[1] |
James, R.J. (1989) A History of Radar. IEE Review, 35, 343-349. https://doi.org/10.1049/ir:19890152 |
[2] |
鉴福升, 李洁, 李迅, 等. 国外海岸警戒雷达现状与发展趋势[J]. 电讯技术, 2020, 60(2): 245-250. |
[3] |
李纪三, 侯娇, 刘溶, 等. 基于贝叶斯滤波算法的警戒相控阵雷达目标跟踪时间资源优化分配算法[J]. 兵工学报, 2021, 42(9): 1902-1910. |
[4] |
杨秋, 顾杰, 魏平. 利用幅度重排的机载火控雷达工作模式识别方法[J]. 西安电子科技大学学报, 2021, 48(2): 42-48. |
[5] |
余巍, 罗江, 李坤, 等. 基于指挥信息系统的火控雷达组网研究[J]. 火力与指挥控制, 2020, 45(10): 73-77. |
[6] |
黄琼男, 朱卫纲, 李永刚. SAR图像舰船目标检测数据集构建研究综述[J]. 电讯技术, 2021, 61(11): 1451-1458. |
[7] |
Liping, H.U., Chunzhu, D., Jinfan, L.I.U., et al. (2021) Non-Homologous Target Recognition of Ground Vehicles Based on SAR Simulation Image. Systems Engineering & Electronics, 43, 3518-3525. |
[8] |
韩长喜, 董金良, 邓大松, 等. 2021年雷达技术态势与发展趋势[J]. 中国电子科学研究院学报, 2022, 17(4): 329-334. |
[9] |
刘尚争. 未来雷达探测发展重点[J]. 现代雷达, 2022, 44(2): 102-103. |
[10] |
刘宏伟, 严峻坤, 周生华. 网络化雷达协同探测技术[J]. 现代雷达, 2020, 42(12): 7-12. |
[11] |
Williams, G.M. (2017) Optimization of Eyesafe Avalanche Photodiode Lidar for Automobile Safety and Autonomous Navigation Systems. Optical Engineering, 56, Article 031224. https://doi.org/10.1117/1.oe.56.3.031224 |
[12] |
Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., et al. (2008) A Perception-Driven Autonomous Urban Vehicle. Journal of Field Robotics, 25, 727-774. https://doi.org/10.1002/rob.20262 |
[13] |
Hu, C., Huang, Z., Qin, S. and Wang, X. (2012) A New 3D Imaging Lidar Based on the High-Speed 2D Laser Scanner. SPIE Proceedings, Beijing, 30 November 2012, Article 855805. https://doi.org/10.1117/12.999564 |
[14] |
Gleckler, A.D., Gelbart, A. and Bowden, J.M. (2001) Multispectral and Hyperspectral 3D Imaging Lidar Based Upon the Multiple-Slit Streak Tube Imaging Lidar. SPIE Proceedings, Orlando, 19 September 2001, Article 440121. https://doi.org/10.1117/12.440121 |
[15] |
Shangguan, M., Xia, H., Dou, X., Qiu, J. and Yu, C. (2020) Development of Multifunction Micro-Pulse Lidar at 1.5 Micrometer. EPJ Web of Conferences, 237, Article 07010. https://doi.org/10.1051/epjconf/202023707010 |
[16] |
Anthes, J.P., Garcia, P., Pierce, J.T. and Dressendorfer, P.V. (1993) Non-Scanned Ladar Imaging and Applications. SPIE Proceedings, Orlando, 15 October 1993, Article 157111. https://doi.org/10.1117/12.157111 |
[17] |
程川, 宋春华, 王鹏. 车载激光雷达发展研究综述[J]. 装备制造技术, 2022(5): 247-251. |
[18] |
Martin, A., Verheyen, P., De Heyn, P., Absil, P., Feneyrou, P., Bourderionnet, J., et al. (2018) Photonic Integrated Circuit-Based FMCW Coherent Lidar. Journal of Lightwave Technology, 36, 4640-4645. https://doi.org/10.1109/jlt.2018.2840223 |
[19] |
李仙茂, 董天临, 黄高明. MIMO雷达信号处理综述[J]. 现代防御技术, 2017, 45(1): 107-112+146. |
[20] |
Li, J., Stoica, P. and Xie, Y. (2006) On Probing Signal Design for MIMO Radar. 2006 Fortieth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, 29 October-1 November 2006, 31-35. https://doi.org/10.1109/acssc.2006.356577 |
[21] |
李仙茂, 董天临, 黄高明. MIMO雷达及其特性综述[J]. 现代防御技术, 2015, 43(4): 124-131+149. |
[22] |
Brookner, E. (2016) MIMO Radars and Their Conventional Equivalents. 2016 IEEE Radar Methods and Systems Workshop (RMSW), Kiev, 27-28 September 2016, 7-15. https://doi.org/10.1109/rmsw.2016.7778540 |
[23] |
Li, J. and Stoica, P. (2007) MIMO Radar with Colocated Antennas. IEEE Signal Processing Magazine, 24, 106-114. https://doi.org/10.1109/msp.2007.904812 |
[24] |
