Green-Naghdi方程的精确解
The Exact Solution of the Green-Naghdi Equation
DOI: 10.12677/aam.2025.142072, PDF, HTML, XML,   
作者: 谭 璞:南华大学数理学院,湖南 衡阳;潘超红*:湖南第一师范学院数学与统计学院,湖南 长沙
关键词: Green-Naghdi方程分支方法精确解Green-Naghdi Equation Bifurcation Method Exact Solution
摘要: 文章利用动力系统定性理论和分支方法研究Green-Naghdi方程的精确解,并计算出它在三种参数条件情况下的精确显式解。
Abstract: This article uses qualitative theory and branch methods of dynamical systems to study the exact solution of the Green-Naghdi equation and calculates its exact explicit solution under three parameter conditions.
文章引用:谭璞, 潘超红. Green-Naghdi方程的精确解[J]. 应用数学进展, 2025, 14(2): 302-308. https://doi.org/10.12677/aam.2025.142072

1. 引言

Green-Naghdi方程作为描述非线性的弱色散的著名浅水波方程之一,描述了孤子在色散介质中的传播。首先由Serre [1]在1953年首次提出,后续在Su和Gardner [2]、Green和Naghdi [3]、Dias和Milewski [4]等人的工作中不断推导完善,此后Green-Naghdi理论不断发展,如今已广泛应用于海洋工程、海岸工程和沿海海洋学中[5]-[8]。Green-Naghdi方程为如下所示的无量纲方程组:

{ u t + u u x + v x = 1 3 v [ v 3 ( u u x x + u x t u x 2 ) ] x , v t + ( v u ) x = 0. (1)

其中 x R 表示空间变量, t R 表示时间变量, u ( x , t ) 是一个自由的上表面, v ( x , t ) 是一个流体的垂直速度。文献[9]-[11]研究了式的适定性,由文献[12] [13]可知式具有哈密顿函数;在文献[14]-[17]得到了式的部分解;Denys Dutykh和Delia Ionescu Kruse [18]利用哈密顿函数,得到了系统的一些孤解和邻解,并在没有得出显示解的情况下证明了一些新的行波解的存在性;Deng [19]等通过变换 w = u v ,得出行波解的一些精确表达形式,但由于变换的非线性,忽略了自变量的一些性质,但在后续的工作中[20],利用平面自洽系统的定性分析方法解决了这个疏忽。

本文应用动力系统的分支方法[21]-[24]来计算Green-Naghdi方程的精确解。本文的结构为:在第2节中,对Green-Naghdi方程组进行变换,得出对应的平面动力系统,并对对应的动力系统进行简单分析。在第3节中计算出在三种系数条件下的精确解。

2. 定性分析

为了找到Green-Naghdi型方程的行波解,我们进行如下行波变换:

u ( x , t ) = U ( z ) , v ( x , t ) = V ( z ) , z = x c t ,

其中 c R 是行波解的传播速度,则系统可以写成

{ c U z + U U z + V z = 1 3 V [ V 3 ( U U z z c U z z U z 2 ) ] z , c V z + ( U V ) z = 0. (2)

在系统(2)中对第二个式子进行积分,我们有

V = α U c , (3)

其中 α 是积分常数,如果 α = 0 ,即 V = 0 ,因此本文讨论 α 0 的情况。再将式带入系统中第一个式子,可得

3 α U c [ c U z + U U z + ( α U c ) z ] = [ ( α U c ) 3 ( U U z z c U z z U z 2 ) ] z . (4)

对式(4)进行积分,并令积分常数为0,可得如下常微分方程:

3 α U ( U c ) 3 + 3 2 α 2 ( U c ) = α 3 [ ( U c ) U ( U ) 2 ] . (5)

d U d z = y ,则可以得到与式等价的平面动力系统:

{ d U d z = y , d y d z = α 3 y 2 + 3 α U ( U c ) 3 + 3 2 α 2 ( U c ) α 3 ( U c ) . (6)

其首次积分结果为

H ( U , y ) = y 2 ( U c ) 2 1 α 3 ( 3 α U 2 3 α 2 1 U c ) = h (7)

h为积分常数。

d z = α 3 ( U c ) d z ¯ ,可以得出系统对应的正则系统为

{ d U d z ¯ = α 3 y ( U c ) , d y d z ¯ = α 3 y 2 + 3 α U ( U c ) 3 + 3 2 α 2 ( U c ) . (8)

可知系统(8)与(6)具有相同的首次积分,但是在奇直线 U = c 的邻域中,系统(8)的动力学行为与系统(6)不同。

接下来,我们研究系统平衡点的分布,首先令

F ( U ) = ( U c ) [ 3 α U ( U c ) + 3 2 α 2 ] , (9)

f ( U ) = 3 α U ( U c ) + 3 2 α 2 . (10)

