Alisol A通过抑制Hippo信号通路抑制鼻咽癌细胞
Alisol A Inhibited Nasopharyngeal Carcinoma Cells by Inhibiting the Hippo Signaling Pathway
DOI: 10.12677/acm.2025.151294, PDF, HTML, XML,   
作者: 刘会清, 耿 猛:河北大学附属医院耳鼻喉科,河北 保定;刘海燕*:河北大学附属医院神经内科,河北 保定
关键词: Alisol A鼻咽癌Hippo信号通路Alisol A Nasopharyngeal Carcinoma Hippo Signaling Pathway
摘要: 背景:鼻咽癌(Nasopharyngeal carcinoma, NPC)是一种源于鼻咽上皮的恶性肿瘤。Alisol A是一种来源于泽泻根茎的三萜类化合物,具有抑制癌细胞生长和诱导癌细胞凋亡的能力。Alisol A对鼻咽癌的影响尚不明确。方法:Western blot检测蛋白表达。采用AutoDock Vina和Discovery Studio软件进行分子对接。结果:Alisol A可抑制鼻咽癌细胞的活力、增殖、迁移和侵袭。分子对接模拟实验证实Alisol A与YAP蛋白结合。此外,在鼻咽癌细胞中,Alisol A促进YAP的磷酸化并抑制YAP的表达。结论:Alisol A通过抑制Hippo信号通路抑制鼻咽癌细胞。Alisol A可能是治疗鼻咽癌的候选药物。
Abstract: Background: Nasopharyngeal carcinoma (NPC) is a malignant tumor originating from the nasopharyngeal epithelium. Alisol A, a triterpenoid compound derived from rhizome of Alismatis alismatis, has been shown to inhibit cancer cell growth and induce apoptosis. The effect of Alisol A on nasopharyngeal carcinoma (NPC) is still unclear. Methods: Western blot was used to detect protein expression. AutoDock Vina and Discovery Studio software were used for molecular docking. Results: Alisol A inhibited the viability, proliferation, migration, and invasion of NPC cells. The molecular docking simulation assay confirmed that Alisol A is bound to YAP protein. In addition, Alisol A promoted the phosphorylation of YAP and suppressed the expression of YAP in NPC cells. Conclusion: Alisol A inhibits the growth of NPC cells by inhibiting Hippo signaling pathway. Alisol A may be a candidate drug for the treatment of NPC.
文章引用:刘会清, 耿猛, 刘海燕. Alisol A通过抑制Hippo信号通路抑制鼻咽癌细胞[J]. 临床医学进展, 2025, 15(1): 2243-2249. https://doi.org/10.12677/acm.2025.151294

1. 引言

鼻咽癌(NPC)是一种恶性程度较高的头颈部肿瘤,其特征为高度侵袭性和易于发生远处转移,特别在东南亚地区的发病率较高[1] [2]。NPC的治疗通常依赖于放射治疗和化疗,尽管近年来治疗手段不断进步,但由于其侵袭性强、转移潜力高及化疗耐药性问题,患者预后不尽理想,鼻咽癌的治疗效果仍然受到癌细胞耐药性和复发率高等因素的限制[3]。因此,探索新型有效的治疗策略成为了亟待解决的课题。随着分子靶向治疗的发展,探索新的分子靶点及靶向药物成为改善NPC治疗效果的关键方向之一。

近年来,Hippo信号通路在多种肿瘤发生与发展中的作用受到广泛关注,其在维持细胞增殖、凋亡和迁移的平衡方面具有重要作用[4]。在胃癌[5]、非小细胞肺癌[6]、乳腺癌[7]等多种癌症中,Hippo通路的失调往往会导致细胞的无限增殖和转移能力增强[8]。Alisol A作为一种从泽泻(Alisma orientale)提取的三萜类化合物,其在抑制多种癌细胞生长方面展现出潜力[9]。近年来的研究发现,Alisol A可以通过多种信号通路发挥抑癌作用[10],包括抑制PI3K/Akt、Wnt/β-catenin等信号通路。然而,Alisol A在鼻咽癌中的作用机制尚未得到充分研究,特别是其是否通过调节Hippo信号通路抑制NPC细胞的增殖和迁移仍然不明。针对这一研究空白,本研究拟探索Alisol A在鼻咽癌细胞中的作用及其潜在的分子机制,尤其关注其对Hippo信号通路的影响。

