[1] |
俞瑞雪. 医学影像技术在医学影像诊断中的临床应用分析[J]. 国际全科医学, 2023, 4(3): 97-99. |
[2] |
Shu, C., He, Y. and Sun, Q. (2017) Point Cloud Registration Based on Convolutional Neural Network. Laser & Optoelectronics Progress, 54, Article ID: 031001. https://doi.org/10.3788/lop54.031001 |
[3] |
罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述[J]. 电子学报, 2020, 48(6): 1230. |
[4] |
高涵, 张明路, 张小俊, 等. 机械臂绝对定位精度标定关键技术综述[J]. 计算机应用研究, 2017, 34(9): 2570-2576. |
[5] |
周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. |
[6] |
余东行, 郭海涛, 张保明, 等. 级联卷积神经网络的遥感影像飞机目标检测[J]. 测绘学报, 2019, 48(8): 1046-1058. |
[7] |
孙冠雄. 人体关键点检测模型及其向心脏关键点定位的迁移研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2018. |
[8] |
李梦荷, 许宏吉, 石磊鑫, 等. 基于骨骼关键点检测的多人行为识别[J]. 计算机科学, 2021, 48(4): 138-143. |
[9] |
杨恒, 顾晨亮, 胡厚民, 等. 嵌入卷积增强型Transformer的头影解剖关键点检测[J]. 中国图象图形学报, 2023, 28(11): 3590-3601. |
[10] |
韩冬, 李其花, 蔡巍, 等. 人工智能在医学影像中的研究与应用[J]. 大数据, 2019, 5(1): 39-67. |
[11] |
章为川, 孔祥楠, 宋文. 图像的角点检测研究综述[J]. 电子学报, 2015, 43(11): 2315-2321. |
[12] |
陆兴娟, 吴震宇. 图像边缘检测算法研究[J]. 现代电子技术, 2010, 33(6): 128-130. |
[13] |
李健, 刘孔宇, 任宪盛, 等. 基于自适应阈值的Canny算法在MRI边缘检测中的应用[J]. 吉林大学学报(工学版), 2021, 51(2): 712-719. |
[14] |
张小洪, 李博, 杨丹. 一种新的Harris多尺度角点检测[J]. 电子与信息学报, 2007, 29(7): 1735-1738. |
[15] |
田娟, 郑郁正. 模板匹配技术在图像识别中的应用[J]. 传感器与微系统, 2008, 27(1): 112-114. |
[16] |
张志强, 施文华. 改进的尺度不变特征变换算法并行加速双目测距系统及其实现[J]. 激光与光电子学进展, 2019, 56(14): 201-210. |
[17] |
Chandra, M.A. and Bedi, S.S. (2018) Survey on SVM and Their Application in Image Classification. International Journal of Information Technology, 13, 1-11. https://doi.org/10.1007/s41870-017-0080-1 |
[18] |
Hu, J. and Szymczak, S. (2023) A Review on Longitudinal Data Analysis with Random Forest. Briefings in Bioinformatics, 24, bbad002. https://doi.org/10.1093/bib/bbad002 |
[19] |
Sutskever, I. (2014) Advances in Neural Information Processing Systems. |
[20] |
Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60, 84-90. |
[21] |
Gao, L., Chen, P. and Yu, S. (2016) Demonstration of Convolution Kernel Operation on Resistive Cross-Point Array. IEEE Electron Device Letters, 37, 870-873. https://doi.org/10.1109/led.2016.2573140 |
[22] |
Chen, L., Li, S., Bai, Q., Yang, J., Jiang, S. and Miao, Y. (2021) Review of Image Classification Algorithms Based on Convolutional Neural Networks. Remote Sensing, 13, Article No. 4712. https://doi.org/10.3390/rs13224712 |
[23] |
Nassif, A.B., Shahin, I., Attili, I., Azzeh, M. and Shaalan, K. (2019) Speech Recognition Using Deep Neural Networks: A Systematic Review. IEEE Access, 7, 19143-19165. https://doi.org/10.1109/access.2019.2896880 |
[24] |
Zheng, Y., Liu, D., Georgescu, B., Nguyen, H. and Comaniciu, D. (2015) 3D Deep Learning for Efficient and Robust Landmark Detection in Volumetric Data. MICCAI 2015, Munich, 5-9 October 2015, 565-572. https://doi.org/10.1007/978-3-319-24553-9_69 |
[25] |
Hesamian, M.H., Jia, W., He, X. and Kennedy, P. (2019) Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges. Journal of Digital Imaging, 32, 582-596. https://doi.org/10.1007/s10278-019-00227-x |
[26] |
Susanto, Y., Livingstone, A.G., Ng, B.C. and Cambria, E. (2020) The Hourglass Model Revisited. IEEE Intelligent Systems, 35, 96-102. https://doi.org/10.1109/mis.2020.2992799 |
[27] |
Luo, Z., Wang, Z., Huang, Y., Wang, L., Tan, T. and Zhou, E. (2021) Rethinking the Heatmap Regression for Bottom-Up Human Pose Estimation. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 19-25 June 2021, 13264-13273. https://doi.org/10.1109/cvpr46437.2021.01306 |
[28] |
