[1] |
Lelli, D., Pedone, C., Majeed, M. and Sahebkar, A. (2017) Curcumin and Lung Cancer: The Role of MicroRNAs. Current Pharmaceutical Design, 23, 3440-3444. https://doi.org/10.2174/1381612823666170109144818 |
[2] |
Tzeng, Y.T., Hsiao, J., Tseng, L., Hou, M. and Li, C. (2023) Breast Cancer Organoids Derived from Patients: A Platform for Tailored Drug Screening. Biochemical Pharmacology, 217, Article 115803. https://doi.org/10.1016/j.bcp.2023.115803 |
[3] |
Bhattacharya, A., Alam, K., Roy, N.S., Kaur, K., Kaity, S., Ravichandiran, V., et al. (2023) Exploring the Interaction between Extracellular Matrix Components in a 3D Organoid Disease Model to Replicate the Pathophysiology of Breast Cancer. Journal of Experimental & Clinical Cancer Research, 42, Article No. 343. https://doi.org/10.1186/s13046-023-02926-4 |
[4] |
Imamura, Y., Mukohara, T., Shimono, Y., Funakoshi, Y., Chayahara, N., Toyoda, M., et al. (2015) Comparison of 2D-and 3D-Culture Models as Drug-Testing Platforms in Breast Cancer. Oncology Reports, 33, 1837-1843. https://doi.org/10.3892/or.2015.3767 |
[5] |
Soflaei, S.S., Momtazi-Borojeni, A.A., Majeed, M., Derosa, G., Maffioli, P. and Sahebkar, A. (2018) Curcumin: A Natural Pan-HDAC Inhibitor in Cancer. Current Pharmaceutical Design, 24, 123-129. https://doi.org/10.2174/1381612823666171114165051 |
[6] |
Surh, Y. and Chun, K. (n.d.) Cancer Chemopreventive Effects of Curcumin. In: Aggarwal, B.B., Surh, YJ. and Shishodia, S., Eds., The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease, Springer, 149-172. https://doi.org/10.1007/978-0-387-46401-5_5 |
[7] |
Ranjan, A.P., Mukerjee, A., Gdowski, A., Helson, L., Bouchard, A., Majeed, M., et al. (2016) Curcumin-ER Prolonged Subcutaneous Delivery for the Treatment of Non-Small Cell Lung Cancer. Journal of Biomedical Nanotechnology, 12, 679-688. https://doi.org/10.1166/jbn.2016.2207 |
[8] |
de Hoogt, R., Estrada, M.F., Vidic, S., Davies, E.J., Osswald, A., Barbier, M., et al. (2017) Protocols and Characterization Data for 2D, 3D, and Slice-Based Tumor Models from the PREDECT Project. Scientific Data, 4, Article No. 170170. https://doi.org/10.1038/sdata.2017.170 |
[9] |
Barros, A.S., Costa, E.C., Nunes, A.S., de Melo-Diogo, D. and Correia, I.J. (2018) Comparative Study of the Therapeutic Effect of Doxorubicin and Resveratrol Combination on 2D and 3D (Spheroids) Cell Culture Models. International Journal of Pharmaceutics, 551, 76-83. https://doi.org/10.1016/j.ijpharm.2018.09.016 |
[10] |
Zschenker, O., Streichert, T., Hehlgans, S. and Cordes, N. (2012) Genome-Wide Gene Expression Analysis in Cancer Cells Reveals 3D Growth to Affect ECM and Processes Associated with Cell Adhesion but Not DNA Repair. PLOS ONE, 7, e34279. https://doi.org/10.1371/journal.pone.0034279 |
[11] |
Pradhan, S., Clary, J.M., Seliktar, D. and Lipke, E.A. (2017) A Three-Dimensional Spheroidal Cancer Model Based on Peg-Fibrinogen Hydrogel Microspheres. Biomaterials, 115, 141-154. https://doi.org/10.1016/j.biomaterials.2016.10.052 |
[12] |
Shafiee, A. and Atala, A. (2016) Printing Technologies for Medical Applications. Trends in Molecular Medicine, 22, 254-265. https://doi.org/10.1016/j.molmed.2016.01.003 |
[13] |
Ghaemmaghami, A.M., Hancock, M.J., Harrington, H., Kaji, H. and Khademhosseini, A. (2012) Biomimetic Tissues on a Chip for Drug Discovery. Drug Discovery Today, 17, 173-181. https://doi.org/10.1016/j.drudis.2011.10.029 |
[14] |
Li, Y. and Kilian, K.A. (2015) Bridging the Gap: From 2D Cell Culture to 3D Microengineered Extracellular Matrices. Advanced Healthcare Materials, 4, 2780-2796. https://doi.org/10.1002/adhm.201500427 |
[15] |
Brancato, V., Gioiella, F., Imparato, G., Guarnieri, D., Urciuolo, F. and Netti, P.A. (2018) 3D Breast Cancer Microtissue Reveals the Role of Tumor Microenvironment on the Transport and Efficacy of Free-Doxorubicin in vitro. Acta Biomaterialia, 75, 200-212. https://doi.org/10.1016/j.actbio.2018.05.055 |