易知,除根 U = c 外, f ( U ) = 3 α ( U c ) ( 3 U c ) 剩余的根与 f ( c ) = 3 2 α 2 > 0 一致。

通过计算,可以得到

f ( U ) = 3 α ( U c ) ( 3 U c ) (11)

f ( c ) = 3 2 α 2 > 0 (12)

易知, f ( U ) 存在两个零点,分别令其为 c , U 1 * = c 3 。根据上述结果,我们可以得出当 f ( U 1 * ) < 0 时,系统有三个平衡点 ( U i , 0 ) , i = 1 , 2 , 3 ,并且当 U 1 * > c , α > 0 时,有 U 1 < c < U 2 < U 1 * < U 3 (当 U 1 * < c , α < 0 时,有 U 1 < U 1 * < U 2 < c < U 3 );当 f ( U 1 * ) = 0 , α > 0 ( α < 0 ) 时,存在两个平衡点 ( U 1 , 0 ) , ( U 2 , 0 ) ,并且平衡点 ( U 1 , 0 ) , ( U 2 , 0 ) 一致形成一个双平衡点,实际上就是一个尖点。当 f ( U 1 * ) > 0 时,无论 α > 0 还是 α < 0 总存在一个平衡点。

为了判断平衡点的类型,令 M ( U i , 0 ) 是系统在平衡点 ( U i , 0 ) , i = 1 , 2 , 3 处的雅可比矩阵,则有

M ( U i , 0 ) = ( 0 α 3 ( U i c ) F ( U i ) 0 ) . (13)

J ( U i , 0 ) = | M ( U i , 0 ) | ,则

J ( U i , 0 ) = α 3 ( U i c ) F ( U i ) , i = 1 , 2 , 3. (14)

根据平面动力系统平衡点相关知识可知,对于任意的 α > 0 ,当 J ( U i , 0 ) > 0 时,对应的平衡点为中心;当 J ( U i , 0 ) < 0 时,对应的平衡点则为鞍点。故可知 ( U 1 , 0 ) ( U 3 , 0 ) 是鞍点; ( c , 0 ) 是退化鞍点; ( U 2 , 0 ) 是中心。

为了后续便利,我们记 h 1 = H ( U 1 , 0 ) , h 2 = H ( U 2 , 0 ) , h 3 = H ( U 3 , 0 )

3. 系统Green-Naghdi型方程的行波解及其精确显示解

由式(7)可以得到

y 2 = 3 α 3 ( U c ) [ α U 2 ( U c ) + 1 3 α 3 h ( U c ) α 2 ] : = κ ( U ) , (15)

因为,故对于一个给定的h,沿着对应轨线两端积分可得

U 0 U 1 κ ( U ) d U = ± z , (16)

其中积分下限为常数。根据式可计算出各种行波解的精确表达式,本文主要研究了当 α > 0 时的以下三种情形。

情形1 H ( U , y ) = h 1 时,无论 f ( U 1 * ) 为何值,系统相图总存在一个开放轨道和一个与奇直线 U = c 接触的“环形”轨道,且在此情况下,我们有一个爆破波解和一个孤波解。令轨线与U轴的交点为 c , U 1 , U 11 ,且有 U 1 < c < U 11 ,则式(15)可写成

κ ( U ) = 3 α 2 ( U c ) ( U U 11 ) ( U U 1 ) 3 .

与开轨道相对应,式(16)可写成

U 11 U | α | ( U U 1 ) 3 ( U c ) ( U U 11 ) = ± z ,

两边积分,可得爆破波解

U = U 1 2 ( U 1 c ) ( U 1 U 11 ) ( U 11 c ) arccosh ( 3 ( U 1 c ) ( U 1 U 11 ) z / | α | ) + ( 2 U 1 U 11 c ) . (17)

与“环形”轨道相对应,式(16)可写成

U c | α | ( U U 1 ) 3 ( c U ) ( U 11 U ) d U = ± z ,

两边积分,可得到孤波解

U = U 1 + 2 ( c U 1 ) ( U 11 U 1 ) ( U 11 c ) arccosh ( 3 ( c U 1 ) ( U 1 U 11 ) z / | α | ) + ( U 11 + c 2 U 1 ) , (18)

其中 z ( 0 , | α | 3 ( U 1 c ) ( U 1 U 11 ) arccosh ( U 11 + c 2 U 1 U 11 c ) ) .