Brookner, E. (2016) MIMO Radars Demystified—And Their Conventional Equivalents. 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), Waltham, 18-21 October 2016, 1-10. https://doi.org/10.1109/array.2016.7832614 |
[25] |
Chen, C.-Y. and Vaidyanathan, P.P. (2009) MIMO Radar Waveform Optimization with Prior Information of the Extended Target and Clutter. IEEE Transactions on Signal Processing, 57, 3533-3544. https://doi.org/10.1109/tsp.2009.2021632 |
[26] |
Chapman, B. (2018) Synthetic Aperture Radar. In: The Encyclopedia of Archaeological Sciences, Wiley, 1-4. https://doi.org/10.1002/9781119188230.saseas0567 |
[27] |
吴玉婕, 赵超英. UAVSAR在地表形变监测中的应用综述[J]. 测绘科学, 2024, 49(1): 50-66. |
[28] |
Gilman, M. and Tsynkov, S.V. (2023) Transionospheric Autofocus for Synthetic Aperture Radar. SIAM Journal on Imaging Sciences, 16, 2144-2174. https://doi.org/10.1137/22m153570x |
[29] |
Villano, M., Krieger, G., Papathanassiou, K.P. and Moreira, A. (2018) Monitoring Dynamic Processes on the Earth's Surface Using Synthetic Aperture Radar. 2018 IEEE International Conference on Environmental Engineering (EE), Milan, 12-14 March 2018, 1-5. https://doi.org/10.1109/ee1.2018.8385251 |
[30] |
Khoshnevis, S.A. and Ghorshi, S. (2020) A Tutorial on Tomographic Synthetic Aperture Radar Methods. SN Applied Sciences, 2, Article 1504. https://doi.org/10.1007/s42452-020-03298-6 |
[31] |
Chim, M.C. (2018) Prototype L-Band Synthetic Aperture Radar on Low-Altitude/Near-Ground Platforms. Purdue University. |
[32] |
Nascimento, A.D.C., Silva, K.F. and Frery, A.C. (2021) Distance-Based Edge Detection on Synthetic Aperture Radar Imagery. Chilean Journal of Statistics, 12, 71-82. |
[33] |
Nüßler, D., Leuchs, S. and Krebs, C. (2023) Imaging Radar Systems for Non-Destructive Material Testing: An Overview of the State of the Art, the Limitations and the Opportunities of Radar Technology. OCM 2023—6th International Conference on Optical Characterization of Materials, Karlsruhe, 22-23 March 2023, 1-10. https://doi.org/10.58895/ksp/1000155014-15 |
[34] |
Zhang, Y. and Wang, G. (2018) Application of Compressed Sensing in Vehicular LFMCW Millimeter Wave Radar Ranging. 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, 7-11 May 2018, 1-3. https://doi.org/10.1109/icmmt.2018.8563360 |
[35] |
Gao, X., Xing, G., Roy, S. and Liu, H. (2019) Experiments with Mmwave Automotive Radar Test-Bed. 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, 3-6 November 2019, 1-6. https://doi.org/10.1109/ieeeconf44664.2019.9048939 |
[36] |
Pauli, M., Gottel, B., Scherr, S., Bhutani, A., Ayhan, S., Winkler, W., et al. (2017) Miniaturized Millimeter-Wave Radar Sensor for High-Accuracy Applications. IEEE Transactions on Microwave Theory and Techniques, 65, 1707-1715. https://doi.org/10.1109/tmtt.2017.2677910 |
[37] |
McAulay, A.D. (2011) Millimeter Radar Improves Target Identification. SPIE Proceedings, Orlando, 5 May 2011, Article 885320. https://doi.org/10.1117/12.885320 |
[38] |
Jose, E., Adams, M., Mullane, J.S. and Patrikalakis, N.M. (2010) Predicting Millimeter Wave Radar Spectra for Autonomous Navigation. IEEE Sensors Journal, 10, 960-971. https://doi.org/10.1109/jsen.2009.2037013 |
[39] |
Brooker, G.M. (2007) Mutual Interference of Millimeter-Wave Radar Systems. IEEE Transactions on Electromagnetic Compatibility, 49, 170-181. https://doi.org/10.1109/temc.2006.890223 |
[40] |