本文使用AutoDock Vina和Discovery Studio等分子对接软件,预测Alisol A与Hippo信号通路相关蛋白的结合模式。分子对接技术是一种重要的计算机辅助药物设计方法,通过模拟小分子与靶蛋白的结合位点和结合方式,可以有效预测其生物活性,为实验验证提供理论基础[11]。分子对接的结果不仅有助于理解Alisol A的作用位点,还可为进一步的实验设计提供依据。此外,实验部分将采用Western blot印迹法检测Alisol A处理后鼻咽癌细胞中关键蛋白的表达变化。Western blot是一种经典的蛋白表达分析方法[12],通过检测特定蛋白的表达水平和磷酸化状态,可以直接观察Alisol A对Hippo信号通路的影响。在本研究中,通过Western blot分析Alisol A对YAP及其磷酸化水平的调控情况,有望揭示其抑制Hippo通路的作用机制。

2. 材料和方法

2.1. 细胞培养

鼻咽癌细胞株(C666-1和HK1)购自上海汇英生物技术有限公司(中国上海)。将细胞置于含有10% FBS、100 U/mL青霉素G和100 μg/mL链霉素(HyClone, Logan, UT, USA)的RPMI-1640中,37℃,5% CO2培养箱中培养。Alisol A购自Taotu生物技术有限公司(中国上海),溶于二甲基亚砜(DMSO)中。

2.2. 免疫印迹

用裂解缓冲液在冰上裂解总细胞。采用核蛋白提取试剂盒(Beyotime Biotechnology, Jiangsu, China)提取并分离细胞核蛋白和细胞质蛋白。然后,用SDS-PAGE分离20 μg蛋白,转移到PVDF膜(Millipore, Billerica, MA, USA)上。将膜与特异性抗体孵育。一抗如下:β-actin (1:20 0.4967), GAPDH (1:20 0.5174), Histone H3 (1:20 0.9715),YAP (1:20 0.4912),p-YAP (ser127) (1:20 0.4911),MMP2 (1:20 0.4022),MMP9 (1:20 0.3852),cyclin D1 (1:20 0.2922),cyclin E1 (1:20 0.20808),CDK2 (1:20 0.2546),CDK4 (1:20 0.12790) (Cell Signaling Technology, Boston, MA, USA)。将膜与二抗(1:500, A0545) (Sigma, St. Louis, MO, USA)孵育。最后,使用增强化学发光检测试剂盒(Cell Signaling Technology)对蛋白条带进行可视化,并使用GE Amersham Imager 600成像系统进行拍照。

2.2.1. 免疫荧光

将固定的细胞用YAP (1:30 00, 14729) (细胞信号技术)孵育。用DAPI孵育细胞,用共聚焦显微镜(Leica,Wetzlar,德国)观察细胞。

2.2.2. 分子对接

YAP的晶体结构从蛋白质数据库(PDB, http://www.rcsb.org/, ID: 4rex)获得。每个蛋白质的晶体结构是根据最佳分辨率选择的。利用PubChem (https://pubchem.ncbi.nlm.nih.gov/)获得Alisol A (MOL000850)的三维结构。采用AutoDock Vina和Discovery Studio软件进行对接模拟和计算。使用PyMOL计算均方根偏差(RMSD)值。绑定模式预测选择RMSD < 2.0 Å。

2.3. 统计分析

所有分析使用SPSS 22.0程序(IBM Corp., Armonk, NY, USA)进行。以p < 0.05为差异有统计学意义。

3. 结果

Alisol A减弱YAP在鼻咽癌细胞中的核表达

AutoDock Vina软件检测Alisol A与YAP的对接作用(图1(A))。粉色代表氨基酸分解,黄色虚线代表氢键,淡绿色代表分子的优先确认(RMSD = 0.180 Å,Bond energy = −6.7 Kcal/mol)。使用Discovery Studio软件预测Alisol A与YAP的相互作用,二维原理图如图1(B)所示。我们进一步研究了Alisol A对Hippo信号通路的影响。Alisol A处理后YAP蛋白表达降低,p-YAP Ser127水平升高(图1(C))。Alisol A减少了细胞核中的YAP,而增加了细胞质中的p-YAP Ser127 (图1(D))。

4. 讨论

鼻咽癌(Nasopharyngeal Carcinoma, NPC)是一种来源于鼻咽黏膜上皮的恶性肿瘤,主要发生在鼻咽顶壁及咽隐窝区域[13]。鼻咽癌具有高度侵袭性和转移性,对患者的健康和生活质量构成严重威胁。鼻咽癌在早期阶段就容易通过淋巴系统向颈部淋巴结转移,导致颈部淋巴结肿大。转移后的淋巴结增大可能压迫周围组织,引起疼痛或吞咽困难。颈部淋巴结的转移还增加了肿瘤向远处转移的风险,使得癌症的治疗更加复杂[14]。鼻咽癌还易发生远处转移,常见的转移部位包括肺、骨、肝等器官。远处转移后,患者会出现一系列严重的并发症。远处转移意味着癌症已进入晚期,治疗难度和治疗费用显著增加,且预后往往较差[15]