情形2 H ( U , y ) = h 2 时,无论 f ( U 1 * ) 为何值,系统的相图存在两个开轨道和一个点 ( U 2 , 0 ) 。令轨线与U轴的交点为 c , U 2 , U 21 ,系统(6)有两个周期爆破波解,则式(15)可写成

κ ( U ) = 3 α 2 ( U 21 U ) ( c U ) ( U 2 U ) 2 ,

其中 c < U 2 < U 21

与左开轨道相对应,式(16)可写成

U c | α | ( U 2 U ) 3 ( c U ) ( U 21 U ) d U = ± z ,

两边积分可得

arcsin ( 2 ( c U 2 ) ( U 21 U 2 ) ( c + U 21 2 U 2 ) ( U U 2 ) ( U U 2 ) ( U 21 c ) ) π 2 = ± 3 ( U 2 c ) ( U 21 U 2 ) z | α | . (19)

与右开轨道相对应,式(16)可写成

U 21 U | α | ( U U 2 ) 3 ( U c ) ( U U 21 ) d U = ± z ,

两边积分可得

arcsin ( 2 ( c U 2 ) ( U 21 U 2 ) ( c + U 21 2 U 2 ) ( U U 2 ) ( U U 2 ) ( U 21 c ) ) + π 2 = ± 3 ( U 2 c ) ( U 21 U 2 ) z | α | . (20)

情形3 H ( U , y ) = h 3 f ( U 1 * ) < 0 时,存在一个开轨道和一个到包围中心 ( U 2 , 0 ) 的平衡点 ( U 3 , 0 ) 的同斜轨道。令轨线与U轴的交点为 c , U 3 , U 31 (其中 c < U 31 < U 3 ),系统(6)有一个周期爆破波解和一个孤波解,则式(15)可写成

κ ( U ) = 3 α 2 ( U 31 U ) ( c U ) ( U 3 U ) 2 .

与开轨道相对应,式(16)可写成

U c | α | ( U 3 U ) 3 ( U 31 U ) ( c U ) d U = ± z ,

两边积分可得周期爆破解

U = U 3 + 2 ( U 31 U 3 ) ( c U 3 ) ( U 31 c ) cosh ( 3 ( c U 3 ) ( U 31 U 3 ) z / | α | ) + ( c + U 31 2 U 3 ) , (21)

其中 z ( 0 , | α | 3 ( c U 3 ) ( U 31 U 3 ) arccosh ( 2 U 3 U 31 c U 31 c ) ) .

与同斜轨道相对应,式(16)可写成

U 31 c | α | ( U 3 U ) 3 ( U c ) ( U U 31 ) d U = ± z ,

两边积分,得到孤波解

U = U 3 2 ( c U 3 ) ( U 31 U 3 ) ( U 31 U ) cosh ( 3 ( c U 3 ) ( U 31 U 3 ) z / | α | ) ( c + U 31 2 U 3 ) . (22)

1:本文仅考虑了 α > 0 时的部分情况,当 α < 0 时的情况,可以同样地利用相图方法得出对应情况的精确解。

2:系统存在爆破波解,意味着系统的能量累积到足够的程度,导致系统无法继续以稳定的方式演化,表现为解的无穷大增长;系统存在孤波解,意味着能量可以在没有明显能量损失的情况下沿着波的传播方向运输且具有固定的传播速度和形态;周期爆破解则表现为波动在时间或者空间中反复发生爆破和恢复的现象。