Mishra, K.V., Bhavani Shankar, M.R., Koivunen, V., Ottersten, B. and Vorobyov, S.A. (2019) Toward Millimeter-Wave Joint Radar Communications: A Signal Processing Perspective. IEEE Signal Processing Magazine, 36, 100-114. https://doi.org/10.1109/msp.2019.2913173 |
[41] |
Haynes, M.S. (2020) Surface and Subsurface Radar Equations for Radar Sounders. Annals of Glaciology, 61, 135-142. https://doi.org/10.1017/aog.2020.16 |
[42] |
郁文贤. 自动目标识别的工程视角述评[J]. 雷达学报, 2022, 11(5): 737-752. |
[43] |
白冬杰. 车载毫米波雷达多目标跟踪算法研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2019. |
[44] |
Thakur, R. (2016) Scanning LIDAR in Advanced Driver Assistance Systems and Beyond: Building a Road Map for Next-Generation LIDAR Technology. IEEE Consumer Electronics Magazine, 5, 48-54. https://doi.org/10.1109/mce.2016.2556878 |
[45] |
Bartoletti, S., Conti, A., Giorgetti, A., et al. (2014) Sensor Radar Networks for Indoor Tracking. IEEE Wireless Communications Letters, 3, 157-160. |
[46] |
Bell, K.L., Baker, C.J., Smith, G.E., Johnson, J.T. and Rangaswamy, M. (2015) Cognitive Radar Framework for Target Detection and Tracking. IEEE Journal of Selected Topics in Signal Processing, 9, 1427-1439. https://doi.org/10.1109/jstsp.2015.2465304 |
[47] |
Lu, W., Lin, Q., Song, N., Fang, Q., Hua, X. and Deng, B. (2021) Target Detection in Intelligent Reflecting Surface Aided Distributed MIMO Radar Systems. IEEE Sensors Letters, 5, 1-4. https://doi.org/10.1109/lsens.2021.3061534 |
[48] |
Stolz, M., Li, M., Feng, Z., Kunert, M. and Menzel, W. (2018) High Resolution Automotive Radar Data Clustering with Novel Cluster Method. 2018 IEEE Radar Conference, Oklahoma City, 23-27 April 2018, 164-168. https://doi.org/10.1109/radar.2018.8378550 |
[49] |
Rajab, K.Z., Wu, B., Alizadeh, P. and Alomainy, A. (2021) Multi-Target Tracking and Activity Classification with Millimeter-Wave Radar. Applied Physics Letters, 119, Article 034101. https://doi.org/10.1063/5.0055641 |
[50] |
Chen, Y., Wei, P., Zhang, H., You, M. and Li, W. (2023) Direct Target Joint Detection and Tracking Based on Passive Multi-Static Radar. Remote Sensing, 15, Article 624. https://doi.org/10.3390/rs15030624 |
[51] |
Motella, B., Savasta, S., Margaria, D. and Dovis, F. (2009) Assessing GPS Robustness in Presence of Communication Signals. 2009 IEEE International Conference on Communications Workshops, Dresden, 14-18 June 2009, 1-5. https://doi.org/10.1109/iccw.2009.5207985 |
[52] |
Long, T., Liang, Z. and Liu, Q. (2019) Advanced Technology of High-Resolution Radar: Target Detection, Tracking, Imaging, and Recognition. Science China Information Sciences, 62, 1-26. https://doi.org/10.1007/s11432-018-9811-0 |
[53] |
Johnston, J., Venturino, L., Grossi, E., Lops, M. and Wang, X. (2022) Radar-Enabled Backscatter Communication. 2022 56th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, 31 October-2 November 2022, 1-5. https://doi.org/10.1109/ieeeconf56349.2022.10051960 |
[54] |
Jacome, R., Mishra, K.V., Vargas, E., Sadler, B.M. and Arguello, H. (2022) Multi-Dimensional Dual-Blind Deconvolution Approach toward Joint Radar-Communications. 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC), Oulu, 4-6 July 2022, 1-5. https://doi.org/10.1109/spawc51304.2022.9834016 |
[55] |
Sturm, C. and Wiesbeck, W. (2011) Waveform Design and Signal Processing Aspects for Fusion of Wireless Communications and Radar Sensing. Proceedings of the IEEE, 99, 1236-1259. https://doi.org/10.1109/jproc.2011.2131110 |
[56] |