[16] |
Huerta-Reyes, M. and Aguilar-Rojas, A. (2021) Three-Dimensional Models to Study Breast Cancer (Review). International Journal of Oncology, 58, 331-343. https://doi.org/10.3892/ijo.2021.5176 |
[17] |
Milone, M.R., Pucci, B., Bruzzese, F., Carbone, C., Piro, G., Costantini, S., et al. (2013) Acquired Resistance to Zoledronic Acid and the Parallel Acquisition of an Aggressive Phenotype Are Mediated by P38-Map Kinase Activation in Prostate Cancer Cells. Cell Death & Disease, 4, e641-e641. https://doi.org/10.1038/cddis.2013.165 |
[18] |
Yang, X., Gao, Y., Liu, Q., Wan, L., Liu, H., Bian, W., et al. (2020) Zoledronic Acid Re-Sensitises Gefitinib-Resistant Lung Cancer Cells by Inhibiting the JAK/STAT3 Signalling Pathway and Reversing Epithelial-Mesenchymal Transition. Oncology Reports, 45, 459-468. https://doi.org/10.3892/or.2020.7881 |
[19] |
Pereira, L.X., Viana, C.T.R., Orellano, L.A.A., Almeida, S.A., Vasconcelos, A.C., de Miranda Goes, A., et al. (2017) Synthetic Matrix of Polyether-Polyurethane as a Biological Platform for Pancreatic Regeneration. Life Sciences, 176, 67-74. https://doi.org/10.1016/j.lfs.2017.03.015 |
[20] |
Shahrousvand, M., Sadeghi, G.M.M., Shahrousvand, E., Ghollasi, M. and Salimi, A. (2017) Superficial Physicochemical Properties of Polyurethane Biomaterials as Osteogenic Regulators in Human Mesenchymal Stem Cells Fates. Colloids and Surfaces B: Biointerfaces, 156, 292-304. https://doi.org/10.1016/j.colsurfb.2017.04.059 |
[21] |
Totti, S., Allenby, M.C., Dos Santos, S.B., Mantalaris, A. and Velliou, E.G. (2018) A 3D Bioinspired Highly Porous Polymeric Scaffolding System for in Vitro Simulation of Pancreatic Ductal Adenocarcinoma. RSC Advances, 8, 20928-20940. https://doi.org/10.1039/c8ra02633e |
[22] |
Asadpour, S., Ai, J., Davoudi, P., Ghorbani, M., Jalali Monfared, M. and Ghanbari, H. (2018) In vitro Physical and Biological Characterization of Biodegradable Elastic Polyurethane Containing Ferulic Acid for Small-Caliber Vascular Grafts. Biomedical Materials, 13, Article 035007. https://doi.org/10.1088/1748-605x/aaa8b6 |
[23] |
Sun, L., Wang, X., He, Y., Chen, B., Shan, B., Yang, J., et al. (2023) Polyurethane Scaffold-Based 3D Lung Cancer Model Recapitulates in Vivo Tumor Biological Behavior for Nanoparticulate Drug Screening. Regenerative Biomaterials, 10, rbad091. https://doi.org/10.1093/rb/rbad091 |
[24] |
Tomeh, M.A., Hadianamrei, R. and Zhao, X. (2019) A Review of Curcumin and Its Derivatives as Anticancer Agents. International Journal of Molecular Sciences, 20, Article 1033. https://doi.org/10.3390/ijms20051033 |
[25] |
Mirzaei, H., Bagheri, H., Ghasemi, F., Khoi, J.M., Pourhanifeh, M.H., Heyden, Y.V., et al. (2021) Anti-Cancer Activity of Curcumin on Multiple Myeloma. Anti-Cancer Agents in Medicinal Chemistry, 21, 575-586. https://doi.org/10.2174/1871520620666200918113625 |
[26] |
Devassy, J.G., Nwachukwu, I.D. and Jones, P.J.H. (2015) Curcumin and Cancer: Barriers to Obtaining a Health Claim. Nutrition Reviews, 73, 155-165. https://doi.org/10.1093/nutrit/nuu064 |
[27] |
Mehta, H.J., Patel, V. and Sadikot, R.T. (2014) Curcumin and Lung Cancer—A Review. Targeted Oncology, 9, 295-310. https://doi.org/10.1007/s11523-014-0321-1 |
[28] |
Ji, J., Huang, X. and Zhu, H. (2012) Curcumin and Its Formulations: Potential Anti-Cancer Agents. Anti-Cancer Agents in Medicinal Chemistry, 12, 210-218. https://doi.org/10.2174/187152012800228733 |
[29] |
Rutz, J., Janicova, A., Woidacki, K., Chun, F.K.-H., Blaheta, R.A. and Relja, B. (2020) Curcumin—A Viable Agent for Better Bladder Cancer Treatment. International Journal of Molecular Sciences, 21, Article 3761. https://doi.org/10.3390/ijms21113761 |