(A) AutoDock Vina软件检测Alisol A与YAP的对接作用;(B) Discovery Studio软件检测Alisol A与YAP的对接作用。(C) Western blot检测Hippo信号通路相关蛋白的表达。(D) Western blot检测细胞质或细胞核中YAP的表达。(E)免疫荧光检测细胞核中YAP的表达。比例尺,10 µm。数据以三个独立实验的平均值 ± SD表示(与对照组相比,*p < 0.05,**p < 0.01,***p < 0.001)。NPC:即鼻咽癌。

Figure 1. Alisol A attenuates YAP nuclear expression in NPC cells

1. Alisol A减弱YAP在鼻咽癌细胞中的核表达

Alisol A是一种从泽泻(Alisma orientale)中提取的天然三萜类化合物,具有多种生物活性,包括抗肿瘤、抗炎、抗氧化等[16]。近年来的研究表明,Alisol A能够影响多个信号通路,如MAPK、PI3K/Akt和Wnt信号通路,在多种癌症类型中表现出抗肿瘤活性。Alisol A的抗肿瘤机制包括诱导癌细胞凋亡、抑制细胞增殖、抑制迁移和侵袭等[17]。Alisol A作为一种天然化合物,不仅安全性相对较高,而且具有较强的靶向性。

Hippo信号通路在细胞增殖、凋亡、组织大小控制和再生过程中起重要作用,主要通过调控YAP/TAZ转录因子活性来影响基因表达[18]。Hippo通路的核心成分包括MST1/2激酶和LATS1/2激酶,通路的激活会导致YAP/TAZ的磷酸化,使其滞留在细胞质中,从而抑制其核内活性[19]。YAP/TAZ的过度活化被认为与癌症的发生和发展密切相关[20]

在本研究中,AutoDock Vina和Discovery Studio软件用于模拟Alisol A与YAP等蛋白的结合情况,以评估其对Hippo信号通路的调控潜力。Hippo信号通路在抗癌治疗中起主要作用[21]。YAP是Hippo信号通路的主要成员和下游效应分子[22]。分子对接用于鉴定化合物的潜在蛋白靶点[23]。基于分子对接分析,我们发现Alisol A是一个有效的YAP抑制剂。YAP在不同类型的癌症中被确定为一种癌基因[24] [25]。有研究表明,YAP诱导的细胞增殖促进是由其核转位决定的[26]。Hippo通路正常状态时,上游激酶(MST1/2和LATS1/2)活跃时,通过磷酸化YAP (尤其是Ser127位点),使YAP与细胞质锚定蛋白14-3-3结合,从而将YAP留在细胞质中并抑制其核转位。细胞质中的YAP无法激活下游的转录程序,导致增殖信号被抑制。Hippo通路的失活(例如MST1/2或LATS1/2的突变或功能缺失)导致YAP去磷酸化。去磷酸化的YAP解离14-3-3锚定蛋白,进入细胞核,与转录因子(主要是TEAD家族蛋白)结合,启动增殖相关基因的表达。细胞外基质的刚性可通过促进F-actin聚合来抑制Hippo通路,从而增强YAP的核转位。汉黄芩苷治疗子宫内膜癌后YAP表达降低[27]。在肝细胞癌中,克罗索酸通过将YAP从细胞核中转运来诱导对癌症进展的抑制[28]。然而,在肝癌细胞的全细胞提取物中,青蒿素处理后YAP蛋白表达没有变化[29]

本研究显示在鼻咽癌细胞中,Alisol A能够通过抑制Hippo信号通路来发挥抗癌效果。具体而言,Alisol A处理后,观察到YAP的表达水平下降,且核内活性降低,提示其促进了YAP的磷酸化和细胞质滞留。此外,Alisol A还可以通过上调MST1/2和LATS1/2的活性来激活Hippo通路,从而增强对YAP的抑制作用。通过这一机制,Alisol A能够降低YAP/TAZ依赖的基因表达水平,从而抑制鼻咽癌细胞的增殖和侵袭。

5. 结论

综上所述,Alisol A通过抑制Hippo信号通路而抑制鼻咽癌细胞,表明其在鼻咽癌治疗中的潜力,为治疗鼻咽癌提供了新的机制。未来的研究应进一步明确其作用机制,评估其与其他治疗方式的联合效果,并优化其给药方式,以期更好地应用于临床鼻咽癌治疗中。