秦澍祺, 王国胜, 梁冰. 基于分布式的虚拟领航一致性四旋翼无人机编队控制[J]. 人工智能与机器人研究, 2018, 7(4): 184-192. |
[57] |
Elkholy, M., Elsheikh, M. and El-Sheimy, N. (2023) Radar/Ins Tightly-Coupled Integration for Land Vehicle Navigation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, 807-813. https://doi.org/10.5194/isprs-archives-xlviii-1-w2-2023-807-2023 |
[58] |
Feng, Z., Fang, Z., Wei, Z., Chen, X., Quan, Z. and Ji, D. (2020) Joint Radar and Communication: A Survey. China Communications, 17, 1-27. https://doi.org/10.23919/jcc.2020.01.001 |
[59] |
Zhang, J.A., Liu, F., Masouros, C., Heath, R.W., Feng, Z., Zheng, L., et al. (2021) An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing. IEEE Journal of Selected Topics in Signal Processing, 15, 1295-1315. https://doi.org/10.1109/jstsp.2021.3113120 |
[60] |
Wu, C., Liu, L., Wei, M., Xi, B. and Yu, M. (2018) Statistics-Based Optimization of the Polarimetric Radar Hydrometeor Classification Algorithm and Its Application for a Squall Line in South China. Advances in Atmospheric Sciences, 35, 296-316. https://doi.org/10.1007/s00376-017-6241-0 |
[61] |
Kim, Y. and Hong, S. (2022) Very Short-Term Rainfall Prediction Using Ground Radar Observations and Conditional Generative Adversarial Networks. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-8. https://doi.org/10.1109/tgrs.2021.3108812 |
[62] |
Brook, J.P., Protat, A., Soderholm, J.S., Warren, R.A. and McGowan, H. (2022) A Variational Interpolation Method for Gridding Weather Radar Data. Journal of Atmospheric and Oceanic Technology, 39, 1633-1654. https://doi.org/10.1175/jtech-d-22-0015.1 |
[63] |
Küçük, Ç., Giannakos, A., Schneider, S. and Jann, A. (2024) Transformer-Based Nowcasting of Radar Composites from Satellite Images for Severe Weather. Artificial Intelligence for the Earth Systems, 3, 1-7. https://doi.org/10.1175/aies-d-23-0041.1 |
[64] |
Montopoli, M., Ferrauto, G., Scaranari, D., Barbieri, S., Biscarini, M., Capozzi, V., et al. (2023) Overview on Weather Radar Applications. 2023 17th European Conference on Antennas and Propagation (EuCAP), Florence, 26-31 March 2023, 1-5. https://doi.org/10.23919/eucap57121.2023.10133034 |
[65] |
Sokol, Z., Szturc, J., Orellana-Alvear, J., Popová, J., Jurczyk, A. and Célleri, R. (2021) The Role of Weather Radar in Rainfall Estimation and Its Application in Meteorological and Hydrological Modelling—A Review. Remote Sensing, 13, Article 351. https://doi.org/10.3390/rs13030351 |
[66] |
Fan, W., Xu, Z., Liu, J., Wang, Y. and Mo, W. (2022) Application Analysis of New Technology of Weather Radar in Disaster Prevention and Mitigation Service of Power Grid. Journal of Physics: Conference Series, 2248, Article 012020. https://doi.org/10.1088/1742-6596/2248/1/012020 |
[67] |
Elshaboury, N., Mohammed Abdelkader, E., Al-Sakkaf, A. and Zayed, T. (2023) A Critical Review and Bibliometric Analysis on Applications of Ground Penetrating Radar in Science Based on Web of Science Database. Eng, 4, 984-1008. https://doi.org/10.3390/eng4010059 |
[68] |
Benson, A. (1995) Applications of Ground Penetrating Radar in Assessing Some Geological Hazards: Examples of Groundwater Contamination, Faults, Cavities. Journal of Applied Geophysics, 33, 177-193. https://doi.org/10.1016/0926-9851(94)00029-n |
[69] |
Zhao, Z.H. (2002) The Application of Ground Penetrating Radar to the Investigation of Geologic Hazard. The Chinese Journal of Geological Hazard and Control, 13, 100-102. |
[70] |