4. 结束语

本文利用动力系统定性理论和分支方法研究Green-Naghdi方程,获得在一定参数范围内分支的精确解。

NOTES

*通讯作者。

参考文献

[1] Serre, F. (1953) Contribution à l’étude des écoulements permanents et variables dans les canaux. La Houille Blanche, 39, 830-872.
https://doi.org/10.1051/lhb/1953058
[2] Su, C.H. and Gardner, C.S. (1969) Korteweg-de Vries Equation and Generalizations. III. Derivation of the Korteweg-De Vries Equation and Burgers Equation. Journal of Mathematical Physics, 10, 536-539.
https://doi.org/10.1063/1.1664873
[3] Green, A.E. and Naghdi, P.M. (1976) A Derivation of Equations for Wave Propagation in Water of Variable Depth. Journal of Fluid Mechanics, 78, 237-246.
https://doi.org/10.1017/s0022112076002425
[4] Dias, F. and Milewski, P. (2010) On the Fully-Nonlinear Shallow-Water Generalized Serre Equations. Physics Letters A, 374, 1049-1053.
https://doi.org/10.1016/j.physleta.2009.12.043
[5] Wu, J. and Chen, B. (2003) Unsteady Ship Waves in Shallow Water of Varying Depth Based on Green-Naghdi Equation. Ocean Engineering, 30, 1899-1913.
https://doi.org/10.1016/s0029-8018(03)00039-8
[6] Duan, S., Zhao, B. and Webster, W.C. (2023) Green-Naghdi Theory, Part B: Green-Naghdi Equations for Deep Water Waves. Journal of Marine Science and Application, 22, 44-51.
https://doi.org/10.1007/s11804-023-00316-y
[7] Ostapenko, V.V. (2019) Application of Green-Naghdi Equations for Modeling Wave Flows with Undular Bores. Doklady Physics, 64, 66-69.
https://doi.org/10.1134/s1028335819020046
[8] Roy Biswas, T., Dey, S. and Sen, D. (2021) Modeling Positive Surge Propagation in Open Channels Using the Serre-Green-Naghdi Equations. Applied Mathematical Modelling, 97, 803-820.
https://doi.org/10.1016/j.apm.2021.04.028
[9] Chen, R.M., Gui, G. and Liu, Y. (2018) On a Shallow-Water Approximation to the Green-Naghdi Equations with the Coriolis Effect. Advances in Mathematics, 340, 106-137.
https://doi.org/10.1016/j.aim.2018.10.003
[10] Khorbatly, B. (2024) Improved Local Existence Result of the Green-Naghdi Equations with the Coriolis Effect. Nonlinear Analysis, 239, Article ID: 113438.
https://doi.org/10.1016/j.na.2023.113438
[11] Shugan, I., Kuznetsov, S., Saprykina, Y. and Chen, Y. (2021) Physics of Traveling Waves in Shallow Water Environment. Water, 13, Article No. 2990.
https://doi.org/10.3390/w13212990
[12] Holm, D.D. (1988) Hamiltonian Structure for Two-Dimensional Hydrodynamics with Nonlinear Dispersion. The Physics of Fluids, 31, 2371-2373.
https://doi.org/10.1063/1.866587
[13] Ionescu-Kruse, D. (2012) Variational Derivation of the Green-Naghdi Shallow-Water Equations. Journal of Nonlinear Mathematical Physics, 19, 1-12.
https://doi.org/10.1142/s1402925112400013
[14] Manna, M.A. and Latifi, A. (2022) Serre-Green-Naghdi Dynamics under the Action of the Jeffreys’ Wind-Wave Interaction. Fluids, 7, Article No. 266.
https://doi.org/10.3390/fluids7080266
[15] Han, M., Chen, G. and Li, J. (2023) Bifurcations and Exact Traveling Wave Solutions of the Generalized Serre-Green-Naghdi System with Weak Coriolis Effect and Surface Tension. International Journal of Bifurcation and Chaos, 33, Article ID: 2350101.
https://doi.org/10.1142/s0218127423501018
[16] Li, J., Chen, G. and Song, J. (2020) Bifurcations of Traveling Wave Solutions for Fully Nonlinear Water Waves with Surface Tension in the Generalized Serre-Green-Naghdi Equations. International Journal of Bifurcation and Chaos, 30, Article ID: 2050019.
https://doi.org/10.1142/s0218127420500194
[17] Zhang, L., Shi, Y. and Han, M. (2018) Smooth and Singular Traveling Wave Solutions for the Serre-Green-Naghdi Equations. Discrete Continuous Dynamical Systems-S, 13, 2917-2926.
[18] Dutykh, D. and Ionescu-Kruse, D. (2016) Travelling Wave Solutions for Some Two-Component Shallow Water Models. Journal of Differential Equations, 261, 1099-1114.
https://doi.org/10.1016/j.jde.2016.03.035
[19] Deng, S., Guo, B. and Wang, T. (2011) Some Traveling Wave Solitons of the Green-Naghdi System. International Journal of Bifurcation and Chaos, 21, 575-585.
https://doi.org/10.1142/s0218127411028623
[20] Deng, S., Guo, B. and Wang, T. (2013) Traveling Wave Solutions of the Green-Naghdi System. International Journal of Bifurcation and Chaos, 23, Article ID: 1350087.
https://doi.org/10.1142/s0218127413500879
[21] 刘正荣. 微分方程定性方法和数值模拟[M]. 广州: 华南理工大学出版社, 2013.
[22] Pan, C. and Liu, Z. (2015) Infinitely Many Solitary Waves of an Integrable Equation with Singularity. Nonlinear Dynamics, 83, 1469-1475.
https://doi.org/10.1007/s11071-015-2420-7
[23] Song, M., Ahmed, B.S., Zerrad, E. and Biswas, A. (2013) Domain Wall and Bifurcation Analysis of the Klein-Gordon Zakharov Equation in (1 + 2)-Dimensions with Power Law Nonlinearity. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23, Article ID: 033115.
https://doi.org/10.1063/1.4816346
[24] Huang, Z. and Wen, Z. (2023) Persistence of Solitary Waves and Periodic Waves of a Singularly Perturbed Generalized Drinfel’d-Sokolov System. International Journal of Bifurcation and Chaos, 33, Article ID: 2350171.
https://doi.org/10.1142/s0218127423501717

Baidu
map