数据和材料的可用性

本研究中使用和分析的数据集可根据合理要求从通信作者处获取。

NOTES

*通讯作者。

参考文献

[1] Albasri, A.M. (2020) Nasopharyngeal Carcinoma Metastasis to the Breast. Saudi Medical Journal, 41, 1130-1134.
https://doi.org/10.15537/smj.2020.10.25420
[2] Guan, S., Wei, J., Huang, L. and Wu, L. (2020) Chemotherapy and Chemo-Resistance in Nasopharyngeal Carcinoma. European Journal of Medicinal Chemistry, 207, Article 112758.
https://doi.org/10.1016/j.ejmech.2020.112758
[3] Huang, H., Yao, Y., Deng, X., Huang, Z., Chen, Y., Wang, Z., et al. (2023) Immunotherapy for Nasopharyngeal Carcinoma: Current Status and Prospects (Review). International Journal of Oncology, 63, Article No. 97.
https://doi.org/10.3892/ijo.2023.5545
[4] Zeybek, N.D., Baysal, E., Bozdemir, O. and Buber, E. (2021) Hippo Signaling: A Stress Response Pathway in Stem Cells. Current Stem Cell Research & Therapy, 16, 824-839.
https://doi.org/10.2174/1574888x16666210712100002
[5] Messina, B., Lo Sardo, F., Scalera, S., Memeo, L., Colarossi, C., Mare, M., et al. (2023) Hippo Pathway Dysregulation in Gastric Cancer: From Helicobacter Pylori Infection to Tumor Promotion and Progression. Cell Death & Disease, 14, Article No. 21.
https://doi.org/10.1038/s41419-023-05568-8
[6] Liang, H., Xu, Y., Zhao, J., Chen, M. and Wang, M. (2024) Hippo Pathway in Non-Small Cell Lung Cancer: Mechanisms, Potential Targets, and Biomarkers. Cancer Gene Therapy, 31, 652-666.
https://doi.org/10.1038/s41417-024-00761-z
[7] Gupta, S.R.R., Nagar, G., Mittal, P., Rana, S., Singh, H., Singh, R., et al. (2023) Breast Cancer Therapeutics and Hippo Signaling Pathway: Novel MicroRNA-Gene-Protein Interaction Networks. OMICS: A Journal of Integrative Biology, 27, 273-280.
https://doi.org/10.1089/omi.2023.0047
[8] Fu, M., Hu, Y., Lan, T., Guan, K., Luo, T. and Luo, M. (2022) The Hippo Signalling Pathway and Its Implications in Human Health and Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 376.
https://doi.org/10.1038/s41392-022-01191-9
[9] Li, H., Zhang, C., Zhou, Y., Deng, Y., Zheng, X. and Xue, X. (2023) Neurovascular Protection of Alisol A on Cerebral Ischemia Mice through Activating the AKT/GSK3β Pathway. Aging, 15, 11639-11653.
https://doi.org/10.18632/aging.205151
[10] Shi, Y., Wang, M., Wang, P., Zhang, T., Yu, J., Shi, L., et al. (2020) Alisol A Is Potentially Therapeutic in Human Breast Cancer Cells. Oncology Reports, 44, 1266-1274.
https://doi.org/10.3892/or.2020.7654
[11] Agu, P.C., Afiukwa, C.A., Orji, O.U., Ezeh, E.M., Ofoke, I.H., Ogbu, C.O., et al. (2023) Molecular Docking as a Tool for the Discovery of Molecular Targets of Nutraceuticals in Diseases Management. Scientific Reports, 13, Article No. 13398.
https://doi.org/10.1038/s41598-023-40160-2
[12] Sule, R., Rivera, G. and Gomes, A.V. (2023) Western Blotting (Immunoblotting): History, Theory, Uses, Protocol and Problems. BioTechniques, 75, 99-114.
https://doi.org/10.2144/btn-2022-0034
[13] Cantù, G. (2023) Nasopharyngeal Carcinoma. a “Different” Head and Neck Tumour. Part B: Treatment, Prognostic Factors, and Outcomes. Acta Otorhinolaryngologica Italica, 43, 155-169.
https://doi.org/10.14639/0392-100x-n2223
[14] Liu, J., Zeng, Z., Wang, D. and Qin, G. (2022) Minimally Invasive Surgery for Early-Stage Nasopharyngeal Carcinoma. Journal of Craniofacial Surgery, 33, e834-e837.
https://doi.org/10.1097/scs.0000000000008765
