刮除一条“伤口”,然后记录细胞迁移填充伤口的速度。该方法简单易行,适合大规模筛查细胞迁移能力的影响因素,在癌症转移和组织修复等领域具有重要应用。

C666-1和HK1细胞(3 × 105)接种于6孔板,用10 µM、20 µM和40 µM的Alisol A处理细胞24 h,用无菌的10 µL移液管尖端划痕单层细胞。24 h后使用倒置显微镜(Nikon, Melville, NY, USA)对创面进行拍照。

2.6. 细胞迁移和侵袭分析

Transwell法分为迁移和侵袭两种,主要用于评估细胞的迁移和侵袭能力。迁移实验通过无基质胶的Transwell腔测定细胞跨膜迁移,而侵袭实验则在膜表面添加基质胶来模拟基底膜结构,从而评估细胞穿透能力。该方法常用于癌症转移研究,以分析不同处理对细胞迁移和侵袭能力的影响。

Transwell小室涂有或不涂Matrigel (BD Biosciences)。用100 μL无血清培养基接种于细胞顶部的小室。细胞用结晶紫染色。在5个随机区域内计数细胞数量。

2.7. 统计分析

所有分析使用SPSS 22.0程序(IBM Corp., Armonk, NY, USA)进行。以p < 0.05为差异有统计学意义。

(A) 阿利醇A的二维化学结构;(B) 阿利醇A的三维化学结构;(C) MTT法检测细胞抑制率;(D) 克隆形成实验计数集落数。数据以三个独立实验的平均值 ± SD表示(与对照组相比,*p < 0.05,**p < 0.01,***p < 0.001)。NPC,鼻咽癌。

Figure 1. Alisol A inhibits the growth of NPC cells

1. Alisol A可抑制鼻咽癌细胞的生长

3. 结果

3.1. Alisol A抑制鼻咽癌细胞增殖

Alisol A的二维(图1(A))和三维化学结构(图1(B))。Alisol A对C666-1和HK1细胞的生长有明显的抑制作用,并呈时间和浓度依赖性。Alisol A的抑制率低于DDP (图1(C))。我们发现Alisol A以浓度依赖的方式抑制C666-1和HK1细胞的集落形成。顺铂对克隆形成的抑制作用强于Alisol A (图1(D))。

3.2. Alisol A诱导鼻咽癌细胞周期阻滞于G0/G1期

G0/G1期细胞比例明显增加,S期细胞比例明显减少(图2(A))。此外,我们发现Alisol A处理显著降低了鼻咽癌细胞中细胞周期相关基因的蛋白表达,包括cyclin D1,cyclin E1,CDK2和CDK4 (图2(B))。细胞周期阻滞于G0/G1期。

(A) 流式细胞术检测细胞周期分布;(B) western blot检测细胞周期相关蛋白的表达。数据以三个独立实验的平均值 ± SD表示(与对照组相比,*p < 0.05,**p < 0.01,***p < 0.001)。NPC,鼻咽癌。

Figure 2. Alisol A induces cell cycle arrest in G0/G1 phase of NPC cells

2. Alisol A诱导鼻咽癌细胞周期阻滞于G0/G1期

3.3. Alisol A可抑制鼻咽癌细胞的迁移和侵袭

在Alisol A处理的细胞中,鼻咽癌细胞的迁移和侵袭能力降低(图3(A)~(C))。此外,Alisol A处理显著降低了鼻咽癌细胞中MMP2和MMP9的蛋白表达(图3(D))。

(A) 划痕实验检测细胞迁移;(B) Transwell实验检测细胞迁移。(C) Transwell实验检测细胞侵袭能力。(D) Western blot检测MMP2和MMP9的表达。数据以三个独立实验的平均值 ± SD表示(与对照组相比,*p < 0.05,**p < 0.01,***p < 0.001)。NPC,鼻咽癌。

Figure 3. Alisol A inhibits the migration and invasion of NPC cells

3. Alisol A可抑制鼻咽癌细胞的迁移和侵袭

4. 讨论

中医已经实践了几千年,并被广泛接受作为癌症的一种替代疗法[19]。近年来,泽泻中的生物活性化合物因其抗肿瘤作用而被广泛阐明。Alisol A可抑制乳腺癌的进展。Alisol B抑制乳腺癌细胞的增殖[20]。Alisol B23-乙酸盐诱导人肺癌细胞[21]和肝癌细胞凋亡[22]。我们的研究揭示了Alisol A对鼻咽癌细胞的抗癌活性。