Nan, Y.L., Han, X.L. and Ye, F.C. (2009) Application of Ground Penetrating Radar in Advanced Geological Forecasting for Expressway Tunnel. Journal of Water Resources and Architectural Engineering, 7, Article 132. |
[71] |
Cui, F., Chen, Y., Zhang, Y. and Du, Y. (2021) Research on Application of Ground Penetrating Radar Array Method Based on Plane Beam Signal in Different Geological Models. Acta Geophysica, 69, 2241-2260. https://doi.org/10.1007/s11600-021-00684-5 |
[72] |
Guo, L., Cai, L. and Chen, D. (2022) Research on Ground-Penetrating Radar Denoising Algorithm Based on CEEMD and Permutation Entropy. 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Beijing, 3-5 October 2022, 263-268. https://doi.org/10.1109/iaeac54830.2022.9929797 |
[73] |
Tan, S., Qian, P. and Wang, R.X. (2023) Application Research of 3D Geological Radar Detection Technology in Urban Road Disease Survey. Journal of Physics: Conference Series, 2651, Article 012048. https://doi.org/10.1088/1742-6596/2651/1/012048 |
[74] |
Yang, F., Jiang, Z., Ren, J. and Lv, J. (2022) Monitoring, Prediction, and Evaluation of Mountain Geological Hazards Based on InSAR Technology. Scientific Programming, 2022, 1-12. https://doi.org/10.1155/2022/2227049 |
[75] |
Zheng, X., Fang, S., Chen, H., Peng, L. and Ye, Z. (2023) Internal Detection of Ground-Penetrating Radar Images Using Yolox-S with Modified Backbone. Electronics, 12, Article 3520. https://doi.org/10.3390/electronics12163520 |
[76] |
Staderini, E.M. (2002) UWB Radars in Medicine. IEEE Aerospace and Electronic Systems Magazine, 17, 13-18. https://doi.org/10.1109/62.978359 |
[77] |
Neely, R., Naishadham, K., Sharma, A. and Bing, K. (2012) Electromagnetic Human Body Modeling with Physiological Motion for Radar Applications. 2012 IEEE Radar Conference, Atlanta, 7-11 May 2012, 818-823. https://doi.org/10.1109/radar.2012.6212250 |
[78] |
Marimuthu, J., Bialkowski, K.S. and Abbosh, A.M. (2016) Software-Defined Radar for Medical Imaging. IEEE Transactions on Microwave Theory and Techniques, 64, 643-652. https://doi.org/10.1109/tmtt.2015.2511013 |
[79] |
Maier, M., Stapelfeldt, F. and Issakov, V. (2022) Design Approach of a K-Band FMCW Radar for Breast Cancer Detection Using a Full System-Level EM Simulation. 2022 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), Suzhou, 16-18 May 2022, 251-253. https://doi.org/10.1109/imbioc52515.2022.9790275 |
[80] |
Islam, S.M.M., Boric-Lubecke, O., Lubecke, V.M., Moadi, A. and Fathy, A.E. (2022) Contactless Radar-Based Sensors: Recent Advances in Vital-Signs Monitoring of Multiple Subjects. IEEE Microwave Magazine, 23, 47-60. https://doi.org/10.1109/mmm.2022.3140849 |
[81] |
Islam, S.M.M. (2022) Radar-Based Remote Physiological Sensing: Progress, Challenges, and Opportunities. Frontiers in Physiology, 13, Article 955208. https://doi.org/10.3389/fphys.2022.955208 |
[82] |
Giordano, M., Islamoglu, G., Potocnik, V., Vogt, C. and Magno, M. (2022) Survey, Analysis and Comparison of Radar Technologies for Embedded Vital Sign Monitoring. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, 11-15 July 2022, 854-860. https://doi.org/10.1109/embc48229.2022.9871847 |
[83] |
Shome, S., Chakraborty, M., Dara, B., Bera, R. and Maji, B. (2021) Modern Radar Topology for Bio-Medical Applications. In: Lecture Notes in Electrical Engineering, Springer, 89-97. https://doi.org/10.1007/978-981-33-6393-9_11 |