[15] Juarez-Vignon Whaley, J.J., Afkhami, M., Sampath, S., Amini, A., Bell, D. and Villaflor, V.M. (2023) Early Stage and Locally Advanced Nasopharyngeal Carcinoma Treatment from Present to Future: Where Are We and Where Are We Going? Current Treatment Options in Oncology, 24, 845-866.
https://doi.org/10.1007/s11864-023-01083-2
[16] Shen, R., Cheng, K., Li, G., Pan, Z., Qiaolongbatu, X., Wang, Y., et al. (2024) Alisol A, the Eye-Entering Ingredient of Alisma orientale, Relieves Macular Edema through TNF-α as Revealed by UPLC-Triple-TOF/MS, Network Pharmacology, and Zebrafish Verification. Drug Design, Development and Therapy, 18, 3361-3382.
https://doi.org/10.2147/dddt.s468119
[17] Lou, C., Xu, X., Chen, Y. and Zhao, H. (2019) Alisol A Suppresses Proliferation, Migration, and Invasion in Human Breast Cancer MDA-MB-231 Cells. Molecules, 24, Article 3651.
https://doi.org/10.3390/molecules24203651
[18] Rausch, V. and Hansen, C.G. (2020) The Hippo Pathway, YAP/TAZ, and the Plasma Membrane. Trends in Cell Biology, 30, 32-48.
https://doi.org/10.1016/j.tcb.2019.10.005
[19] Deng, F., Wu, Z., Zou, F., Wang, S. and Wang, X. (2022) The Hippo-YAP/TAZ Signaling Pathway in Intestinal Self-Renewal and Regeneration after Injury. Frontiers in Cell and Developmental Biology, 10, Article 894737.
https://doi.org/10.3389/fcell.2022.894737
[20] Piccolo, S., Panciera, T., Contessotto, P. and Cordenonsi, M. (2022) YAP/TAZ as Master Regulators in Cancer: Modulation, Function and Therapeutic Approaches. Nature Cancer, 4, 9-26.
https://doi.org/10.1038/s43018-022-00473-z
[21] Moon, S., Yeon Park, S. and Woo Park, H. (2018) Regulation of the Hippo Pathway in Cancer Biology. Cellular and Molecular Life Sciences, 75, 2303-2319.
https://doi.org/10.1007/s00018-018-2804-1
[22] Ahmed, A.A., Mohamed, A.D., Gener, M., Li, W. and Taboada, E. (2017) YAP and the Hippo Pathway in Pediatric Cancer. Molecular & Cellular Oncology, 4, e1295127.
https://doi.org/10.1080/23723556.2017.1295127
[23] Geromichalos, G.D. (2007) Importance of Molecular Computer Modeling in Anticancer Drug Development. Journal of BUON, 12, S101-S118.
[24] Plouffe, S.W., Hong, A.W. and Guan, K. (2015) Disease Implications of the Hippo/Yap Pathway. Trends in Molecular Medicine, 21, 212-222.
https://doi.org/10.1016/j.molmed.2015.01.003
[25] Gao, L., Cheng, X. and Cao, H. (2018) LncRNA THOR Attenuates Cisplatin Sensitivity of Nasopharyngeal Carcinoma Cells via Enhancing Cells Stemness. Biochimie, 152, 63-72.
https://doi.org/10.1016/j.biochi.2018.06.015
[26] Harvey, K. and Tapon, N. (2007) The Salvador-Warts-Hippo Pathway—An Emerging Tumour-Suppressor Network. Nature Reviews Cancer, 7, 182-191.
https://doi.org/10.1038/nrc2070
[27] Chen, S., Wu, Z., Ke, Y., Shu, P., Chen, C., Lin, R., et al. (2019) Wogonoside Inhibits Tumor Growth and Metastasis in Endometrial Cancer via ER Stress-Hippo Signaling Axis. Acta Biochimica et Biophysica Sinica, 51, 1096-1105.
https://doi.org/10.1093/abbs/gmz109
[28] Jia, M., Xiong, Y., Li, M. and Mao, Q. (2020) Corosolic Acid Inhibits Cancer Progress through Inactivating YAP in Hepatocellular Carcinoma. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 28, 371-383.
https://doi.org/10.3727/096504020x15853075736554
[29] Li, Y., Lu, J., Chen, Q., Han, S., Shao, H., Chen, P., et al. (2019) Artemisinin Suppresses Hepatocellular Carcinoma Cell Growth, Migration and Invasion by Targeting Cellular Bioenergetics and Hippo-Yap Signaling. Archives of Toxicology, 93, 3367-3383.
https://doi.org/10.1007/s00204-019-02579-3

Baidu
map