癌症的特征是细胞周期不受控制[23]。细胞周期蛋白D/E和CDK2,CDK4对于细胞从G1进入S期至关重要[24]。细胞周期停滞常见于鼻咽癌[25]。龙葵碱调节前列腺癌中细胞周期蛋白的表达,包括细胞周期蛋白D1、细胞周期蛋白E1、CDK2和CDK4 [26]。在本研究中,Alisol A处理的C666-1和HK1细胞中cyclin D1,cyclin E1,CDK2和CDK4的表达显著下调。类似的报道发现[18],Alisol A通过调节乳腺癌细胞中CDK4/cyclin D1和CDK2/cyclin E1的表达,将细胞周期阻滞在G0/G1期。我们的研究表明,Alisol A在体外通过诱导G0/G1期阻滞来抑制C666-1和HK1细胞的增殖。

MMPs与癌细胞的转移过程有关[27]。细胞外基质(ECM)的降解是细胞转移的一个重要过程[28]。MMP2和MMP9参与细胞外基质的降解[29]。Alisol A 24-乙酸盐降低MMP2和MMP9的表达,并缩短细胞迁移距离[30]。我们的结果表明,Alisol A处理通过抑制MMP2和MMP9的表达来抑制鼻咽癌细胞的迁移和侵袭。

5. 研究的局限性和未来方向

体外实验为主,缺乏体内验证:研究主要基于细胞模型,可能无法完全反映体内复杂的肿瘤微环境。缺乏体内动物模型或临床样本的验证限制了其实际应用的转化价值。

构建鼻咽癌的动物模型,观察Alisol A对肿瘤迁移、侵袭以及转移的实际抑制作用。进一步探索药代动力学和毒理学特性,以评估其在动物和人体中的安全性和有效性。利用多组学技术(如转录组、代谢组或蛋白质组)系统性解析其作用靶点和网络效应。聚焦Alisol A对肿瘤微环境中其他细胞(如免疫细胞、成纤维细胞或内皮细胞)的调控作用。特别分析其对肿瘤相关炎症因子和免疫逃逸的影响。