Hervella, Á.S., Rouco, J., Novo, J., Penedo, M.G. and Ortega, M. (2020) Deep Multi-Instance Heatmap Regression for the Detection of Retinal Vessel Crossings and Bifurcations in Eye Fundus Images. Computer Methods and Programs in Biomedicine, 186, Article ID: 105201. https://doi.org/10.1016/j.cmpb.2019.105201 |
[29] |
Han, K., Xiao, A., Wu, E., et al. (2021) Transformer in Transformer. Proceedings of the 35th International Conference on Neural Information Processing Systems, 6-14 December 2021, 15908-15919. |
[30] |
Shamshad, F., Khan, S., Zamir, S.W., Khan, M.H., Hayat, M., Khan, F.S., et al. (2023) Transformers in Medical Imaging: A Survey. Medical Image Analysis, 88, Article ID: 102802. https://doi.org/10.1016/j.media.2023.102802 |
[31] |
Yang, S., Quan, Z., Nie, M. and Yang, W. (2021) Transpose: Keypoint Localization via Transformer. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 11-17 October 2021, 11802-11812. https://doi.org/10.1109/iccv48922.2021.01159 |
[32] |
Lin, A., Chen, B., Xu, J., Zhang, Z., Lu, G. and Zhang, D. (2022) DS-TransUNet: Dual Swin Transformer U-Net for Medical Image Segmentation. IEEE Transactions on Instrumentation and Measurement, 71, 1-15. https://doi.org/10.1109/tim.2022.3178991 |
[33] |
Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., et al. (2023) A Survey on Vision Transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 87-110. https://doi.org/10.1109/tpami.2022.3152247 |
[34] |
Kassem, M.A., Hosny, K.M. and Fouad, M.M. (2020) Skin Lesions Classification into Eight Classes for ISIC 2019 Using Deep Convolutional Neural Network and Transfer Learning. IEEE Access, 8, 114822-114832. https://doi.org/10.1109/access.2020.3003890 |
[35] |
Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al. (2015) The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging, 34, 1993-2024. https://doi.org/10.1109/tmi.2014.2377694 |
[36] |
Naseer, I., Akram, S., Masood, T., Jaffar, A., Khan, M.A. and Mosavi, A. (2022) Performance Analysis of State-of-the-Art CNN Architectures for Luna16. Sensors, 22, Article No. 4426. https://doi.org/10.3390/s22124426 |
[37] |
Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B. and Bharath, A.A. (2018) Generative Adversarial Networks: An Overview. IEEE Signal Processing Magazine, 35, 53-65. https://doi.org/10.1109/msp.2017.2765202 |
[38] |
Pan, S.J. (2020) Transfer Learning. Learning, 21, 1-2. |
[39] |
Jaiswal, A., Babu, A.R., Zadeh, M.Z., Banerjee, D. and Makedon, F. (2020) A Survey on Contrastive Self-Supervised Learning. Technologies, 9, Article No. 2. https://doi.org/10.3390/technologies9010002 |
[40] |
Zhang, Y. and Yang, Q. (2017) An Overview of Multi-Task Learning. National Science Review, 5, 30-43. https://doi.org/10.1093/nsr/nwx105 |
[41] |
Sinha, D. and El-Sharkawy, M. (2019) Thin MobileNet: An Enhanced MobileNet Architecture. 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, 10-12 October 2019, 280-285. https://doi.org/10.1109/uemcon47517.2019.8993089 |
[42] |
Koonce, B. (2021) EfficientNet. In: Koonce, B., Ed., Convolutional Neural Networks with Swift for Tensorflow: Image Recognition and Dataset Categorization, Apress, 109-123. https://doi.org/10.1007/978-1-4842-6168-2_10 |
[43] |
Xu, F., Uszkoreit, H., Du, Y., Fan, W., Zhao, D. and Zhu, J. (2019) Explainable AI: A Brief Survey on History, Research Areas, Approaches and Challenges. In: Tang, J., et al., Eds., Natural Language Processing and Chinese Computing, Springer International Publishing, 563-574. https://doi.org/10.1007/978-3-030-32236-6_51 |