6. 结论

综上所述,Alisol A抑制鼻咽癌细胞的生长、迁移和侵袭,为治疗鼻咽癌提供了机制。

NOTES

*通讯作者。

参考文献

[1] Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2020) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[2] Fan, C., Tang, Y., Wang, J., Xiong, F., Guo, C., Wang, Y., et al. (2018) The Emerging Role of Epstein-Barr Virus Encoded MicroRNAs in Nasopharyngeal Carcinoma. Journal of Cancer, 9, 2852-2864.
https://doi.org/10.7150/jca.25460
[3] Lin, D., Meng, X., Hazawa, M., Nagata, Y., Varela, A.M., Xu, L., et al. (2014) The Genomic Landscape of Nasopharyngeal Carcinoma. Nature Genetics, 46, 866-871.
https://doi.org/10.1038/ng.3006
[4] Chang, E.T., Liu, Z., Hildesheim, A., Liu, Q., Cai, Y., Zhang, Z., et al. (2017) Active and Passive Smoking and Risk of Nasopharyngeal Carcinoma: A Population-Based Case-Control Study in Southern China. American Journal of Epidemiology, 185, 1272-1280.
https://doi.org/10.1093/aje/kwx018
[5] Nakanishi, Y., Wakisaka, N., Kondo, S., Endo, K., Sugimoto, H., Hatano, M., et al. (2017) Progression of Understanding for the Role of Epstein-Barr Virus and Management of Nasopharyngeal Carcinoma. Cancer and Metastasis Reviews, 36, 435-447.
https://doi.org/10.1007/s10555-017-9693-x
[6] Wang, K., Dong, J., He, S., Wang, X., Jiang, C., Hu, P., et al. (2019) Comparison of Weekly and Triweekly Cisplatin Regimens during Concurrent Chemoradiotherapy for Nasopharyngeal Carcinoma. BMC Cancer, 19, Article No. 482.
https://doi.org/10.1186/s12885-019-5688-z
[7] Yuan, R., Hou, Y., Sun, W., Yu, J., Liu, X., Niu, Y., et al. (2017) Natural Products to Prevent Drug Resistance in Cancer Chemotherapy: A Review. Annals of the New York Academy of Sciences, 1401, 19-27.
https://doi.org/10.1111/nyas.13387
[8] Sharifi-Rad, J., Ozleyen, A., Boyunegmez Tumer, T., Oluwaseun Adetunji, C., El Omari, N., Balahbib, A., et al. (2019) Natural Products and Synthetic Analogs as a Source of Antitumor Drugs. Biomolecules, 9, Article 679.
https://doi.org/10.3390/biom9110679
[9] Tian, T., Chen, H. and Zhao, Y. (2014) Traditional Uses, Phytochemistry, Pharmacology, Toxicology and Quality Control of Alisma orientale (Sam.) Juzep: A Review. Journal of Ethnopharmacology, 158, 373-387.
https://doi.org/10.1016/j.jep.2014.10.061
[10] Zhou, X., Ren, Q., Wang, B., Fang, G., Ling, Y. and Li, X. (2019) Alisol A 24-Acetate Isolated from the Alismatis rhizoma Improves Hepatic Lipid Deposition in Hyperlipidemic Mice by ABCA1/ABCG1 Pathway. Journal of Nanoscience and Nanotechnology, 19, 5496-5502.
https://doi.org/10.1166/jnn.2019.16592
[11] Li, Q. and Qu, H. (2012) Study on the Hypoglycemic Activities and Metabolism of Alcohol Extract of Alismatis rhizoma. Fitoterapia, 83, 1046-1053.
https://doi.org/10.1016/j.fitote.2012.05.009
[12] Liu, S., Sheng, W., Li, Y., Zhang, S., Zhu, J., Gao, H., et al. (2019) Chemical Constituents from Alismatis rhizoma and Their Anti-Inflammatory Activities in vitro and in Vivo. Bioorganic Chemistry, 92, Article 103226.
https://doi.org/10.1016/j.bioorg.2019.103226
[13] Meng, Q., Duan, X., Wang, C., Liu, Z., Sun, P., Huo, X., et al. (2016) Alisol B 23-Acetate Protects against Non-Alcoholic Steatohepatitis in Mice via Farnesoid X Receptor Activation. Acta Pharmacologica Sinica, 38, 69-79.
https://doi.org/10.1038/aps.2016.119
[14] Jiang, Z., Zhang, X., Zhang, F., Liu, N., Zhao, F., Zhou, J., et al. (2006) A New Triterpene and Anti-Hepatitis B Virus Active Compounds from Alisma orientalis. Planta Medica, 72, 951-954.
https://doi.org/10.1055/s-2006-947178
[15] Jin, H., Jin, Q., Ryun Kim, A., Choi, H., Lee, J.H., Kim, Y.S., et al. (2012) A New Triterpenoid from Alisma orientale and Their Antibacterial Effect. Archives of Pharmacal Research, 35, 1919-1926.
https://doi.org/10.1007/s12272-012-1108-5
[16] Zhang, L., Xu, Y., Tang, Z., Xu, X., Chen, X., Li, T., et al. (2016) Effects of Alisol B 23-Acetate on Ovarian Cancer Cells: G1 Phase Cell Cycle Arrest, Apoptosis, Migration and Invasion Inhibition. Phytomedicine, 23, 800-809.
https://doi.org/10.1016/j.phymed.2016.04.003
[17] Xu, W., Li, T., Qiu, J., Wu, S., Huang, M., Lin, L., et al. (2015) Anti-Proliferative Activities of Terpenoids Isolated from Alisma Orientalis and Their Structure-Activity Relationships. Anti-Cancer Agents in Medicinal Chemistry, 15, 228-235.
https://doi.org/10.2174/1871520614666140601213514
[18] Lou, C., Xu, X., Chen, Y. and Zhao, H. (2019) Alisol A Suppresses Proliferation, Migration, and Invasion in Human Breast Cancer MDA-MB-231 Cells. Molecules, 24, 3651.
https://doi.org/10.3390/molecules24203651
[19] Xiang, Y., Guo, Z., Zhu, P., Chen, J. and Huang, Y. (2019) Traditional Chinese Medicine as a Cancer Treatment: Modern Perspectives of Ancient but Advanced Science. Cancer Medicine, 8, 1958-1975.
https://doi.org/10.1002/cam4.2108
[20] Zhang, A., Sheng, Y. and Zou, M. (2017) Antiproliferative Activity of Alisol B in MDA-MB-231 Cells Is Mediated by Apoptosis, Dysregulation of Mitochondrial Functions, Cell Cycle Arrest and Generation of Reactive Oxygen Species. Biomedicine & Pharmacotherapy, 87, 110-117.
https://doi.org/10.1016/j.biopha.2016.12.088
[21] Liu, Y., Xia, X., Meng, L., Wang, Y. and Li, Y. (2019) Alisol B 23-Acetate Inhibits the Viability and Induces Apoptosis of Non-Small Cell Lung Cancer Cells via PI3K/AKT/mTOR Signal Pathway. Molecular Medicine Reports, 20, 1187-1195.
https://doi.org/10.3892/mmr.2019.10355
[22] Xia, J., Luo, Q., Huang, S., Jiang, F., Wang, L., Wang, G., et al. (2019) Alisol B 23-Acetate-Induced Hepg2 Hepatoma Cell Death through mTOR Signaling-Initiated G1 Cell Cycle Arrest and Apoptosis: A Quantitative Proteomic Study. Chinese Journal of Cancer Research, 31, 375-388.
https://doi.org/10.21147/j.issn.1000-9604.2019.02.12
[23] Shapiro, G.I. and Harper, J.W. (1999) Anticancer Drug Targets: Cell Cycle and Checkpoint Control. Journal of Clinical Investigation, 104, 1645-1653.
https://doi.org/10.1172/jci9054
[24] Kovacs, L.A.S., Orlando, D.A. and Haase, S.B. (2008) Transcription Network and Cyclin/CDKs: The Yin and Yang of Cell Cycle Oscillators. Cell Cycle, 7, 2626-2629.
https://doi.org/10.4161/cc.7.17.6515
[25] Ma, Z., Wang, W., Zhang, Y., Yao, M., Ying, L. and Zhu, L. (2019) Inhibitory Effect of Simvastatin in Nasopharyngeal Carcinoma Cells. Experimental and Therapeutic Medicine, 17, 4477-4484.
https://doi.org/10.3892/etm.2019.7525
[26] Pan, B., Zhong, W., Deng, Z., Lai, C., Chu, J., Jiao, G., et al. (2016) Inhibition of Prostate Cancer Growth by Solanine Requires the Suppression of Cell Cycle Proteins and the Activation of ROS/P38 Signaling Pathway. Cancer Medicine, 5, 3214-3222.
https://doi.org/10.1002/cam4.916
[27] Polette, M., Nawrocki-Raby, B., Gilles, C., Clavel, C. and Birembaut, P. (2004) Tumour Invasion and Matrix Metalloproteinases. Critical Reviews in Oncology/Hematology, 49, 179-186.
https://doi.org/10.1016/j.critrevonc.2003.10.008
[28] Chen, K., Zhang, S., Ji, Y., Li, J., An, P., Ren, H., et al. (2013) Baicalein Inhibits the Invasion and Metastatic Capabilities of Hepatocellular Carcinoma Cells via Down-Regulation of the ERK Pathway. PLOS ONE, 8, e72927.
https://doi.org/10.1371/journal.pone.0072927
[29] Du, P., Lai, Y., Yao, D., Chen, J. and Ding, N. (2019) Downregulation of MicroRNA-1246 Inhibits Tumor Growth and Promotes Apoptosis of Cervical Cancer Cells by Targeting Thrombospondin-2. Oncology Letters, 18, 2491-2499.
https://doi.org/10.3892/ol.2019.10571
[30] Xue, X., Zhou, X., Wei, W., Chen, T., Su, Q., Tao, J., et al. (2016) Alisol A 24-Acetate, a Triterpenoid Derived from Alisma orientale, Inhibits Ox-LDL-Induced Phenotypic Transformation and Migration of Rat Vascular Smooth Muscle Cells through Suppressing ERK1/2 Signaling. Journal of Vascular Research, 53, 291-300.
https://doi.org/10.1159/000448715

Baidu
map